检索范围:
排序: 展示方式:
null
《医学前沿(英文)》 2015年 第9卷 第3期 页码 331-343 doi: 10.1007/s11684-015-0409-8
MicroRNAs (miRNAs), an important class of small non-coding RNAs, regulate gene expression at the post-transcriptional level. miRNAs are involved in a wide range of biological processes and implicated in different diseases, including cancers. In this study, miRNA profiling and qRT-PCR validation revealed that miR-142-3p and miR-142-5p were significantly downregulated in hepatocellular carcinoma (HCC) and their expression levels decreased as the disease progressed. The ectopic expression of miR-142 significantly reduced HCC cell migration and invasion. Overexpression of either miR-142-3p or miR-142-5p suppressed HCC cell migration, and overexpression of both synergistically inhibited cell migration, which indicated that miR-142-3p and miR-142-5p may cooperatively regulate cell movement. miR-142-3p and miR-142-5p, which are mature miRNAs derived from the 3′- and 5′-strands of the precursor miR-142, target distinct pools of genes because of their different seed sequences. Pathway enrichment analysis showed a strong association of the putative gene targets of miR-142-3p and miR-142-5p with several cell motility-associated pathways, including those regulating actin cytoskeleton, adherens junctions, and focal adhesion. Importantly, a number of the putative gene targets were also significantly upregulated in human HCC cells. Moreover, overexpression of miR-142 significantly abrogated stress fiber formation in HCC cells and led to cell shrinkage. This study shows that mature miR-142 pairs collaboratively regulate different components of distinct signaling cascades and therefore affects the motility of HCC cells.
关键词: hepatocellular carcinoma microRNA metastasis cytoskeletal reorganization
标题 作者 时间 类型 操作