资源类型

期刊论文 170

会议视频 4

年份

2023 18

2022 15

2021 18

2020 13

2019 16

2018 7

2017 21

2016 9

2015 6

2014 9

2013 4

2012 2

2011 6

2010 11

2009 3

2008 3

2007 4

2006 2

2005 2

2003 1

展开 ︾

关键词

太阳能 5

2022全球十大工程成就 2

Cu(In 2

Ga)Se2 2

太阳电池 2

晶体硅太阳电池 2

能源 2

1T/2H-MoS2 1

PDT 1

PV/T 1

SAHP 1

ZIF-8 1

n-Si 1

不毛之地 1

中俄火星联合探测计划 1

中国空间探测 1

串联内阻 1

人口、资源与环境 1

仿生 1

展开 ︾

检索范围:

排序: 展示方式:

Impacts of solar multiple on the performance of direct steam generation solar power tower plant with

Yan LUO, Xiaoze DU, Lijun YANG, Chao XU, Muhammad AMJAD

《能源前沿(英文)》 2017年 第11卷 第4期   页码 461-471 doi: 10.1007/s11708-017-0503-5

摘要: Solar multiple (SM) and thermal storage capacity are two key design parameters for revealing the performance of direct steam generation (DSG) solar power tower plant. In the case of settled land area, SM and thermal storage capacity can be optimized to obtain the minimum levelized cost of electricity (LCOE) by adjusting the power generation output. Taking the dual-receiver DSG solar power tower plant with a given size of solar field equivalent electricity of 100 MW in Sevilla as a reference case, the minimum LCOE is 21.77 ¢/kWh with an SM of 1.7 and a thermal storage capacity of 3 h. Besides Sevilla, two other sites are also introduced to discuss the influence of annual DNI. When compared with the case of Sevilla, the minimum LCOE and optimal SM of the San Jose site change just slightly, while the minimum LCOE of the Bishop site decreases by 32.8% and the optimal SM is reduced to 1.3. The influence of the size of solar field equivalent electricity is studied as well. The minimum LCOE decreases with the size of solar field, while the optimal SM and thermal storage capacity still remain unchanged. In addition, the sensitivity of different investment in sub-system is investigated. In terms of optimal SM and thermal storage capacity, they can decrease with the cost of thermal storage system but increase with the cost of power generation unit.

关键词: direct steam generation     solar power tower     solar multiple     thermal energy storage capacity     levelized cost of electricity (LCOE)    

Characteristics and application of road absorbing solar energy

Zhihua ZHOU, Shan HU, Xiaoyan ZHANG, Jian ZUO

《能源前沿(英文)》 2013年 第7卷 第4期   页码 525-534 doi: 10.1007/s11708-013-0278-2

摘要: If the heat of road surface can be stored in summer, the road surface temperature will be decreased to prevent permanent deformation of pavement. Besides, if the heat stored is released, it can supply heat for buildings or raise the road surface temperature for snow melting in winter. A road-solar energy system was built in this study, and the heat transfer mechanism and effect of the system were analyzed according to the monitored solar radiant heat, the solar energy absorbed by road and the heat stored by soil. The results showed that the road surface temperature was mainly affected by solar radiation, but the effect is hysteretic in nature. The temperature of the solar road surface was 3°C–6°C lower than that of the ordinary road surface. The temperature of the solar road along the vertical direction was 2°C–5°C lower than that of the ordinary road. The temperature difference increased as the distance to the heat transfer tubes decreased. The average solar collector efficiency of the system was 14.4%, and the average solar absorptivity of road surface was 36%.

关键词: solar energy     road-solar energy system     road surface temperature     solar absorptivity of road surface     solar collector efficiency of system    

Effect of non-uniform illumination on performance of solar thermoelectric generators

Ershuai YIN, Qiang LI, Yimin XUAN

《能源前沿(英文)》 2018年 第12卷 第2期   页码 239-248 doi: 10.1007/s11708-018-0533-7

摘要: Solar thermoelectric generators (STEGs) are heat engines which can generate electricity from concentrated sunlight. The non-uniform illumination caused by the optical concentrator may affect the performance of solar thermoelectric generators. In this paper, a three-dimensional finite element model of solar thermoelectric generators is established. The two-dimensional Gaussian distribution is employed to modify the illumination profiles incident on the thermoelectric generator. Six non-uniformities of solar illumination are investigated while keeping the total energy constant. The influences of non-uniform illumination on the temperature distribution, the voltage distribution, and the maximum output power are respectively discussed. Three thermoelectric generators with 32, 18 and 8 pairs of thermocouples are compared to investigate their capability under non-uniform solar radiation. The result shows that the non-uniformity of the solar illumination has a great effect on the temperature distribution and the voltage distribution. Central thermoelectric legs can achieve a larger temperature difference and generate a larger voltage than peripheral ones. The non-uniform solar illumination will weaken the capability of the TE generator, and the maximum output power decrease by 1.4% among the range of non-uniformity studied in this paper. Reducing the number of the thermoelectric legs for non-uniform solar illumination can greatly increase the performance of the thermoelectric generator.

关键词: solar thermoelectric generators     non-uniform solar illumination     performance evaluation     solar energy    

A review of bifacial solar photovoltaic applications

《能源前沿(英文)》   页码 704-726 doi: 10.1007/s11708-023-0903-7

摘要: Bifacial photovoltaics (BPVs) are a promising alternative to conventional monofacial photovoltaics given their ability to exploit solar irradiance from both the front and rear sides of the panel, allowing for a higher amount of energy production per unit area. The BPV industry is still emerging, and there is much work to be done until it is a fully mature technology. There are a limited number of reviews of the BPV technology, and the reviews focus on different aspects of BPV. This review comprises an extensive in-depth look at BPV applications throughout all the current major applications, identifying studies conducted for each of the applications, and their outcomes, focusing on optimization for BPV systems under different applications, comparing levelized cost of electricity, integrating the use of BPV with existing systems such as green roofs, information on irradiance and electrical modeling, as well as providing future scope for research to improve the technology and help the industry.

关键词: bifacial photovoltaics (BPVs)     bifacial     photovoltaics     applications     review     solar    

Economic Analysis of Residential Distributed Solar Photovoltaic

Xi Luo,Jia-ping Liu

《工程管理前沿(英文)》 2015年 第2卷 第2期   页码 125-130 doi: 10.15302/J-FEM-2015031

摘要: Under the huge challenges of global energy conservation, emission reduction and energy security, distributed solar photovoltaic industry has become the key means to achieve economic restructuring and low carbon economy. Based on System Advisor Model software, the authors choose Baoji as the sample plot. Household load, unit investment, loan interest rate and loan fraction are used as influence factors to analyze the economic benefits of distributed solar photovoltaic in China. The result demonstrates that government incentives help to increase the profitability of distributed solar photovoltaic by a large extent; other factors that influence the profitability includes household load, unit investment cost, loan interest rate and loan fraction.

关键词: distributed solar photovoltaic     internal rate of return     price ladder     government incentives    

Potential of performance improvement of concentrated solar power plants by optimizing the parabolic trough

Honglun YANG, Qiliang WANG, Jingyu CAO, Gang PEI, Jing LI

《能源前沿(英文)》 2020年 第14卷 第4期   页码 867-881 doi: 10.1007/s11708-020-0707-y

摘要: This paper proposes a comprehensive thermodynamic and economic model to predict and compare the performance of concentrated solar power plants with traditional and novel receivers with different configurations involving operating temperatures and locations. The simulation results reveal that power plants with novel receivers exhibit a superior thermodynamic and economic performance compared with traditional receivers. The annual electricity productions of power plants with novel receivers in Phoenix, Sevilla, and Tuotuohe are 8.5%, 10.5%, and 14.4% higher than those with traditional receivers at the outlet temperature of 550°C. The levelized cost of electricity of power plants with double-selective-coated receivers can be decreased by 6.9%, 8.5%, and 11.6%. In Phoenix, the optimal operating temperature of the power plants is improved from 500°C to 560°C by employing a novel receiver. Furthermore, the sensitivity analysis of the receiver heat loss, solar absorption, and freeze protection temperature is also conducted to analyze the general rule of influence of the receiver performance on power plants performance. Solar absorption has a positive contribution to annual electricity productions, whereas heat loss and freeze protection temperature have a negative effect on electricity outputs. The results indicate that the novel receiver coupled with low melting temperature molten salt is the best configuration for improving the overall performance of the power plants.

关键词: concentrated solar power     parabolic trough receiver     heat loss     solar energy     annual performance    

Numerical and experimental research of the characteristics of concentration solar cells

Zilong WANG, Hua ZHANG, Binlin DOU, Weidong WU, Guanhua ZHANG

《能源前沿(英文)》 2021年 第15卷 第2期   页码 279-291 doi: 10.1007/s11708-019-0637-8

摘要: The development of automatic tracking solar concentrator photovoltaic systems is currently attracting growing interest. High concentration photovoltaic systems (HCPVs) combining triple-junction InGaP/lnGaAs/Ge solar cells with a concentrator provide high conversion efficiencies. The mathematical model for triple-junction solar cells, having a higher efficiency and superior temperature characteristics, was established based on the one-diode equivalent circuit cell model. A paraboloidal concentrator with a secondary optic system and a concentration ratio in the range of 100X–150X along with a sun tracking system was developed in this study. The GaInP/GalnAs/Ge triple-junction solar cell, produced by AZUR SPACE Solar Power, was also used in this study. The solar cells produced by Shanghai Solar Youth Energy (SY) and Shenzhen Yinshengsheng Technology Co. Ltd. (YXS) were used as comparison samples in a further comparative study at different concentration ratios (200X–1000X). A detailed analysis on the factors that influence the electrical output characteristics of the InGaP/lnGaAs/Ge solar cell was conducted with a dish-style concentrating photovoltaic system. The results show that the short-circuit current ( ) and the open-circuit voltage ( ) of multi-junction solar cells increases with the increasing concentration ratio, while the cell efficiency ( ) of the solar cells increases first and then decreases with increasing concentration ratio. With increasing solar cell temperature, increases, while and decrease. A comparison of the experimental and simulation results indicate that the maximum root mean square error is less than 10%, which provides a certain theoretical basis for the study of the characteristics of triple-junction solar cell that can be applied in the analysis and discussion regarding the influence of the relevant parameters on the performance of high concentration photovoltaic systems.

关键词: concentration     three-junction solar cell     mathematical model     electrical properties     solar energy    

Smart model for accurate estimation of solar radiation

Lazhar ACHOUR, Malek BOUHARKAT, Ouarda ASSAS, Omar BEHAR

《能源前沿(英文)》 2020年 第14卷 第2期   页码 383-399 doi: 10.1007/s11708-017-0505-3

摘要: Prediction of solar radiation has drawn increasing attention in the recent years. This is because of the lack of solar radiation measurement stations. In the present work, 14 solar radiation models have been used to assess monthly global solar radiation on a horizontal surface as function of three parameters: extraterrestrial solar irradiance ( ), duration sunshine ( ) and daylight hours ( ). Since it has been observed that each model is adequate for some months of the year, one model cannot be used for the prediction of the whole year. Therefore, a smart hybrid system is proposed which selects, based on the intelligent rules, the most suitable prediction model of the 14 models listed in this study. For the test and evaluation of the proposed models, Tamanrasset city, which is located in the south of Algeria, is selected for this study. The meteorological data sets of five years (2000–2004) have been collected from the Algerian National Office of Meteorology (NOM), and two spatial databases. The results indicate that the new hybrid model is capable of predicting the monthly global solar radiation, which offers an excellent measuring accuracy of values ranging from 93% to 97% in this location.

关键词: global solar radiation     statistical indicator     hybrid model     spatial database     correlation coefficients    

Distribution and temporal variability of the solar resource at a site in south-east Norway

Muyiwa S. ADARAMOLA

《能源前沿(英文)》 2016年 第10卷 第4期   页码 375-381 doi: 10.1007/s11708-016-0426-6

摘要: Globally, solar energy is expected to play a significant role in the changing face of energy economies in the near future. However, the variability of this resource has been the main barrier for solar energy development in most locations around the world. This paper investigated the distribution and variability of solar radiation using the a 10-year (2006 to 2015) data collected at Sørås meteorological station located at latitude 59° 39′ N and longitude 10° 47′E, about 93.3 m above sea level (about 30 km from Oslo), in south-eastern part of Norway. It is found that on annual basis, the total number of days with a global solar radiation of less than 1 kWh/(m ·d) is 120 days while the total number of days with an expected global solar radiation greater than 3 kWh/(m ·d) is 156 days (42.74%) per year. The potential energy output from a horizontally placed solar collector in these 156 days is approximately 75% of the estimated annual energy output. In addition, it is found that the inter-annual coefficient of variation of the global solar radiation is 4.28%, while that of diffuse radiation is 4.96%.

关键词: coefficient of variation     global solar radiation     diffuse ratio     albedo     PV energy systems    

Photothermal materials for efficient solar powered steam generation

Fenghua Liu, Yijian Lai, Binyuan Zhao, Robert Bradley, Weiping Wu

《化学科学与工程前沿(英文)》 2019年 第13卷 第4期   页码 636-653 doi: 10.1007/s11705-019-1824-1

摘要: Solar powered steam generation is an emerging area in the field of energy harvest and sustainable technologies. The nano-structured photothermal materials are able to harvest energy from the full solar spectrum and convert it to heat with high efficiency. Moreover, the materials and structures for heat management as well as the mass transportation are also brought to the forefront. Several groups have reported their materials and structures as solutions for high performance devices, a few creatively coupled other physical fields with solar energy to achieve even better results. This paper provides a systematic review on the recent developments in photothermal nanomaterial discovery, material selection, structural design and mass/heat management, as well as their applications in seawater desalination and fresh water production from waste water with free solar energy. It also discusses current technical challenges and likely future developments. This article will help to stimulate novel ideas and new designs for the photothermal materials, towards efficient, low cost practical solar-driven clean water production.

关键词: solar stream generation     plasmonics     porous carbon     photothermal materials     solar energy conversion efficiency     water vapor generation rate    

Distributed governance of Solar Radiation Management geoengineering: A possible solution to SRM’s “free-driver

Andrew LOCKLEY

《工程管理前沿(英文)》 2019年 第6卷 第4期   页码 551-556 doi: 10.1007/s42524-019-0055-y

摘要: Geoengineering (deliberate climate modification) is a possible way to limit Anthropogenic Global Warming (AGW) (Shepherd, 2009; National Research Council, 2015). Solar Radiation Management geoengineering (SRM) offers relatively inexpensive, rapid temperature control. However, this low cost leads to a risk of controversial unilateral intervention—the “free-driver” problem (Weitzman, 2015). Consequently, this creates a risk of counter-geoengineering (deliberate warming) (Parker et al., 2018), resulting in governance challenges (Svoboda, 2017) akin to an arms race. Free-driver deployment scenarios previously considered include the rogue state, Greenfinger (Bodansky, 2013), or power blocs (Ricke et al., 2013), implying disagreement and conflict. We propose a novel distributed governance model of consensually-constrained unilateralism: Countries’ authority is limited to each state’s fraction of the maximum realistic intervention (e.g., pre-industrial temperature). We suggest a division of authority based on historical emissions (Rocha et al., 2015)—noting alternatives (e.g., population). To aid understanding, we offer an analogue: An over-heated train carriage, with passenger-controlled windows. We subsequently discuss the likely complexities, notably Coasian side-payments. Finally, we suggest further research: Algebraic, bot and human modeling; and observational studies.

关键词: geoengineering     Solar Radiation Management     governance     decentralised    

Security of solar radiation management geoengineering

Andrew LOCKLEY

《工程管理前沿(英文)》 2019年 第6卷 第1期   页码 102-116 doi: 10.1007/s42524-019-0008-5

摘要:

Solar Radiation Management (SRM) geoengineering is a proposed response to anthropogenic global warming (AGW) (National Academy of Sciences, 2015). There may be profound – even violent – disagreement on preferred temperature. SRM disruption risks dangerous temperature rise (termination shock). Concentrating on aircraft-delivered Stratospheric Aerosol Injection (SAI), we appraise threats to SRM and defense methodologies. Civil protest and minor cyberattacks are almost inevitable but are manageable (unless state-sponsored). Overt military attacks are more disruptive, but unlikely – although superpowers’ symbolic overt attacks may deter SRM. Unattributable attacks are likely, and mandate use of widely-available weapons. Risks from unsophisticated weapons are therefore higher. An extended supply chain is more vulnerable than a secure airbase – necessitating supply-chain hardening. Recommendations to improve SRM resilience include heterogeneous operations from diverse, secure, well-stocked bases (possibly ocean islands or aircraft carriers); and avoidance of single-point-of-failure risks (e.g. balloons). A distributed, civilian-operated system offers an alternative strategy. A multilateral, consensual SRM approach reduces likely attack triggers.

关键词: security     geoengineering     solar radiation ma-nagement     SRM    

Enhancement of distillate output of double basin solar still with vacuum tubes

Hitesh N PANCHAL, P K SHAH

《能源前沿(英文)》 2014年 第8卷 第1期   页码 101-109 doi: 10.1007/s11708-014-0299-5

摘要: The latent heat of condensation is lost to the atmosphere; hence it is not utilized to increase distillate output of single basin solar stills. This difficulty was overcome by attaching an additional basin to the main basin. The performance of the double basin solar still was also increased by attaching vacuum tubes to the lower basin; hence the lower basin possessed a higher temperature throughout the day. The latent heat of condensation of the bottom basin was also utilized to increase distillate. But the distillate output of the top basin was even lower compared with that of the bottom basin. This paper proposed a novel approach to increase the distillate output of the double basin solar still attached with vacuum tubes by introducing different sensible energy storage materials like pebbles, black granite gravel and calcium stones to increase the basin area. Experiments were conducted in climate conditions of Mehsana (23.6000° N, 72.4000° E) Gujarat from April to September 2013 with a constant water depth of 2 cm in the top basin with and without the use of basin materials. The results showed that the distillate output of basin material with calcium stones is greater (74%) compared with that of black granite gravel and pebbles. The integration of vacuum tubes with solar still greatly increases the distillate output of the solar still by providing hot water at the lower basin.

关键词: double basin solar still     calcium stones     pebbles     granite gravel     distillate output    

Performance analysis of solar still with cow dung cakes and blue metal stones

Hitesh N. PANCHAL

《能源前沿(英文)》 2015年 第9卷 第2期   页码 180-186 doi: 10.1007/s11708-015-0361-y

摘要: The aims of this paper is to investigate the effects of various materials inside the solar still on the increase of the productivity of potable water. Here, blue metal stones and cow dung cakes were used as materials. To investigate their effect, three identical solar stills with an effective area of 1 m square made from locally available materials were tested in climate conditions of Mehsana (23°50′ N 72° 23′). The first and second solar stills were filled with blue metal, stones and cow dung cakes, while the third one was taken as a reference which consisted of only blue paint at the basin. The experiments show that blue metal stones have the highest distillate output at daytime, followed by cow dung cakes solar still and reference solar still. On the other hand, the overall distillate output of blue metal stones and cow dung cakes at daytime as well as at night were 35% and 20% compared with that of reference solar still.

关键词: blue metal stones     cow dung cakes     distillate output     solar still     solar intensity    

Comparison of different energy saving lights using solar panel

Huzaifa MUBARAK,Saad Bin Abul KASHEM

《能源前沿(英文)》 2016年 第10卷 第4期   页码 466-472 doi: 10.1007/s11708-016-0417-7

摘要: The recent trend in light emitting diode or LED lighting applications and their claimed energy saving capabilities together with their overall attractiveness has us all convinced that they really are a greener alternative to the compact fluorescent lights or CFL. As convincing as it seems, the actual energy saving capabilities of LEDs are yet to be proven scientifically or at the least, on an empirical level when compared to CFLs. This paper tackles the issue with the use of a solar cell by evaluating the photovoltaic current and voltage generated by the solar cell subjected to each lighting system. Graphical representations are drawn and a conclusion is then reached based on the amount of power generation in the solar cells in order to determine the energy saving capabilities of each lighting system and its efficiency. From the result, it has been found that an LED is 3.7 times more power efficient than a CFL based light source of equal wattage.

关键词: CFL     LED     empirical     solar     lumens     energy saving     fluorescent    

标题 作者 时间 类型 操作

Impacts of solar multiple on the performance of direct steam generation solar power tower plant with

Yan LUO, Xiaoze DU, Lijun YANG, Chao XU, Muhammad AMJAD

期刊论文

Characteristics and application of road absorbing solar energy

Zhihua ZHOU, Shan HU, Xiaoyan ZHANG, Jian ZUO

期刊论文

Effect of non-uniform illumination on performance of solar thermoelectric generators

Ershuai YIN, Qiang LI, Yimin XUAN

期刊论文

A review of bifacial solar photovoltaic applications

期刊论文

Economic Analysis of Residential Distributed Solar Photovoltaic

Xi Luo,Jia-ping Liu

期刊论文

Potential of performance improvement of concentrated solar power plants by optimizing the parabolic trough

Honglun YANG, Qiliang WANG, Jingyu CAO, Gang PEI, Jing LI

期刊论文

Numerical and experimental research of the characteristics of concentration solar cells

Zilong WANG, Hua ZHANG, Binlin DOU, Weidong WU, Guanhua ZHANG

期刊论文

Smart model for accurate estimation of solar radiation

Lazhar ACHOUR, Malek BOUHARKAT, Ouarda ASSAS, Omar BEHAR

期刊论文

Distribution and temporal variability of the solar resource at a site in south-east Norway

Muyiwa S. ADARAMOLA

期刊论文

Photothermal materials for efficient solar powered steam generation

Fenghua Liu, Yijian Lai, Binyuan Zhao, Robert Bradley, Weiping Wu

期刊论文

Distributed governance of Solar Radiation Management geoengineering: A possible solution to SRM’s “free-driver

Andrew LOCKLEY

期刊论文

Security of solar radiation management geoengineering

Andrew LOCKLEY

期刊论文

Enhancement of distillate output of double basin solar still with vacuum tubes

Hitesh N PANCHAL, P K SHAH

期刊论文

Performance analysis of solar still with cow dung cakes and blue metal stones

Hitesh N. PANCHAL

期刊论文

Comparison of different energy saving lights using solar panel

Huzaifa MUBARAK,Saad Bin Abul KASHEM

期刊论文