资源类型

期刊论文 76

年份

2023 4

2022 3

2021 4

2020 4

2019 8

2018 4

2017 2

2016 2

2015 2

2014 4

2012 6

2011 6

2010 7

2009 5

2008 5

2007 6

2006 1

2004 1

2003 1

2001 1

展开 ︾

关键词

基质吸力 2

气体辅助注射成型 2

非饱和土 2

CO2泡沫 1

上部送风系统 1

临界风速 1

主动注入 1

二冲程发动机 1

优势流动方向 1

低渗 1

体积含水量 1

冷伤害 1

冷起动 1

凝析气藏 1

剖宫产瘢痕妊娠 1

加压送风 1

加强筋 1

单端量保护 1

参数优选 1

展开 ︾

检索范围:

排序: 展示方式:

On the MHD squeeze flow between two parallel disks with suction or injection via HAM and HPM

null

《机械工程前沿(英文)》 2014年 第9卷 第3期   页码 270-280 doi: 10.1007/s11465-014-0303-0

摘要:

An analysis has been performed to study the problem of magneto-hydrodynamic (MHD) squeeze flow of an electrically conducting fluid between two infinite, parallel disks. The analytical methods called Homotopy Analysis Method (HAM) and Homotopy Perturbation Method (HPM) have been used to solve nonlinear differential equations. It has been attempted to show the capabilities and wide-range applications of the proposed methods in comparison with a type of numerical analysis as Boundary Value Problem (BVP) in solving this problem. Also, the velocity fields have been computed and shown graphically for various values of physical parameters. The objective of the present work is to investigate the effect of squeeze Reynolds number, Hartmann number and the suction/injection parameter on the velocity field. Furthermore, the results reveal that HAM and HPM are very effective and convenient.

关键词: Homotopy Analysis Method     Homotopy Perturbation Method     incompressible flow     magneto-hydrodynamic flow     parallel disks    

Magnetohydrodynamic slip flow and diffusion of a reactive solute past a permeable flat plate with suction/injection

Krishnendu BHATTACHARYYA, G. C. LAYEK

《化学科学与工程前沿(英文)》 2011年 第5卷 第4期   页码 471-476 doi: 10.1007/s11705-011-1130-z

摘要: The magnetohydrodynamic (MHD) boundary layer slip flow and solute transfer over a porous plate in the presence of a chemical reaction are investigated. The governing equations were transformed into self-similar ordinary differential equations by adopting the similarity transformation technique. Then the numerical solutions are obtained by a shooting technique using the fourth order Runge-Kutta method. The study reveals that due to the increase in the boundary slip, the concentration decreases and the velocity increases. On the other hand, with an increase in the magnetic field and mass suction, both boundary layer thicknesses decreased. As the Schmidt number and the reaction rate parameter increases, the concentration decreases and the mass transfer increases.

关键词: slip flow     MHD boundary layer     reactive solute diffusion     flat plate     suction/injection    

heat source/sink on unsteady MHD boundary layer flow and heat transfer over a shrinking sheet with suction/injection

Krishnendu Bhattacharyya

《化学科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 376-384 doi: 10.1007/s11705-011-1121-0

摘要: In this paper, an investigation is made to study the effects of radiation and heat source/sink on the unsteady boundary layer flow and heat transfer past a shrinking sheet with suction/injection. The flow is permeated by an externally applied magnetic field normal to the plane of flow. The self-similar equations corresponding to the velocity and temperature fields are obtained, and then solved numerically by finite difference method using quasilinearization technique. The study reveals that the momentum boundary layer thickness increases with increasing unsteadiness and decreases with magnetic field. The thermal boundary layer thickness decreases with Prandtl number, radiation parameter and heat sink parameter, but it increases with heat source parameter. Moreover, increasing unsteadiness, magnetic field strength, radiation and heat sink strength boost the heat transfer.

关键词: MHD boundary layer     unsteady flow     heat transfer     thermal radiation     heat source/sink     shrinking sheet     suction/injection    

Prediction of hydro-suction dredging depth using data-driven methods

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 652-664 doi: 10.1007/s11709-021-0719-7

摘要: In this study, data-driven methods (DDMs) including different kinds of group method of data handling (GMDH) hybrid models with particle swarm optimization (PSO) and Henry gas solubility optimization (HGSO) methods, and simple equations methods were applied to simulate the maximum hydro-suction dredging depth (hs). Sixty-seven experiments were conducted under different hydraulic conditions to measure the hs. Also, 33 data samples from three previous studies were used. The model input variables consisted of pipeline diameter (d), the distance between the pipe inlet and sediment level (Z), the velocity of flow passing through the pipeline (u0), the water head (H), and the medium size of particles (D50). Data-driven simulation results indicated that the HGSO algorithm accurately trains the GMDH methods better than the PSO algorithm, whereas the PSO algorithm trained simple simulation equations more precisely. Among all used DDMs, the integrative GMDH-HGSO algorithm provided the highest accuracy (RMSE = 7.086 mm). The results also showed that the integrative GMDHs enhance the accuracy of polynomial GMDHs by ~14.65% (based on the RMSE).

关键词: sedimentation     water resources     dam engineering     machine learning     heuristic    

Three-dimensional numerical simulation for plastic injection-compression molding

Yun ZHANG, Wenjie YU, Junjie LIANG, Jianlin LANG, Dequn LI

《机械工程前沿(英文)》 2018年 第13卷 第1期   页码 74-84 doi: 10.1007/s11465-018-0490-1

摘要:

Compared with conventional injection molding, injection-compression molding can mold optical parts with higher precision and lower flow residual stress. However, the melt flow process in a closed cavity becomes more complex because of the moving cavity boundary during compression and the nonlinear problems caused by non-Newtonian polymer melt. In this study, a 3D simulation method was developed for injection-compression molding. In this method, arbitrary Lagrangian-Eulerian was introduced to model the moving-boundary flow problem in the compression stage. The non-Newtonian characteristics and compressibility of the polymer melt were considered. The melt flow and pressure distribution in the cavity were investigated by using the proposed simulation method and compared with those of injection molding. Results reveal that the fountain flow effect becomes significant when the cavity thickness increases during compression. The back flow also plays an important role in the flow pattern and redistribution of cavity pressure. The discrepancy in pressures at different points along the flow path is complicated rather than monotonically decreased in injection molding.

关键词: injection-compression molding     simulation     injection molding     melt flow     cavity pressure    

density measurement for plastic injection molding via ultrasonic technology

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0714-2

摘要: Density variation during the injection molding process directly reflects the state of plastic melt and contains valuable information for process monitoring and optimization. Therefore, in-situ density measurement is of great interest and has significant application value. The existing methods, such as pressure−volume−temperature (PVT) method, have the shortages of time-delay and high cost of sensors. This study is the first to propose an in-situ density measurement method using ultrasonic technology. The analyses of the time-domain and frequency-domain signals are combined in the proposed method. The ultrasonic velocity is obtained from the time-domain signals, and the acoustic impedance is computed through a full-spectral analysis of the frequency-domain signals. Experiments with different process conditions are conducted, including different melt temperature, injection speed, material, and mold structure. Results show that the proposed method has good agreement with the PVT method. The proposed method has the advantages of in-situ measurement, non-destructive, high accuracy, low cost, and is of great application value for the injection molding industry.

关键词: ultrasonic measurement     melt density     in-situ measurement     injection molding    

凝析气藏的经济开采模式

刘廷元

《中国工程科学》 2001年 第3卷 第3期   页码 85-91

摘要:

液态凝析油是凝析气藏的重要产品,它的开采应该是有效而经济的。介绍了国外近20 a来在凝析气藏开采技术领域的各种经济模式,包括回注φd=75%干气、自流回注、注N2、注水、水气交替注和注CO2等开采模式。研究结果表明,这些开采模式同传统的降压开采方法相比,能够有效地适应地面-地下的各种复杂情况。

关键词: 凝析气藏     开采模式     注气     注氮     注水     注二氧化碳     经济    

Trend prediction technology of condition maintenance for large water injection units

Xiaoli XU, Sanpeng DENG

《机械工程前沿(英文)》 2010年 第5卷 第2期   页码 171-175 doi: 10.1007/s11465-009-0091-0

摘要: Trend prediction technology is the key technology to achieve condition-based maintenance of mechanical equipment. Large-sized water injection units are key equipment in oilfields. The traditional preventive maintenance is not economical and cannot completely avoid vicious accidents. To ensure the normal operation of units and save maintenance costs, trend prediction technology is studied to achieve condition-based maintenance for water injection units. The main methods of the technology are given, the trend prediction method based on neural network is put forward, and the expert system based on the knowledge is developed. The industrial site verification shows that the proposed trend prediction technology can reflect the operating condition trend change of the water injection units and provide technical means to achieve condition-based predictive maintenance.

关键词: water injection units     condition-based maintenance     trend prediction    

Intelligent methods for the process parameter determination of plastic injection molding

Huang GAO, Yun ZHANG, Xundao ZHOU, Dequn LI

《机械工程前沿(英文)》 2018年 第13卷 第1期   页码 85-95 doi: 10.1007/s11465-018-0491-0

摘要:

Injection molding is one of the most widely used material processing methods in producing plastic products with complex geometries and high precision. The determination of process parameters is important in obtaining qualified products and maintaining product quality. This article reviews the recent studies and developments of the intelligent methods applied in the process parameter determination of injection molding. These intelligent methods are classified into three categories: Case-based reasoning methods, expert system-based methods, and data fitting and optimization methods. A framework of process parameter determination is proposed after comprehensive discussions. Finally, the conclusions and future research topics are discussed.

关键词: injection molding     intelligent methods     process parameters     optimization    

Studying the stress-suction coupling in soils using an oedometer equipped with a high capacity tensiometer

Trung Tinh LE, Yu-Jun CUI, Juan Jorge MU?OZ, Pierre DELAGE, Anh Minh TANG, Xiang-Ling LI

《结构与土木工程前沿(英文)》 2011年 第5卷 第2期   页码 160-170 doi: 10.1007/s11709-011-0106-x

摘要: In the context of research into deep nuclear waste disposal, various works have concerned the hydromechanical behavior of Boom clay, a stiff plastic clay extracted in the SCK-CEN Underground Research Laboratory near the Mol City (Belgium), at a depth of 223 m. Due to some amount of smectite minerals in the clay fraction, Boom clay exhibits swelling properties when hydrated under low stresses. To investigate some aspects of the hydromechanical behavior of Boom clay, oedometer compression tests were carried out on samples of Boom clay close to saturation and submitted to an initial suction. During oedometer compression, the changes in suction with increased vertical stress are monitored by means of a high capacity tensiometer installed at the bottom of the sample. Some aspects related to hydromechanical couplings are examined through the investigation of the changes in suction during oedometer compression, a somewhat delicate and poorly documented experimental approach. A comparison is also made with a completely different soil sample under suction, i.e. a statically compacted unsaturated low plasticity silt. Some technical difficulties typical of this new experimental approach are first described in detail so as to optimize the interpretation of the data obtained. The experiment allows the determination of the point at which suction is changed to positive pressure during compression. Below this point, the ratio between the vertical stress and the change in suction are determined. Above this point, the data show that positive pore pressures are dissipated in a common way. The suction/stress behavior during unloading is also described and discussed. Finally, an interpretation in terms of microstructure effects is provided for both samples. The experimental approach initiated here seems to provide interesting further application to better understand hydromechanical couplings in natural soils in relation with suction increase during stress release.

关键词: Oedometer     tensiometer     swelling     physicochemical and mechanical effects     stress/suction coupling     soil plasticity    

methodology for regulating fuel stratification and improving fuel economy of GCI mode via double main-injection

《能源前沿(英文)》 2023年 第17卷 第5期   页码 678-691 doi: 10.1007/s11708-022-0859-z

摘要: Gasoline compression ignition (GCI) combustion faces problems such as high maximum pressure rise rate (MPRR) and combustion deterioration at high loads. This paper aims to improve the engine performance of the GCI mode by regulating concentration stratification and promoting fuel-gas mixing by utilizing the double main-injection (DMI) strategy. Two direct injectors simultaneously injected gasoline with an octane number of 82.7 to investigate the energy ratio between the two main-injection and exhaust gas recirculation (EGR) on combustion and emissions. High-load experiments were conducted using the DMI strategy and compared with the single main-injection (SMI) strategy and conventional diesel combustion. The results indicate that the DMI strategy have a great potential to reduce the MPRR and improve the fuel economy of the GCI mode. At a 10 bar indicated mean effective pressure, increasing the main-injection-2 ratio (Rm-2) shortens the injection duration and increases the mean mixing time. Optimized Rm-2 could moderate the trade-off between the MPRR and the indicated specific fuel consumption with both reductions. An appropriate EGR should be adopted considering combustion and emissions. The DMI strategy achieves a highly efficient and stable combustion at high loads, with an indicated thermal efficiency (ITE) greater than 48%, CO and THC emissions at low levels, and MPRR within a reasonable range. Compared with the SMI strategy, the maximum improvement of the ITE is 1.5%, and the maximum reduction of MPRR is 1.5 bar/°CA.

关键词: gasoline compression ignition     injection strategy     fuel stratification     high efficiency     high load    

CO, N, and CO/N mixed gas injection for enhanced shale gas recovery and CO geological storage

《能源前沿(英文)》 2023年 第17卷 第3期   页码 428-445 doi: 10.1007/s11708-023-0865-9

摘要: In this work, using fractured shale cores, isothermal adsorption experiments and core flooding tests were conducted to investigate the performance of injecting different gases to enhance shale gas recovery and CO2 geological storage efficiency under real reservoir conditions. The adsorption process of shale to different gases was in agreement with the extended-Langmuir model, and the adsorption capacity of CO2 was the largest, followed by CH4, and that of N2 was the smallest of the three pure gases. In addition, when the CO2 concentration in the mixed gas exceeded 50%, the adsorption capacity of the mixed gas was greater than that of CH4, and had a strong competitive adsorption effect. For the core flooding tests, pure gas injection showed that the breakthrough time of CO2 was longer than that of N2, and the CH4 recovery factor at the breakthrough time (RCH4) was also higher than that of N2. The RCH4 of CO2 gas injection was approximately 44.09%, while the RCH4 of N2 was only 31.63%. For CO2/N2 mixed gas injection, with the increase of CO2 concentration, the RCH4 increased, and the RCH4 for mixed gas CO2/N2 = 8:2 was close to that of pure CO2, about 40.24%. Moreover, the breakthrough time of N2 in mixed gas was not much different from that when pure N2 was injected, while the breakthrough time of CO2 was prolonged, which indicated that with the increase of N2 concentration in the mixed gas, the breakthrough time of CO2 could be extended. Furthermore, an abnormal surge of N2 concentration in the produced gas was observed after N2 breakthrough. In regards to CO2 storage efficiency (Sstorage-CO2), as the CO2 concentration increased, Sstorage-CO2 also increased. The Sstorage-CO2 of the pure CO2 gas injection was about 35.96%, while for mixed gas CO2/N2 = 8:2, Sstorage-CO2 was about 32.28%.

关键词: shale gas     gas injection     competitive adsorption     enhanced shale gas recovery     CO2 geological storage    

Experimental study of stratified lean burn characteristics on a dual injection gasoline engine

Chun XIA, Tingyu ZHAO, Junhua FANG, Lei ZHU, Zhen HUANG

《能源前沿(英文)》 2022年 第16卷 第6期   页码 900-915 doi: 10.1007/s11708-021-0812-6

摘要: Due to increasingly stringent fuel consumption and emission regulation, improving thermal efficiency and reducing particulate matter emissions are two main issues for next generation gasoline engine. Lean burn mode could greatly reduce pumping loss and decrease the fuel consumption of gasoline engines, although the burning rate is decreased by higher diluted intake air. In this study, dual injection stratified combustion mode is used to accelerate the burning rate of lean burn by increasing the fuel concentration near the spark plug. The effects of engine control parameters such as the excess air coefficient (Lambda), direct injection (DI) ratio, spark interval with DI, and DI timing on combustion, fuel consumption, gaseous emissions, and particulate emissions of a dual injection gasoline engine are studied. It is shown that the lean burn limit can be extended to Lambda= 1.8 with a low compression ratio of 10, while the fuel consumption can be obviously improved at Lambda= 1.4. There exists a spark window for dual injection stratified lean burn mode, in which the spark timing has a weak effect on combustion. With optimization of the control parameters, the brake specific fuel consumption (BSFC) decreases 9.05% more than that of original stoichiometric combustion with DI as 2 bar brake mean effective pressure (BMEP) at a 2000 r/min engine speed. The NOx emissions before three-way catalyst (TWC) are 71.31% lower than that of the original engine while the particle number (PN) is 81.45% lower than the original engine. The dual injection stratified lean burn has a wide range of applications which can effectively reduce fuel consumption and particulate emissions. The BSFC reduction rate is higher than 5% and the PN reduction rate is more than 50% with the speed lower than 2400 r/min and the load lower than 5 bar.

关键词: dual injection     stratified lean burn     gasoline engine     particulate matter emission     combustion analysis    

Stability analysis of layered slopes in unsaturated soils

Guangyu DAI; Fei ZHANG; Yuke WANG

《结构与土木工程前沿(英文)》 2022年 第16卷 第3期   页码 378-387 doi: 10.1007/s11709-022-0808-2

摘要: This study presents stability analyses of layered soil slopes in unsaturated conditions and uses a limit equilibrium method to determine the factor of safety involving suction stress of unsaturated soil. One-dimensional steady infiltration and evaporation conditions are considered in the stability analyses. An example of a two-layered slope in clay and silt is selected to verify the used method by comparing with the results of other methods. Parametric analyses are conducted to explore the influences of the matric suction on the stability of layered soil slopes. The obtained results show that larger suction stress provided in unsaturated clay dominates the stability of the layered slopes. Therefore, the location and thickness of the clay layer have significant influences on slope stability. As the water level decreases, the factor of safety reduces and then increases gradually in most cases. Infiltration/evaporation can obviously affect the stability of unsaturated layered slopes, but their influences depend on the soil property and thickness of the lower soil layer.

关键词: slope stability     suction stress     unsaturated soil     layered slope     limit equilibrium    

Microcellular injection molding process for producing lightweight thermoplastic polyurethane with customizable

Thomas ELLINGHAM, Hrishikesh KHARBAS, Mihai MANITIU, Guenter SCHOLZ, Lih-Sheng TURNG

《机械工程前沿(英文)》 2018年 第13卷 第1期   页码 96-106 doi: 10.1007/s11465-018-0498-6

摘要:

A three-stage molding process involving microcellular injection molding with core retraction and an “out-of-mold” expansion was developed to manufacture thermoplastic polyurethane into lightweight foams of varying local densities, microstructures, and mechanical properties in the same microcellular injection molded part. Two stages of cavity expansion through sequential core retractions and a third expansion in a separate mold at an elevated temperature were carried out. The densities varied from 0.25 to 0.42 g/cm3 (77% to 62% weight reduction). The mechanical properties varied as well. Cyclic compressive strengths and hysteresis loss ratios, together with the microstructures, were characterized and reported.

关键词: thermoplastic polyurethane     microcellular injection molding     cavity expansion     compressive strength     hysteresis loss ratio    

标题 作者 时间 类型 操作

On the MHD squeeze flow between two parallel disks with suction or injection via HAM and HPM

null

期刊论文

Magnetohydrodynamic slip flow and diffusion of a reactive solute past a permeable flat plate with suction/injection

Krishnendu BHATTACHARYYA, G. C. LAYEK

期刊论文

heat source/sink on unsteady MHD boundary layer flow and heat transfer over a shrinking sheet with suction/injection

Krishnendu Bhattacharyya

期刊论文

Prediction of hydro-suction dredging depth using data-driven methods

期刊论文

Three-dimensional numerical simulation for plastic injection-compression molding

Yun ZHANG, Wenjie YU, Junjie LIANG, Jianlin LANG, Dequn LI

期刊论文

density measurement for plastic injection molding via ultrasonic technology

期刊论文

凝析气藏的经济开采模式

刘廷元

期刊论文

Trend prediction technology of condition maintenance for large water injection units

Xiaoli XU, Sanpeng DENG

期刊论文

Intelligent methods for the process parameter determination of plastic injection molding

Huang GAO, Yun ZHANG, Xundao ZHOU, Dequn LI

期刊论文

Studying the stress-suction coupling in soils using an oedometer equipped with a high capacity tensiometer

Trung Tinh LE, Yu-Jun CUI, Juan Jorge MU?OZ, Pierre DELAGE, Anh Minh TANG, Xiang-Ling LI

期刊论文

methodology for regulating fuel stratification and improving fuel economy of GCI mode via double main-injection

期刊论文

CO, N, and CO/N mixed gas injection for enhanced shale gas recovery and CO geological storage

期刊论文

Experimental study of stratified lean burn characteristics on a dual injection gasoline engine

Chun XIA, Tingyu ZHAO, Junhua FANG, Lei ZHU, Zhen HUANG

期刊论文

Stability analysis of layered slopes in unsaturated soils

Guangyu DAI; Fei ZHANG; Yuke WANG

期刊论文

Microcellular injection molding process for producing lightweight thermoplastic polyurethane with customizable

Thomas ELLINGHAM, Hrishikesh KHARBAS, Mihai MANITIU, Guenter SCHOLZ, Lih-Sheng TURNG

期刊论文