资源类型

期刊论文 198

会议视频 4

年份

2023 26

2022 19

2021 11

2020 18

2019 7

2018 18

2017 12

2016 5

2015 7

2014 9

2013 9

2012 3

2011 3

2010 6

2009 8

2008 9

2007 12

2006 4

2005 3

2004 1

展开 ︾

关键词

增材制造 4

形状记忆合金 3

机器学习 3

铝合金 3

4D打印 2

力学性能 2

形状记忆聚合物 2

无氢渗碳 2

模态 2

镍基合金 2

长短期记忆网络 2

2035 1

6016 合金 1

6016 铝合金 1

9 %~12 % Cr 钢 1

&prime 1

&gamma 1

AAC 1

ANSYS 1

展开 ︾

检索范围:

排序: 展示方式:

A novel shape memory alloy actuated soft gripper imitated hand behavior

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0700-8

摘要: The limited length shrinkage of shape memory alloy (SMA) wire seriously limits the motion range of SMA-based gripper. In this paper, a new soft finger without silicone gel was designed based on pre bent SMA wire, and the finger was back to its original shape by heating SMA wire, rather than relying only on heat exchange with the environment. Through imitating palm movement, a structure with adjustable spacing between fingers was made using SMA spring and rigid spring. The hook structure design at the fingertip can form self-locking to further improve the load capacity of gripper. Through the long thin rod model, the relationship of the initial pre bent angle on the bending angle and output force of the finger was analyzed. The stress-strain model of SMA spring was established for the selection of rigid spring. Three grasping modes were proposed to adapt to the weight of the objects. Through the test of the gripper, it was proved that the gripper had large bending amplitude, bending force, and response rate. The design provides a new idea for the lightweight design and convenient design of soft gripper based on SMA.

关键词: shape memory alloy (SMA)     pre bent     wire     gripper     grasping mode     lightweight    

Improvement of impact resistance of plain-woven composite by embedding superelastic shape memory alloy

Xiaojun GU, Xiuzhong SU, Jun WANG, Yingjie XU, Jihong ZHU, Weihong ZHANG

《机械工程前沿(英文)》 2020年 第15卷 第4期   页码 547-557 doi: 10.1007/s11465-020-0595-1

摘要: Carbon fiber reinforced polymer (CFRP) composites have excellent mechanical properties, specifically, high specific stiffness and strength. However, most CFRP composites exhibit poor impact resistance. To overcome this limitation, this study presents a new plain-woven CFRP composite embedded with superelastic shape memory alloy (SMA) wires. Composite specimens are fabricated using the vacuum-assisted resin injection method. Drop-weight impact tests are conducted on composite specimens with and without SMA wires to evaluate the improvement of impact resistance. The material models of the CFRP composite and superelastic SMA wire are introduced and implemented into a finite element (FE) software by the explicit user-defined material subroutine. FE simulations of the drop-weight impact tests are performed to reveal the superelastic deformation and debonding failure of the SMA inserts. Improvement of the energy absorption capacity and toughness of the SMA-CFRP composite is confirmed by the comparison results.

关键词: carbon fiber reinforced polymer composite     shape memory alloy wire     impact resistance     drop-weight test     finite element simulation    

An extended thermo-mechanically coupled algorithm for simulation of superelasticity and shape memoryeffect in shape memory alloys

S. HASHEMI,H. AHMADIAN,S. MOHAMMADI

《结构与土木工程前沿(英文)》 2015年 第9卷 第4期   页码 466-477 doi: 10.1007/s11709-015-0300-3

摘要: Thermo-mechanical coupling in shape memory alloys is a very complicated phenomenon. The heat generation/absorption during forward/reverse transformation can lead to temperature-dependent variation of its mechanical behavior in the forms of superelasticity and shape memory effect. However, unlike the usual assumption, slow loading rate cannot guarantee an isothermal process. A two-dimensional thermo-mechanically coupled algorithm is proposed based on the original model of Lagoudas to efficiently model both superelasticity and shape memory effects and the influence of various strain rates, aspect ratios and boundary conditions. To implement the coupled model into a finite element code, a numerical staggered algorithm is employed. A number of simulations are performed to verify the proposed approach with available experimental and numerical data and to assess its efficiency in solving complex SMA problems.

关键词: shape memory alloy     thermo-mechanical coupling     superplasticity     shape memory effect    

Temperature effects of shape memory alloys (SMAs) in damage control design of steel portal frames

Xiaoqun LUO, Hanbin GE, Tsutomu USAMI

《结构与土木工程前沿(英文)》 2012年 第6卷 第4期   页码 348-357 doi: 10.1007/s11709-012-0176-4

摘要: The objective of the present study is to analytically investigate temperature effects of an axial-type seismic damper made of shape memory alloys (SMAs) equipped in steel frames. Based on a modified multilinear one dimensional constitutive model of SMAs, two types of SMAs are employed, which have different stress plateau and different stress growth rate with temperature increase. Temperature effects of SMA dampers on seismic performance upgrading are discussed in three aspects: different environment temperatures; rapid loading rate induced heat generation and different SMA fractions. The analysis indicates that the effect of environment temperature should be considered for the SMA damper in steel frames. However, the rapid loading rate induced heat generation has little adverse effect.

关键词: damage control design     shape memory alloy     temperature effect    

A fully solid-state cold thermal energy storage device for car seats using shape-memory alloys

《能源前沿(英文)》 2023年 第17卷 第4期   页码 504-515 doi: 10.1007/s11708-022-0855-3

摘要: Thermal energy storage has been a pivotal technology to fill the gap between energy demands and energy supplies. As a solid-solid phase change material, shape-memory alloys (SMAs) have the inherent advantages of leakage free, no encapsulation, negligible volume variation, as well as superior energy storage properties such as high thermal conductivity (compared with ice and paraffin) and volumetric energy density, making them excellent thermal energy storage materials. Considering these characteristics, the design of the shape-memory alloy based the cold thermal energy storage system for precooling car seat application is introduced in this paper based on the proposed shape-memory alloy-based cold thermal energy storage cycle. The simulation results show that the minimum temperature of the metal boss under the seat reaches 26.2 °C at 9.85 s, which is reduced by 9.8 °C, and the energy storage efficiency of the device is 66%. The influence of initial temperature, elastocaloric materials, and the shape-memory alloy geometry scheme on the performance of car seat cold thermal energy storage devices is also discussed. Since SMAs are both solid-state refrigerants and thermal energy storage materials, hopefully the proposed concept can promote the development of more promising shape-memory alloy-based cold and hot thermal energy storage devices.

关键词: shape-memory alloy (SMA)     elastocaloric effect (eCE)     cooled seat     cold thermal energy storage    

Topology optimization and seismic collapse assessment of shape memory alloy (SMA)-braced frames: Effectiveness

Aydin HASSANZADEH; Saber MORADI

《结构与土木工程前沿(英文)》 2022年 第16卷 第3期   页码 281-301 doi: 10.1007/s11709-022-0807-3

摘要: This paper presents a seismic topology optimization study of steel braced frames with shape memory alloy (SMA) braces. Optimal SMA-braced frames (SMA-BFs) with either Fe-based SMA or NiTi braces are determined in a performance-based seismic design context. The topology optimization is performed on 5- and 10-story SMA-BFs considering the placement, length, and cross-sectional area of SMA bracing members. Geometric, strength, and performance-based design constraints are considered in the optimization. The seismic response and collapse safety of topologically optimal SMA-BFs are assessed according to the FEMA P695 methodology. A comparative study on the optimal SMA-BFs is also presented in terms of total relative cost, collapse capacity, and peak and residual story drift. The results demonstrate that Fe-based SMA-BFs exhibit higher collapse capacity and more uniform distribution of lateral displacement over the frame height while being more cost-effective than NiTi braced frames. In addition to a lower unit price compared to NiTi, Fe-based SMAs reduce SMA material usage. In frames with Fe-based SMA braces, the SMA usage is reduced by up to 80%. The results highlight the need for using SMAs with larger recoverable strains.

关键词: topology optimization     shape memory alloy     Fe-based SMA     steel braced frames     performance-based seismic design     collapse assessment    

双向4D打印——对3D打印形状记忆材料可逆性的回顾

Amelia Yilin Lee, Jia An, Chee Kai Chua

《工程(英文)》 2017年 第3卷 第5期   页码 663-674 doi: 10.1016/J.ENG.2017.05.014

摘要:
增材制造技术的快速发展和形状记忆材料的进步推动了四维(4D)打印的发展。由于一定程度上的外部刺激,人机交互作用、传感器和电池的需求将被消除,通过使用增材制造技术,可以生产出更复杂的设备和零部件。随着目前对形状记忆机制的理解和对增材制造技术的改进设计,4D 打印的可逆性已经被证明是可行的。传统的单向4D 打印需要在编程(或定型)阶段进行人机交互,但是可逆的4D 打印或双向4D 打印将完全消除对人为干预的需求,因为编程阶段被另一种外界刺激所取代。这使得可逆4D 打印部件完全依赖外部刺激。零部件在每次回收后都可能被重复利用,甚至在某个周期中可以持续使用——这是一个具有工业运用吸引力的方面。本文综述了影响4D 打印的形状记忆材料的机制,目前在合金和聚合物上的4D 打印研究结果,以及它们各自存在的一些局限性。对形状记忆材料的可逆性和利用三维(3D)打印技术制作的可行性进行了总结和分析。在对可逆4D 打印技术相关内容的介绍中,本文也强调了3D 打印技术的方法、相关驱动的机制以及实现可逆性的策略。最后,提出了可逆4D 打印技术未来的研究方向。

关键词: 4D打印     增材制造     形状记忆材料     智能材料     形状记忆合金     形状记忆聚合物    

Structural design of morphing trailing edge actuated by SMA

Qi WANG, Zhiwei XU, Qian ZHU

《机械工程前沿(英文)》 2013年 第8卷 第3期   页码 268-275 doi: 10.1007/s11465-013-0261-y

摘要:

In this paper, the morphing trailing edge is designed to achieve the up and down deflection under the aerodynamic load. After a detailed and accurate computational analysis to determine the SMA specifications and layout programs, a solid model is created in CATIA and the structures of the morphing wing trailing edge are produced by CNC machining. A set of DSP measurement and control system is designed to accomplish the controlling experiment of the morphing wing trailing edge. At last, via the force analysis, the trailing edge is fabricated with four sections of aluminum alloy, and the arrangement scheme of SMA wires is determined. Experiment of precise control integral has been performed to survey the control effect. The experiment consists of deflection angle tests of the third joint and the integral structure. Primarily, the ultimate deflection angle is tested in these two experiments. Therefore, the controlling experiment of different angles could be performed within this range. The results show that the deflection error is less than 4% and response time is less than 6.7 s, the precise controlling of the morphing trailing edge is preliminary realized.

关键词: morphing wing trailing edge     shape memory alloy     digital signal processor     PID algorithm    

Parametric study on damage control design of SMA dampers in frame-typed steel piers

Xiaoqun LUO, Hanbin GE, Tsutomu USAMI,

《结构与土木工程前沿(英文)》 2009年 第3卷 第4期   页码 384-394 doi: 10.1007/s11709-009-0065-7

摘要: This paper focuses on damage control design of SMA dampers in steel frame piers. A parametric study based on time history analyses is carried out on frame-typed bridge piers with axial-type SMA damping device. The parameters examined are design parameters of strength ratio and stiffness ratio . Seismic performance indexes on displacement and strain are investigated under three JRA recommended Level 2 Ground Type П strong earthquake motions. Design recommendations are suggested following the results of the parametric study.

关键词: damage control design     shape memory alloy     parameter study     displacement-based verification     strain-based verification     time history analysis    

A mini review: Shape memory polymers for biomedical applications

Kaojin Wang, Satu Strandman, X. X. Zhu

《化学科学与工程前沿(英文)》 2017年 第11卷 第2期   页码 143-153 doi: 10.1007/s11705-017-1632-4

摘要: Shape memory polymers (SMPs) are smart materials that can change their shape in a pre-defined manner under a stimulus. The shape memory functionality has gained considerable interest for biomedical applications, which require materials that are biocompatible and sometimes biodegradable. There is a need for SMPs that are prepared from renewable sources to be used as substitutes for conventional SMPs. In this paper, advances in SMPs based on synthetic monomers and bio-compounds are discussed. Materials designed for biomedical applications are highlighted.

关键词: shape memory polymer     biodegradability     biocompatibility     biomedical application     bile acids    

Deformation analysis of shape memory polymer for morphing wing skin under airflow

Weilong YIN, Jingcang LIU, Jinsong LENG,

《机械工程前沿(英文)》 2009年 第4卷 第4期   页码 447-449 doi: 10.1007/s11465-009-0062-5

摘要: The method for analyzing the out-of-plane deformation of a flexible skin under airflow is developed in this paper. The aerodynamic analysis is performed using the CFD software, and the structural analysis is performed using finite element method. The chief aim of the present study is to investigate the out-of-plane deformation of the shape memory polymer (SMP) skin at different temperatures. Numerical results show that the maximum out-of-plane displacement of the SMP skin increases with increasing temperature. When the SMP skin is heated to 53°C, the maximum out-of-plane displacement is about 7 mm. It decreases by 72%, when the SMP skin is applied with a uniform pre-strain of 0.1.

关键词: aircraft     morphing     skin     shape memory polymer (SMP)     deformation     pre-strain    

Computational studies on the seismic response of the State Route 99 bridge in Seattle with SMA/ECC plastic hinges

Jiping GE, M. Saiid SAIIDI, Sebastian VARELA

《结构与土木工程前沿(英文)》 2019年 第13卷 第1期   页码 149-164 doi: 10.1007/s11709-018-0482-6

摘要: This paper reports a computational study on the seismic response of a three-span highway bridge system incorporating conventional and novel substructure details for improved seismic performance. The bridge has three continuous spans supported by two single-column piers and integral abutments founded on drilled shafts. It will be the first full-scale highway bridge to use superelastic shape memory alloy bars (SMA) and engineered cementitious composite (ECC) to mitigate column plastic hinge damage and minimize residual displacements after a strong earthquake. A three-dimensional computational model capturing the nonlinear constitutive response of the novel materials and the effects of dynamic soil-structure interaction was developed to assess the seismic response of the bridge in finite-element software OpenSees. Two versions of the same bridge were analyzed and compared, one with conventional cast-in-place reinforced concrete columns, and the other with top plastic hinges incorporating Nickel-Titanium (NiTi) SMA reinforcing bars and ECC. The novel SMA/ECC plastic hinges were found to substantially reduce damage and post-earthquake residual displacements in the bridge substructure, but led to larger maximum drifts relative to the bridge with conventional reinforced concrete plastic hinges. The analysis results suggested that the novel plastic hinges could lead to improved post-earthquake serviceability of bridges after intense earthquakes.

关键词: seismic design     analytical simulation     near-fault earthquakes     shape memory alloy     engineered cementitious composite     self-centering    

Shape optimization of aluminium alloy spherical reticulated shells considering nonlinearities

Wei LIU; Lishu XU; Shaojun ZHU; Lijuan LI; Feng LIU; Zhe XIONG

《结构与土木工程前沿(英文)》 2022年 第16卷 第12期   页码 1565-1580 doi: 10.1007/s11709-022-0867-4

摘要: This study proposes a shape optimization method for K6 aluminum alloy spherical reticulated shells with gusset joints, considering geometric, material, and joint stiffness nonlinearities. The optimization procedure adopts a genetic algorithm in which the elastoplastic non-linear buckling load is selected as the objective function to be maximized. By confinement of the adjustment range of the controlling points, optimization results have enabled a path toward achieving a larger elastoplastic non-linear buckling load without changing the macroscopic shape of the structure. A numerical example is provided to demonstrate the effectiveness of the proposed method. In addition, the variation in structural performance during optimization is illustrated. Through parametric analysis, practical design tables containing the parameters of the optimized shape are obtained for aluminum alloy spherical shells with common geometric parameters. To explore the effect of material nonlinearity, the optimal shapes obtained based on considering and not considering material non-linear objective functions, the elastoplastic and elastic non-linear buckling loads, are compared.

关键词: shape optimization     aluminum alloy     spherical reticulated shell     non-linear buckling     material nonlinearity     genetic algorithm    

Seismic responses and resilience of novel SMA-based self-centring eccentrically braced frames under near-fault ground motions

Zhi-Peng CHEN; Songye ZHU

《结构与土木工程前沿(英文)》 2022年 第16卷 第8期   页码 962-975 doi: 10.1007/s11709-022-0873-6

摘要: In this paper, the seismic responses and resilience of a novel K-type superelastic shape memory alloy (SMA) self-centring (SC) eccentrically braced frame (EBF) are investigated. The simulation models of the SMA-based SC-EBF and a corresponding equal-stiffness traditional EBF counterpart are first established based on some existing tests. Then twenty-four near-fault ground motions are used to examine the seismic responses of both EBFs under design basis earthquake (DBE) and maximum considered earthquake (MCE) levels. Structural fragility and loss analyses are subsequently conducted through incremental dynamic analyses (IDA), and the resilience of the two EBFs are eventually estimated. The resilience assessment basically follows the framework proposed by Federal Emergency and Management Agency (FEMA) with the additional consideration of the maximum residual inter-storey drift ratio (MRIDR). The novel SMA-based SC-EBF shows a much better resilience in the study and represents a promising attractive alternative for future applications.

关键词: shape memory alloy     eccentrically braced frame     self-centring     fragility     loss function     resilience    

新型SMA隔震支座动载性能试验研究

邓宗才,孙宏俊,刘春国,牛坤,邓洪亮

《中国工程科学》 2005年 第7卷 第12期   页码 61-68

摘要:

以提高SMA利用率为目的,设计了几种不同形式的SMA橡胶支座并进行了耗能试验。研究了水平位移幅值、水平加载频率以及竖向荷载等因素对SMA橡胶支座水平刚度、耗能量以及阻尼等基本力学性能的影响,结果表明,新型的SMA橡胶支座均可有效提高橡胶支座的耗能性能和回复能力,并为SMA橡胶支座优化设计提供了依据。

关键词: 形状记忆合金     隔震支座     初始刚度     滞回耗能     等效阻尼比    

标题 作者 时间 类型 操作

A novel shape memory alloy actuated soft gripper imitated hand behavior

期刊论文

Improvement of impact resistance of plain-woven composite by embedding superelastic shape memory alloy

Xiaojun GU, Xiuzhong SU, Jun WANG, Yingjie XU, Jihong ZHU, Weihong ZHANG

期刊论文

An extended thermo-mechanically coupled algorithm for simulation of superelasticity and shape memoryeffect in shape memory alloys

S. HASHEMI,H. AHMADIAN,S. MOHAMMADI

期刊论文

Temperature effects of shape memory alloys (SMAs) in damage control design of steel portal frames

Xiaoqun LUO, Hanbin GE, Tsutomu USAMI

期刊论文

A fully solid-state cold thermal energy storage device for car seats using shape-memory alloys

期刊论文

Topology optimization and seismic collapse assessment of shape memory alloy (SMA)-braced frames: Effectiveness

Aydin HASSANZADEH; Saber MORADI

期刊论文

双向4D打印——对3D打印形状记忆材料可逆性的回顾

Amelia Yilin Lee, Jia An, Chee Kai Chua

期刊论文

Structural design of morphing trailing edge actuated by SMA

Qi WANG, Zhiwei XU, Qian ZHU

期刊论文

Parametric study on damage control design of SMA dampers in frame-typed steel piers

Xiaoqun LUO, Hanbin GE, Tsutomu USAMI,

期刊论文

A mini review: Shape memory polymers for biomedical applications

Kaojin Wang, Satu Strandman, X. X. Zhu

期刊论文

Deformation analysis of shape memory polymer for morphing wing skin under airflow

Weilong YIN, Jingcang LIU, Jinsong LENG,

期刊论文

Computational studies on the seismic response of the State Route 99 bridge in Seattle with SMA/ECC plastic hinges

Jiping GE, M. Saiid SAIIDI, Sebastian VARELA

期刊论文

Shape optimization of aluminium alloy spherical reticulated shells considering nonlinearities

Wei LIU; Lishu XU; Shaojun ZHU; Lijuan LI; Feng LIU; Zhe XIONG

期刊论文

Seismic responses and resilience of novel SMA-based self-centring eccentrically braced frames under near-fault ground motions

Zhi-Peng CHEN; Songye ZHU

期刊论文

新型SMA隔震支座动载性能试验研究

邓宗才,孙宏俊,刘春国,牛坤,邓洪亮

期刊论文