资源类型

期刊论文 2

年份

2022 1

关键词

检索范围:

排序: 展示方式:

Effect of undercut on the lower bound stability of vertical rock escarpment using finite element and

Shuvankar DAS; Debarghya CHAKRABORTY

《结构与土木工程前沿(英文)》 2022年 第16卷 第8期   页码 1040-1055 doi: 10.1007/s11709-022-0841-1

摘要: In the present study, the stability of a vertical rock escarpment is determined by considering the influence of undercut. Lower bound finite element limit analysis in association with Power Cone Programming (PCP) is applied to incorporate the failure of rock mass with the help of the Generalized Hoek-Brown yield criterion. The change in stability due to the presence of undercut is expressed in terms of a non-dimensional stability number (σci/γH). The variations of the magnitude of σci/γH are presented as design charts by considering the different magnitudes of undercut offset (H/vu and wu/vu) from the vertical edge and different magnitudes of Hoek-Brown rock mass strength parameters (Geological Strength Index (GSI), rock parameter (mi,), Disturbance factor (D)). The obtained results indicate that undercut can cause a severe stability problem in rock mass having poor strength. With the help of regression analysis of the computed results, a simplified design equation is proposed for obtaining σci/γH. By performing sensitivity analysis for an undisturbed vertical rock escarpment, we have found that the undercut height ratio (H/vu) is the most sensitive parameter followed by GSI, undercut shape ratio (wu/vu), and mi. The developed design equation as well as design charts can be useful for practicing engineers to determine the stability of the vertical rock escarpment in the presence of undercut. Failure patterns are also presented to understand type of failure and extent of plastic state during collapse.

关键词: undercut     vertical escarpment     stability     Hoek-Brown yield criterion     PCP    

Correction to: Effect of undercut on the lower bound stability of vertical rock escarpment using finite

《结构与土木工程前沿(英文)》 doi: 10.1007/s11709-023-0035-5

摘要: Correction to: Effect of undercut on the lower bound stability of vertical rock escarpment using finite element and power cone programming

关键词: finite element power     stability rock escarpment    

标题 作者 时间 类型 操作

Effect of undercut on the lower bound stability of vertical rock escarpment using finite element and

Shuvankar DAS; Debarghya CHAKRABORTY

期刊论文

Correction to: Effect of undercut on the lower bound stability of vertical rock escarpment using finite

期刊论文