资源类型

期刊论文 6

年份

2023 1

2021 3

关键词

D1 turnover / photoinhibition / photoprotection / photosynthesis / tomato / xanthophyll cycle 1

检索范围:

排序: 展示方式:

PROTECTIVE ROLES OF D1 PROTEIN TURNOVER AND THE XANTHOPHYLL CYCLE IN TOMATO (SOLANUM LYCOPERSICUM) UNDER

《农业科学与工程前沿(英文)》 2021年 第8卷 第2期

摘要:

D1 protein turnover and the xanthophyll cycle (XC) are important photoprotective mechanisms in plants that operate under adverse conditions. Here, streptomycin sulfate (SM) and dithiothreitol (DTT) were used in tomato plants as inhibitors of D1 protein turnover and XC to elucidate their photoprotective impacts under sub-high temperature and high light conditions (HH, 35°C, 1000 µmol·m-2·s-1). SM and DTT treatments significantly reduced the net photosynthetic rate, apparent quantum efficiency, maximum photochemical efficiency, and potential activity of photosystem II, leading to photoinhibition and a decline in plant biomass under HH. The increase in reactive oxygen species levels resulted in thylakoid membrane lipid peroxidation. In addition, there were increased non-photochemical quenching and decreased chlorophyll pigments in SM and DTT application, causing an inhibition of D1 protein production at both transcriptional and translational levels. Overall, inhibition of D1 turnover caused greater photoinhibition than XC inhibition. Additionally, the recovery levels of most photosynthesis indicators in DTT-treated plants were higher than in SM-treated plants. These findings support the view that D1 turnover has a more important role than XC in photoprotection in tomato under HH conditions.

 

关键词: D1 turnover / photoinhibition / photoprotection / photosynthesis / tomato / xanthophyll cycle    

CHARACTERISTICS OF HERBIVORY/WOUND-ELICITED ELECTRICAL SIGNAL TRANSDUCTION IN TOMATO

《农业科学与工程前沿(英文)》 2021年 第8卷 第2期

摘要:

Electrical signals commonly occur in plants in response to various environmental changes and have a dominant function in plant acclimation. The transduction of wound-elicited electrical signals in the model plant species Arabidopsis has been characterized but the characteristics of electrical signal transduction in response to herbivory or wounding in crop species remain unknown. Here, the features of electrical signals elicited by insect herbivory and wounding in tomato were investigated. Unlike those in Arabidopsis, wounding tomato leaves did not cause leaf-to-leaf electrical signal transduction. In contrast, electrical signals elicited in response to petiole wounding were stronger and more strongly transduced. Leaflet wounding also activated electrical signal transduction and jasmonic acid (JA) signaling within the whole compound leaf. It was also demonstrated that tomato glutamate receptor-like 3.3 (GLR3.3) and GLR3.5 mediated leaflet-to-leaflet electrical signal transduction. Herbivory-induced JA accumulation and Helicoverpa armigera resistance were reduced in glr3.3/3.5 plants. This work reveals the nature of electrical signal transduction in tomato and emphasizes the key roles of GLR3.3 and GLR3.5 in electrical signal transduction and JA signaling activation.

 

关键词: electrical signal / glutamate receptor-like / herbivory / jasmonic acid / tomato    

nano zinc oxide for active and intelligent packaging: comparison of anthocyanins source from purple tomato

《化学科学与工程前沿(英文)》 2023年 第17卷 第6期   页码 704-715 doi: 10.1007/s11705-022-2270-z

摘要: The multifunctional films was prepared by blending chitosan and nano-ZnO with purple tomato anthocyanins or black wolfberry anthocyanins. The properties of films functioned by anthocyanins source and nano-ZnO content were studied. It was found purple tomato anthocyanins showed more significant color change against pH than black wolfberry anthocyanins. The nano-ZnO were widely dispersed in matrix and enhanced the compatibility of anthocyanins with chitosan. However, the anthocyanins source influenced the properties of the films more slightly than nano-ZnO addition. The tensile strength, antioxidant and antibacterial effects of the chitosan films dramatically increased after cooperated by nano-ZnO and anthocyanins, which also enhanced with increase of nano-ZnO content, whereas the elongation at break of the composite films decreased. Especially, the anthocyanin and nano-ZnO promoted the antibacterial activity of films synergistically. Composite films made from black wolfberry anthocyanins exhibited higher mechanical performance than those made from purple tomato anthocyanins but weaker antibacterial effects. The purple tomato anthocyanins/chitosan and nano-ZnO/purple tomato anthocyanins/chitosan films effectively reflected pork spoilage, changing their colors from dark green to brown, indicating the potential for applications in active and intelligent food packaging.

关键词: bio-based     multifunction     colorimetric indicator     active and intelligent packaging    

PROTECTIVE ROLES OF D1 PROTEIN TURNOVER AND THE XANTHOPHYLL CYCLE IN TOMATO (

Tao LU, Jiazhi LU, Mingfang QI, Zhouping SUN, Yufeng LIU, Tianlai LI

《农业科学与工程前沿(英文)》   页码 262-279 doi: 10.15302/J-FASE-2021383

摘要: D1 protein turnover and the xanthophyll cycle (XC) are important photoprotective mechanisms in plants that operate under adverse conditions. Here, streptomycin sulfate (SM) and dithiothreitol (DTT) were used in tomato plants as inhibitors of D1 protein turnover and XC to elucidate their photoprotective impacts under sub-high temperature and high light conditions (HH, 35°C, 1000 µmol·m ·s ). SM and DTT treatments significantly reduced the net photosynthetic rate, apparent quantum efficiency, maximum photochemical efficiency, and potential activity of photosystem II, leading to photoinhibition and a decline in plant biomass under HH. The increase in reactive oxygen species levels resulted in thylakoid membrane lipid peroxidation. In addition, there were increased non-photochemical quenching and decreased chlorophyll pigments in SM and DTT application, causing an inhibition of D1 protein production at both transcriptional and translational levels. Overall, inhibition of D1 turnover caused greater photoinhibition than XC inhibition. Additionally, the recovery levels of most photosynthesis indicators in DTT-treated plants were higher than in SM-treated plants. These findings support the view that D1 turnover has a more important role than XC in photoprotection in tomato under HH conditions.

关键词: D1 turnover     photoinhibition     photoprotection     photosynthesis     tomato     xanthophyll cycle    

FUNCTIONAL GAIN OF FRUIT NETTED-CRACKING IN AN INTROGRESSION LINE OF TOMATO WITH HIGHER EXPRESSION OF

《农业科学与工程前沿(英文)》 2021年 第8卷 第2期

摘要:

Fruit cracking is a major disorder that affects the integrity of fruit and reduces the commercial value of tomato and other fleshy fruit. Here, we have found a novel fruit ‘netted-cracking’ (FNC) phenotype in tomato introgression line IL4-4 which is present in neither the donor parent (LA0716) nor the receptor parent (M82). An F2 population was generated by crossing IL4-4 with M82 to genetically characterize the FNC gene and this showed that a single dominant gene determined fruit netted-cracking. Further map-based cloning narrowed down the FNC locus to a 230 kb region on chromosome 4. Sequencing and annotation analysis show that FNC(Solyc04 g082540) was the most likely candidate gene. Functional characterization of FNC by overexpressing FNCAC and FNCIL4-4resulted in the fruit netted-cracking phenotype, suggesting that the FNC transcript level results in the functional gain of fruit netted-cracking. These findings were further confirmed by FNC ortholog in netted-cracking pepper and melon, indicating a common regulatory mechanism in different plant species. Furthermore, cytoplasm and nucleus-localized FNC indicates increased expression of genes involved in suberin, lignin, lipid transport and cell wall metabolism. These findings provide novel genetic insights into fruit netted-cracking and offer a way to promote molecular improvement toward cracking resistant cultivars.

 

关键词: fine mapping / fruit netted-cracking / introgression line / transcript level    

FUNCTIONAL GAIN OF FRUIT NETTED-CRACKING IN AN INTROGRESSION LINE OF TOMATO WITH HIGHER EXPRESSION OF

Chunli ZHANG, Taotao WANG, Jing LI, Danqiu ZHANG, Qingmin XIE, Shoaib MUNIR, Jie YE, Hanxia LI, Yongen LU, Changxian YANG, Bo OUYANG, Yuyang ZHANG, Junhong ZHANG, Zhibiao YE

《农业科学与工程前沿(英文)》   页码 280-291 doi: 10.15302/J-FASE-2020374

摘要: Fruit cracking is a major disorder that affects the integrity of fruit and reduces the commercial value of tomato and other fleshy fruit. Here, we have found a novel fruit ‘netted-cracking’ (FNC) phenotype in tomato introgression line IL4-4 which is present in neither the donor parent (LA0716) nor the receptor parent (M82). An F population was generated by crossing IL4-4 with M82 to genetically characterize the gene and this showed that a single dominant gene determined fruit netted-cracking. Further map-based cloning narrowed down the locus to a 230 kb region on chromosome 4. Sequencing and annotation analysis show that (Solyc04 g082540) was the most likely candidate gene. Functional characterization of by overexpressing and resulted in the fruit netted-cracking phenotype, suggesting that the transcript level results in the functional gain of fruit netted-cracking. These findings were further confirmed by ortholog in netted-cracking pepper and melon, indicating a common regulatory mechanism in different plant species. Furthermore, cytoplasm and nucleus-localized indicates increased expression of genes involved in suberin, lignin, lipid transport and cell wall metabolism. These findings provide novel genetic insights into fruit netted-cracking and offer a way to promote molecular improvement toward cracking resistant cultivars.

关键词: fine mapping     fruit netted-cracking     introgression line     transcript level    

标题 作者 时间 类型 操作

PROTECTIVE ROLES OF D1 PROTEIN TURNOVER AND THE XANTHOPHYLL CYCLE IN TOMATO (SOLANUM LYCOPERSICUM) UNDER

期刊论文

CHARACTERISTICS OF HERBIVORY/WOUND-ELICITED ELECTRICAL SIGNAL TRANSDUCTION IN TOMATO

期刊论文

nano zinc oxide for active and intelligent packaging: comparison of anthocyanins source from purple tomato

期刊论文

PROTECTIVE ROLES OF D1 PROTEIN TURNOVER AND THE XANTHOPHYLL CYCLE IN TOMATO (

Tao LU, Jiazhi LU, Mingfang QI, Zhouping SUN, Yufeng LIU, Tianlai LI

期刊论文

FUNCTIONAL GAIN OF FRUIT NETTED-CRACKING IN AN INTROGRESSION LINE OF TOMATO WITH HIGHER EXPRESSION OF

期刊论文

FUNCTIONAL GAIN OF FRUIT NETTED-CRACKING IN AN INTROGRESSION LINE OF TOMATO WITH HIGHER EXPRESSION OF

Chunli ZHANG, Taotao WANG, Jing LI, Danqiu ZHANG, Qingmin XIE, Shoaib MUNIR, Jie YE, Hanxia LI, Yongen LU, Changxian YANG, Bo OUYANG, Yuyang ZHANG, Junhong ZHANG, Zhibiao YE

期刊论文