资源类型

期刊论文 2479

会议视频 135

会议信息 3

会议专题 1

年份

2024 96

2023 210

2022 267

2021 237

2020 168

2019 153

2018 146

2017 132

2016 108

2015 131

2014 92

2013 86

2012 69

2011 91

2010 87

2009 70

2008 65

2007 71

2006 62

2005 47

展开 ︾

关键词

能源 56

可持续发展 18

指标体系 12

智能制造 11

核能 11

系统工程 11

可再生能源 10

节能 10

碳中和 9

工程管理 8

“一带一路” 7

开放的复杂巨系统 7

系统集成 7

钱学森 7

农业科学 6

发展战略 6

技术体系 6

环境 6

能源安全 6

展开 ︾

检索范围:

排序: 展示方式:

Characteristics and application of road absorbing solar energy

Zhihua ZHOU, Shan HU, Xiaoyan ZHANG, Jian ZUO

《能源前沿(英文)》 2013年 第7卷 第4期   页码 525-534 doi: 10.1007/s11708-013-0278-2

摘要: If the heat of road surface can be stored in summer, the road surface temperature will be decreased to prevent permanent deformation of pavement. Besides, if the heat stored is released, it can supply heat for buildings or raise the road surface temperature for snow melting in winter. A road-solar energy system was built in this study, and the heat transfer mechanism and effect of the system were analyzed according to the monitored solar radiant heat, the solar energy absorbed by road and the heat stored by soil. The results showed that the road surface temperature was mainly affected by solar radiation, but the effect is hysteretic in nature. The temperature of the solar road surface was 3°C–6°C lower than that of the ordinary road surface. The temperature of the solar road along the vertical direction was 2°C–5°C lower than that of the ordinary road. The temperature difference increased as the distance to the heat transfer tubes decreased. The average solar collector efficiency of the system was 14.4%, and the average solar absorptivity of road surface was 36%.

关键词: solar energy     road-solar energy system     road surface temperature     solar absorptivity of road surface     solar collector efficiency of system    

Technological development of multi-energy complementary system based on solar PVs and MGT

Xiaojing LV, Yu WENG, Xiaoyi DING, Shilie WENG, Yiwu WENG

《能源前沿(英文)》 2018年 第12卷 第4期   页码 509-517 doi: 10.1007/s11708-018-0598-3

摘要:

The complementary micro-energy network system consisting of solar photovoltaic power generation (solar PVs) and micro-gas turbine (MGT), which not only improves the absorption rate and reliability of photovoltaic power, but also has the advantages of low emission, high efficiency, and good fuel adaptability, has become one of the most promising distributed power systems in the field of micro grid. According to the development of current technology and the demand of actual work, this research described the domestic and foreign development of micro-energy network system based on solar PVs and MGT. Moreover, it analyzed the challenges and future development regarding the micro-energy network system in planning and design, energy utilization optimization and dispatching management, and system maintenance, respectively. Furthermore, it predicted the future development of the key technology of the multi-energy complementary system. These results will be beneficial for the progress of this field both in theory and practice.

关键词: renewable energy     solar photovoltaic power generation     micro gas turbine     multi-energy complementary system     micro-energy network    

Performance of a bi-layer solar steam generation system working at a high-temperature of top surface

Jinxin ZHONG, Congliang HUANG

《能源前沿(英文)》 2023年 第17卷 第1期   页码 141-148 doi: 10.1007/s11708-021-0725-4

摘要: Many efforts have been focused on enhancing the vapor generation in bi-layer solar steam generation systems for obtaining as much pure water as possible. However, the methods to enhance the vapor temperature is seldom studied although the high-temperature vapor has a wide use in medical sterilization and electricity generation. In this work, to probe the high-temperature vapor system, an improved macroscopic heat and mass transfer model was proposed. Then, using the finite element method to solve the model, the influences of some main factors on the evaporation efficiency and vapor temperature were discussed, including effects of the vapor transport conditions and the heat dissipation conditions. The results show that the high-temperature vapor could not be obtained by enhancing the heat-insulating property of the bi-layer systems but by applying the optimal porosity and proper absorbers. This paper is expected to provide some information for designing a bi-layered system to produce high-temperature vapor.

关键词: solar steam generation     solar energy     numerical method     porous material    

A genetic algorithm based improved optimal sizing strategy for solar-wind-battery hybrid system usingenergy filter algorithm

Aeidapu MAHESH, Kanwarjit Singh SANDHU

《能源前沿(英文)》 2020年 第14卷 第1期   页码 139-151 doi: 10.1007/s11708-017-0484-4

摘要: In this paper, the genetic algorithm (GA) is applied to optimize a grid connected solar photovoltaic (PV)-wind-battery hybrid system using a novel energy filter algorithm. The main objective of this paper is to minimize the total cost of the hybrid system, while maintaining its reliability. Along with the reliability constraint, some of the important parameters, such as full utilization of complementary nature of PV and wind systems, fluctuations of power injected into the grid and the battery’s state of charge (SOC), have also been considered for the effective sizing of the hybrid system. A novel energy filter algorithm for smoothing the power injected into the grid has been proposed. To validate the proposed method, a detailed case study has been conducted. The results of the case study for different cases, with and without employing the energy filter algorithm, have been presented to demonstrate the effectiveness of the proposed sizing strategy.

关键词: PV-wind-battery hybrid system     size optimization     genetic algorithm    

Viability of a concentrated solar power system in a low sun belt prefecture

Rahul BHATTACHARJEE, Subhadeep BHATTACHARJEE

《能源前沿(英文)》 2020年 第14卷 第4期   页码 850-866 doi: 10.1007/s11708-020-0664-5

摘要: Concentrating solar power (CSP) is considered as a comparatively economical, more efficient, and large capacity type of renewable energy technology. However, CSP generation is found restricted only to high solar radiation belt and installed where high direct normal irradiance is available. This paper examines the viability of the adoption of the CSP system in a low sun belt region with a lower direct normal irradiance (DNI). Various critical analyses and plant economics have been evaluated with a lesser DNI state. The obtained results out of the designed system, subjected to low DNI are not found below par, but comparable to some extent with the performance results of such CSP plants at a higher DNI. The analysis indicates that incorporation of the thermal energy storage reduces the levelized cost of energy (LCOE) and augments the plant capacity factor. The capacity factor, the plant efficiency, and the LCOE are found to be 32.50%, 17.56%, and 0.1952 $/kWh, respectively.

关键词: concentrated solar power     direct normal irradiance     plant performance     plant economics     thermal energy storage    

Multi-objective dynamic optimization model for China’s road transport energy technology switching

Dan GAO , Zheng LI , Feng FU , Linwei MA

《能源前沿(英文)》 2009年 第3卷 第3期   页码 247-253 doi: 10.1007/s11708-009-0048-3

摘要: Deducting the future switching of the road transport energy technology is one of the key preconditions for relative technology development planning. However, one of the difficulties is to address the issue of multi-objective and conflicting constrains, e.g., minimizing the climate mitigation or minimizing economic cost. In this paper, a dynamic optimization model was established, which can be used to analyze the road transport energy technology switching under multi-objective constrains. Through one case study, a series of solutions could be derived to provide decision-makers with the flexibility to choose the appropriate solution with respect to the given situation.

关键词: technology switching     transport energy system     multi-objective     CO2 mitigation    

Investigation on regeneration and energy storage characteristics of a solar liquid desiccant air-conditioningsystem

SHI Mingheng, DU Bin, ZHAO Yun

《能源前沿(英文)》 2007年 第1卷 第1期   页码 85-90 doi: 10.1007/s11708-007-0008-8

摘要: Solar liquid desiccant air-conditioner is a new air-conditioning system in which liquid desiccant can be regenerated by solar energy and energy can be stored in the form of chemical energy in the liquid desiccant. In this paper regeneration and energy storage characteristics were studied theoretically and experimentally. Two criterion equations for heat and mass transfer in the regeneration process were obtained. The main factors that influence the regeneration process were analyzed. A principal solar liquid desiccant air-conditioning system under energy storage operating mode is proposed.

关键词: desiccant air-conditioning     regeneration process     air-conditioning system     energy     regeneration    

A solar assisted heat pump drying system for grain in-store drying

Haifeng LI, Yanjun DAI, Jianguo DAI, Xibo WANG, Lei WEI,

《能源前沿(英文)》 2010年 第4卷 第3期   页码 386-391 doi: 10.1007/s11708-010-0003-3

摘要: For grain in-store drying, a solar assisted drying process has been developed, which consists of a set including a solar-assisted heat pump, a ventilation system, a grain stirrer, etc. In this way, low power consumption, short cycle time and water content uniformity can be achieved in comparison with the conventional method. A solar-assisted heat pump drying system has been designed and manufactured for a practical granary, and the energy consumption performance of the unit is analyzed. The analysis result shows that the solar fraction of the unit is higher than 20%, the coefficient of performance about system (COP) is 5.19, and the specific moisture extraction rate (SMER) can reach 3.05 kg/kWh.

关键词: solar energy     heat pump     airflow     in-store drying    

Direct energy rebound effect for road transportation in China

《工程管理前沿(英文)》 2023年 第10卷 第4期   页码 597-611 doi: 10.1007/s42524-023-0276-y

摘要: The enhancement of energy efficiency stands as the principal avenue for attaining energy conservation and emissions reduction objectives within the realm of road transportation. Nevertheless, it is imperative to acknowledge that these objectives may, in part or in entirety, be offset by the phenomenon known as the energy rebound effect (ERE). To quantify the long-term EREs and short-term EREs specific to China’s road transportation, this study employed panel cointegration and panel error correction models, accounting for asymmetric price effects. The findings reveal the following: The long-term EREs observed in road passenger transportation and road freight transportation range from 13% to 25% and 14% to 48%, respectively; in contrast, the short-term EREs in road passenger transportation and road freight transportation span from 36% to 41% and 3.9% to 32%, respectively. It is noteworthy that the EREs associated with road passenger transportation and road freight transportation represent a partial rebound effect, falling short of reaching the magnitude of a counterproductive backfire effect. This leads to the inference that the upsurge in energy consumption within the road transportation sector cannot be solely attributed to advancements in energy efficiency. Instead, various factors, including income levels, the scale of commodity trade, and industrial structure, exert more substantial facilitating influences. Furthermore, the escalation of fuel prices fails to dampen the demand for energy services, whether in the domain of road passenger transportation or road freight transportation. In light of these conclusions, recommendations are proffered for the formulation of energy efficiency policies pertinent to road transportation.

关键词: road transportation     direct energy rebound effect     asymmetric price effects     panel data model    

Economic analysis of a hybrid solar-fuel cell power delivery system using tuned genetic algorithm

Trina SOM, Niladri CHAKRABORTY

《能源前沿(英文)》 2012年 第6卷 第1期   页码 12-20 doi: 10.1007/s11708-012-0172-3

摘要: An economic evaluation of a network of distributed energy resources (DERs) comprising a microgrid structure of power delivery system in an Indian scenario has been made. The mathematical analysis is based on the application of tuned genetic algorithm (TGA). The analyses for optimal power operation pertaining to minimum cost have been made for two cases in Indian power delivery system. The first case deals with the consumers’ individual optimal operation of DERs, while in the second one, consumers altogether form a microgrid with the optimal supply of power from DERs. The total annual costs for these two cases are found to be economically competitive and encouraging. A reduction of approximately 5.7% in the annual cost has been obtained in the case of microgid system than that in the separately operating consumers’ system for a small locality of India. It is observed that the application of TGA results in a reduction of the minimum cost depicting an improved outcome in terms of energy economy.

关键词: distributed energy resources (DERs)     microgrid     tuned genetic algorithm (TGA)    

Wastewater treatment meets artificial photosynthesis: Solar to green fuel production, water remediation

《环境科学与工程前沿(英文)》 2022年 第16卷 第4期 doi: 10.1007/s11783-022-1536-5

摘要:

• Mitigating energy utilization and carbon emission is urgent for wastewater treatment.

关键词: Wastewater treatment     Artificial photosynthesis     Microbial photoelectrochemical (MPEC) system     Carbon neutral     Renewable energy    

Comparison of different energy saving lights using solar panel

Huzaifa MUBARAK,Saad Bin Abul KASHEM

《能源前沿(英文)》 2016年 第10卷 第4期   页码 466-472 doi: 10.1007/s11708-016-0417-7

摘要: The recent trend in light emitting diode or LED lighting applications and their claimed energy saving capabilities together with their overall attractiveness has us all convinced that they really are a greener alternative to the compact fluorescent lights or CFL. As convincing as it seems, the actual energy saving capabilities of LEDs are yet to be proven scientifically or at the least, on an empirical level when compared to CFLs. This paper tackles the issue with the use of a solar cell by evaluating the photovoltaic current and voltage generated by the solar cell subjected to each lighting system. Graphical representations are drawn and a conclusion is then reached based on the amount of power generation in the solar cells in order to determine the energy saving capabilities of each lighting system and its efficiency. From the result, it has been found that an LED is 3.7 times more power efficient than a CFL based light source of equal wattage.

关键词: CFL     LED     empirical     solar     lumens     energy saving     fluorescent    

A small-scale silica gel-water adsorption system for domestic air conditioning and water heating by therecovery of solar energy

Y. YU, Q. W. PAN, L. W. WANG

《能源前沿(英文)》 2020年 第14卷 第2期   页码 328-336 doi: 10.1007/s11708-019-0623-1

摘要: A small-scale silica gel-water adsorption system with modular adsorber, which utilizes solar energy to achieve the cogeneration of domestic air conditioning and water heating effect, is proposed and investigated in this paper. A heat recovery process between two adsorbers and a mass recovery process between two evaporators are adopted to improve the overall cooling and heating performance. First, the adsorption system is tested under different modes (different mass recovery, heat recovery, and cogeneration time) to determine the optimal operating conditions. Then, the cogeneration performance of domestic cooling and water heating effect is studied at different heat transfer fluid temperatures. The results show that the optimal time for cogeneration, mass recovery, and heat recovery are 600 s, 40 s, and 40 s, respectively. When the inlet temperature of hot water is around 85°C, the largest cooling power and heating power are 8.25 kW and 21.94 kW, respectively. Under the condition of cooling water temperature of 35°C, the obtained maximum COP , COP , and SCP of the system are 0.59, 1.39, and 184.5 W/kg, respectively.

关键词: silica gel-water     heat and mass recovery     solar energy     domestic cooling and heating    

Advancing performance assessment of a spectral beam splitting hybrid PV/T system with water-based SiO

《能源前沿(英文)》 doi: 10.1007/s11708-024-0933-11

摘要: Spectral beam split is attracting more attention thanks to the efficient use of whole spectrum solar energy and the cogenerative supply for electricity and heat. Nanofluids can selectively absorb and deliver specific solar spectra, making various nanofluids ideal for potential use in hybrid photovoltaic/thermal (PV/T) systems for solar spectrum separation. Clarifying the effects of design parameters is extremely beneficial for optimal frequency divider design and system performance enhancement. The water-based SiO2 nanofluid with excellent thermal and absorption properties was proposed as the spectral beam splitter in the present study, to improve the efficiency of a hybrid PV/T system. Moreover, a dual optical path method was applied to get its spectral transimissivity and analyze the impact of its concentration and optical path on its optical properties. Furthermore, a PV and photothermal model of the presented system was built to investigate the system performance. The result indicates that the transimissivity of the nanofluids to solar radiation gradually decreases with increasing SiO2 nanofluid concentration and optical path. The higher nanofluid concentration leads to a lower electrical conversion efficiency, a higher thermal conversion efficiency, and an overall system efficiency. Considering the overall efficiency and economic cost, the optimal SiO2 nanofluid concentration is 0.10 wt.% (wt.%, mass fraction). Increasing the optical path (from 0 to 30 mm) results in a 60.43% reduction in electrical conversion efficiency and a 50.84% increase in overall system efficiency. However, the overall system efficiency rises sharply as the optical path increases in the 0–10 mm range, and then slowly at the optical path of 10–30 mm. Additionally, the overall system efficiency increases first and then drops upon increasing the focusing ratio. The maximum efficiency is 51.93% at the focusing ratio of 3.

关键词: full-spectrum solar energy     photovoltaic/thermal (PV/T) system     water-based nanofluid     system efficiency    

Advancing performance assessment of a spectral beam splitting hybrid PV/T system with water-based SiO

《能源前沿(英文)》 doi: 10.1007/s11708-024-0935-7

摘要: Spectral beam split is attracting more attention thanks to the efficient use of whole spectrum solar energy and the cogenerative supply for electricity and heat. Nanofluids can selectively absorb and deliver specific solar spectra, making various nanofluids ideal for potential use in hybrid photovoltaic/thermal (PV/T) systems for solar spectrum separation. Clarifying the effects of design parameters is extremely beneficial for optimal frequency divider design and system performance enhancement. The water-based SiO2 nanofluid with excellent thermal and absorption properties was proposed as the spectral beam splitter in the present study, to improve the efficiency of a hybrid PV/T system. Moreover, a dual optical path method was applied to get its spectral transimissivity and analyze the impact of its concentration and optical path on its optical properties. Furthermore, a PV and photothermal model of the presented system was built to investigate the system performance. The result indicates that the transimissivity of the nanofluids to solar radiation gradually decreases with increasing SiO2 nanofluid concentration and optical path. The higher nanofluid concentration leads to a lower electrical conversion efficiency, a higher thermal conversion efficiency, and an overall system efficiency. Considering the overall efficiency and economic cost, the optimal SiO2 nanofluid concentration is 0.10 wt.% (wt.%, mass fraction). Increasing the optical path (from 0 to 30 mm) results in a 60.43% reduction in electrical conversion efficiency and a 50.84% increase in overall system efficiency. However, the overall system efficiency rises sharply as the optical path increases in the 0–10 mm range, and then slowly at the optical path of 10–30 mm. Additionally, the overall system efficiency increases first and then drops upon increasing the focusing ratio. The maximum efficiency is 51.93% at the focusing ratio of 3.

关键词: full-spectrum solar energy     photovoltaic/thermal (PV/T) system     water-based nanofluid     system efficiency    

标题 作者 时间 类型 操作

Characteristics and application of road absorbing solar energy

Zhihua ZHOU, Shan HU, Xiaoyan ZHANG, Jian ZUO

期刊论文

Technological development of multi-energy complementary system based on solar PVs and MGT

Xiaojing LV, Yu WENG, Xiaoyi DING, Shilie WENG, Yiwu WENG

期刊论文

Performance of a bi-layer solar steam generation system working at a high-temperature of top surface

Jinxin ZHONG, Congliang HUANG

期刊论文

A genetic algorithm based improved optimal sizing strategy for solar-wind-battery hybrid system usingenergy filter algorithm

Aeidapu MAHESH, Kanwarjit Singh SANDHU

期刊论文

Viability of a concentrated solar power system in a low sun belt prefecture

Rahul BHATTACHARJEE, Subhadeep BHATTACHARJEE

期刊论文

Multi-objective dynamic optimization model for China’s road transport energy technology switching

Dan GAO , Zheng LI , Feng FU , Linwei MA

期刊论文

Investigation on regeneration and energy storage characteristics of a solar liquid desiccant air-conditioningsystem

SHI Mingheng, DU Bin, ZHAO Yun

期刊论文

A solar assisted heat pump drying system for grain in-store drying

Haifeng LI, Yanjun DAI, Jianguo DAI, Xibo WANG, Lei WEI,

期刊论文

Direct energy rebound effect for road transportation in China

期刊论文

Economic analysis of a hybrid solar-fuel cell power delivery system using tuned genetic algorithm

Trina SOM, Niladri CHAKRABORTY

期刊论文

Wastewater treatment meets artificial photosynthesis: Solar to green fuel production, water remediation

期刊论文

Comparison of different energy saving lights using solar panel

Huzaifa MUBARAK,Saad Bin Abul KASHEM

期刊论文

A small-scale silica gel-water adsorption system for domestic air conditioning and water heating by therecovery of solar energy

Y. YU, Q. W. PAN, L. W. WANG

期刊论文

Advancing performance assessment of a spectral beam splitting hybrid PV/T system with water-based SiO

期刊论文

Advancing performance assessment of a spectral beam splitting hybrid PV/T system with water-based SiO

期刊论文