资源类型

期刊论文 129

年份

2024 3

2023 8

2022 10

2021 15

2020 5

2019 6

2018 10

2017 6

2016 10

2015 14

2014 7

2013 3

2012 4

2011 3

2010 4

2009 4

2008 2

2007 3

2004 1

2003 3

展开 ︾

关键词

地下水 6

灌溉 3

节水灌溉 3

农业 2

污水 2

非常规水资源 2

BP神经网络 1

NO3-N 1

SARS-CoV-2 1

Southwest China 1

green and efficient 1

irrigation and drainage technology 1

pH值 1

rice 1

water saving 1

三江平原 1

临界深度 1

井灌水稻 1

产流 1

展开 ︾

检索范围:

排序: 展示方式:

Influence of the sewage irrigation on the agricultural soil properties in Tongliao City, China

Hong YAO, Shichao ZHANG, Xiaobo XUE, Jie YANG, Kelin HU, Xiaohua YU

《环境科学与工程前沿(英文)》 2013年 第7卷 第2期   页码 273-280 doi: 10.1007/s11783-013-0497-0

摘要: Increasing shortages of fresh water has led to greater use of treated wastewater for irrigation of crops. This study evaluates the spatial variability of soil properties after irrigation with wastewater and freshwater. Geostatistical techniques were used to identify the variability of soil properties at the different sites. A set of physical and chemical soil properties were measured including total nitrogen (TN), total phosphorus (TP), organic matter (OM) and soil moisture. The TN concentration levels varied from 567 to 700 mg·kg , while OC levels ranged from 7.3 to 16.3 mg·kg in wastewater-irrigated zones. The concentration levels of TP were between 371.53 and 402.88 mg·kg for the wastewater-irrigated sites. Wastewater irrigation resulted in higher TN, TP and OM concentrations by 18.4%, 8% and 25%, respectively. The highest TN and OM occurred along the wastewater trunk. It was also observed that nitrogen concentrations correlate with the soil's organic matter. The increase of salinity may be associated with the increase of pH, which might suggest that a reduction of pH will be beneficial for plant growth due to the decrease of salinity. The average concentrations of nitrogen in topsoil were higher than those in subsurface soils in irrigated areas. Such differences of the N profile might be due to variations in organic matter content and microbial populations. Consistent with TN and OM, soil C:N decreased significantly with an increase of depth. This phenomenon possibly reflects a greater degree of breakdown and the older age of humus stored in the deeper soil layers. The analysis of pH levels at different depths for the three sites showed that pH values for wastewater irrigation were slightly lower than the controlled sites at the same depths.

关键词: spatial variability     soil properties     groundwater and sewage irrigation    

Modeling of hydrological processes in arid agricultural regions

Jiang LI,Xiaomin MAO,Shaozhong KANG,David A. BARRY

《农业科学与工程前沿(英文)》 2015年 第2卷 第4期   页码 283-294 doi: 10.15302/J-FASE-2015076

摘要: Understanding of hydrological processes, including consideration of interactions between vegetation growth and water transfer in the root zone, underpins efficient use of water resources in arid-zone agriculture. Water transfers take place in the soil-plant-atmosphere continuum, and include groundwater dynamics, unsaturated zone flow, evaporation/transpiration from vegetated/bare soil and surface water, agricultural canal/surface water flow and seepage, and well pumping. Models can be categorized into three classes: (1) regional distributed hydrological models with various land uses, (2) groundwater-soil-plant-atmosphere continuum models that neglect lateral water fluxes, and (3) coupled models with groundwater flow and unsaturated zone water dynamics. This review highlights, in addition, future research challenges in modeling arid-zone agricultural systems, e.g., to effectively assimilate data from remote sensing, and to fully reflect climate change effects at various model scales.

关键词: hydrological processes     irrigation area     SPAC     crop growth     groundwater     canal seepage    

An emerging market for groundwater remediation in China: Policies, statistics, and future outlook

Deyi Hou, Guanghe Li, Paul Nathanail

《环境科学与工程前沿(英文)》 2018年 第12卷 第1期 doi: 10.1007/s11783-018-1027-x

摘要: There is a rapidly emerging and potentially huge market for the remediation of contaminated groundwater in China. The Chinese government published a Water Action Plan in April 2015, a Soil Action Plan in May 2016, and a draft Soil Pollution Prevention and Control Law in June 2017. All of these new policies and regulations put pressures on local governments and contaminated site owners, obliging them to conduct site investigation and to cleanup contaminated groundwater. The Chinese population in northern regions heavily depend on groundwater, with nearly 70% of water supply coming from aquifer sources in the Beijing-Tianjin-Hebei region. However, poor groundwater quality due to natural geochemical background and anthropogeic pollution is a serious concern, with poor or very poor quality water observed in nearly 80% of groundwater monitoring wells in 17 northern provinces. Shallow groundwater in many areas has been contaminated by toxic pollutants such as heavy metals and chlorinated organic compounds. There is an urgent need to better understand the situation and to conduct groundwater remediation at contaminated sites. The Chinese government is investing heavily in the research and development for groundwater remediation, which is expected to greatly add to the quality and quantity of groundwater remediation projects in the near future.

关键词: Groundwater pollution     Contaminated land     Groundwater remediation     Emerging market    

水稻节水灌溉及其对环境的影响

茆智

《中国工程科学》 2002年 第4卷 第7期   页码 8-16

摘要:

水稻是中国最主要的粮食作物之一,其产量约占粮食作物总产量的40%;在全国约11×108hm2的粮食作物总面积中,稻田面积约占28%。20世纪80年代以来,水稻产区的水资源短缺已成为当地农业生产中的重要问题,各地试验、开发、应用与推广了许多种水稻节水灌溉模式。文章根据这些新的水稻灌溉模式试验结果与推广经验,将我国水稻节水灌溉主要模式归纳为浅、湿、晒结合,间歇淹水,半旱栽培和蓄雨型等4类。阐述了这些模式的田间水分控制标准以及节水、增产和提高水分生产率的潜力;提出了该4类模式的选择原则以及应用这些模式时应注意的问题;分析、讨论了推广这些模式能够持续节水与提高水分生产率的机理以及对环境的影响。

关键词: 水稻     节水灌溉     灌溉模式     节水潜力     环境影响    

Numerical simulation of benzene transport in shoreline groundwater affected by tides under different

《环境科学与工程前沿(英文)》 2022年 第16卷 第5期 doi: 10.1007/s11783-022-1540-9

摘要:

● An approach for assessing the transport of benzene on the beach was proposed.

关键词: Numerical simulation     Benzene     Transport and fate     Shoreline     Groundwater     Tide    

Influence of sprinkler irrigation droplet diameter, application intensity and specific power on flower

Yisheng ZHANG, Delan ZHU

《农业科学与工程前沿(英文)》 2017年 第4卷 第2期   页码 165-171 doi: 10.15302/J-FASE-2017145

摘要: To determine the main parameters of droplet strike damage and avoid flower injury due to the unsuitable practices during sprinkler irrigation, an indoor experiment of irrigation droplet impact on cyclamen was conducted. The influences of different parameters such as droplet diameter, application intensity, specific power on flower strike damage was analyzed using Image Pro-Plus software to compute strike damage area and define damage level by sense-analysis. The results showed that a damage area of <1% represents a safe irrigation level, 1%–3% slight damage level, 3%–6% moderate damage level, and>6% heavy damage level. Equations of application intensity, specific power with sprinkler irrigation time and flower injury ratio were regressed against parameters which cause impact damages. The results indicated that specific power has a significant correlation with injury, and flower damage area increased as the increasing of the value of specific power for the same irrigation time. Application intensity was also correlated with injury when the droplet diameter was larger than 1 mm. When the duration of sprinkler irrigation was 1, 5 and 10 min, the threshold of impinging damage of application intensity was 25.30, 5.01 and 1.64 mm·h and the specific power was 0.467×10 , 9.340×10 and 3.110×10 W·m . These results provide a reference for determining the suitable values of sprinkler properties in operation design.

关键词: application intensity     damage     floriculture     flowers     specific power     sprinkler irrigation    

Arsenic geochemistry of groundwater in Southeast Asia

Kyoung-Woong Kim, Penradee Chanpiwat, Hoang Thi Hanh, Kongkea Phan, Suthipong Sthiannopkao

《医学前沿(英文)》 2011年 第5卷 第4期   页码 420-433 doi: 10.1007/s11684-011-0158-2

摘要: The occurrence of high concentrations of arsenic in the groundwater of the Southeast Asia region has received much attention in the past decade. This study presents an overview of the arsenic contamination problems in Vietnam, Cambodia, Lao People’s Democratic Republic and Thailand. Most groundwater used as a source of drinking water in rural areas has been found to be contaminated with arsenic exceeding the WHO drinking water guideline of 10 μg·L . With the exception of Thailand, groundwater was found to be contaminated with naturally occurring arsenic in the region. Interestingly, high arsenic concentrations (>10 μg·L ) were generally found in the floodplain areas located along the Mekong River. The source of elevated arsenic concentrations in groundwater is thought to be the release of arsenic from river sediments under highly reducing conditions. In Thailand, arsenic has never been found naturally in groundwater, but originates from tin mining activities. More than 10 million residents in Southeast Asia are estimated to be at risk from consuming arsenic-contaminated groundwater. In Southeast Asia, groundwater has been found to be a significant source of daily inorganic arsenic intake in humans. A positive correlation between groundwater arsenic concentration and arsenic concentration in human hair has been observed in Cambodia and Vietnam. A substantial knowledge gap exists between the epidemiology of arsenicosis and its impact on human health. More collaborative studies particularly on the scope of public health and its epidemiology are needed to conduct to fulfill the knowledge gaps of As as well as to enhance the operational responses to As issue in Southeast Asian countries.

关键词: arsenic     groundwater     drinking water     arsenicosis     Mekong River     Southeast Asia    

CFD based combustion model for sewage sludge gasification in a fluidized bed

Yiqun WANG, Lifeng YAN

《化学科学与工程前沿(英文)》 2009年 第3卷 第2期   页码 138-145 doi: 10.1007/s11705-009-0050-7

摘要: Gasification is one potential way to use sewage sludge as renewable energy and solve the environmental problems caused by the huge amount of sewage sludge. In this paper, a three-dimensional Computational Fluid Dynamics (CFD) model has been developed to simulate the sewage sludge gasification process in a fluidized bed. The model describes the complex physical and chemical phenomena in the gasifier including turbulent flow, heat and mass transfer, and chemical reactions. The model is based on the Eulerian-Lagrangian concept using the non-premixed combustion modeling approach. In terms of the CFD software FLUENT, which represents a powerful tool for gasifier analysis, the simulations provide detailed information on the gas products and temperature distribution in the gasifier. The model sensitivity is analyzed by performing the model in a laboratory-scale fluidized bed in the literature, and the model validation is carried out by comparing with experimental data from the literature. Results show that reasonably good agreement was achieved. Effects of temperature and Equivalence Ratio (ER) on the quality of product syngas (H + CO) are also studied.

关键词: CFD     model     sewage sludge     gasification     syngas    

Alternate partial root-zone irrigation with high irrigation frequency improves root growth and reduces

Shaoqing DU, Ling TONG, Shaozhong KANG, Fusheng LI, Taisheng DU, Sien LI, Risheng DING

《农业科学与工程前沿(英文)》 2018年 第5卷 第2期   页码 188-196 doi: 10.15302/J-FASE-2017176

摘要: Alternate partial root-zone irrigation (APRI) can improve water use efficiency in arid areas. However, the effectiveness and outcomes of different frequencies of APRI on water uptake capacity and physiological water use have not been reported. A two-year field experiment was conducted with two irrigation amounts (400 and 500 mm) and three irrigation methods (conventional irrigation, APRI with high and low frequencies). Root length density, stomatal conductance, photosynthetic rate, transpiration rate, leaf water use efficiency, midday stem and leaf water potentials were measured. The results show that in comparison with conventional irrigation, APRI with high frequency significantly increased root length density and decreased water potentials and stomatal conductance. No differences in the above indicators between the two APRI frequencies were detected. A significantly positive relationship between stomatal conductance and root length density was found under APRI. Overall, alternate partial root-zone irrigation with high frequency has a great potential to promote root growth, expand water uptake capacity and reduce unproductive water loss in the arid apple production area.

关键词: alternate partial root-zone irrigation     apple tree     leaf water use efficiency     root length density     stomatal conductance     water potential    

Effects of irrigation and nitrogen management on hybrid maize seed production in north-west China

Hui RAN,Shaozhong KANG,Fusheng LI,Ling TONG,Taisheng DU

《农业科学与工程前沿(英文)》 2016年 第3卷 第1期   页码 55-64 doi: 10.15302/J-FASE-2016091

摘要: Scientific irrigation and nitrogen management is important for agricultural production in arid areas. To quantify the effect of water and nitrogen management on yield components, biomass partitioning and harvest index ( ) of maize for seed production with plastic film-mulching, field experiments including different irrigation and N treatments were conducted in arid north-west China in 2013 and 2014. The results indicated that kernel number per plant ( ) was significantly affected by irrigation and N treatments. However, 100-kernel weight was relatively stable. Reducing irrigation quantity significantly increased stem partitioning index ( ) and leaf partitioning index ( ), and decreased ear partitioning index ( ) at harvest, but lowering N rate (from 500 to 100 kg N·hm ) did not significantly reduce , , and at harvest. was significantly reduced by reducing irrigation quantity, but not by reducing N rate. Linear relationships were found between , , , at harvest and and evapotranspiration ( ).

关键词: yield components     biomass partitioning     harvest index     irrigation     nitrogen     maize for seed production    

Evaluation of groundwater quality in the Xinjiang Plain Area

Jinlong ZHOU, Xinguang DONG, Yiping WANG, Guomin LI, Xiaojing GUO,

《环境科学与工程前沿(英文)》 2010年 第4卷 第2期   页码 183-186 doi: 10.1007/s11783-010-0021-8

摘要: Groundwater is the main source of drinking water for the urban and rural residents in the plain area of the Xinjiang Uygur Autonomous Region, China. The quality of groundwater has a direct relationship with human health. Thus, 386 groundwater samples collected from April to August in 2003 were analyzed. The samples were collected in basic evaluation units which are determined on the basis of watersheds. Total dissolved solids, total hardness, pH value, NH–N, CHOH, Chemiluminescence detection of permanganate index (COD) and intestinal germ group were evaluated according to the guidelines of Groundwater Quality Standard (GB/T14848-93). The quality of the groundwater in each evaluation unit was classified by using the One Veto Method (a unified approach stipulated by the Ministry of Water Resources). The results indicate that the groundwater in the mainstream area of the Tarim Basin and the Yerqiang River Sub-basin belongs to Category V; the groundwater in the Wulungu River Sub-basin, the Kaidu-Kongque River Sub-basin, the Kashgar River Sub-basin, the Cherchen River Sub-basin and the Hotan River Sub-basin belongs to Category IV; the groundwater in the Aibi Lake System belongs to Category II, and the groundwater of other evaluation units belongs to Category III. The causes of water quality formation were concisely analyzed. The results can be useful for the evaluation and management of water resources in the Xinjiang Plain Area.

关键词: groundwater quality     evaluation     one veto method     total dissolved solids (TDS)     pH     total hardness    

我国地下水污染防治现状与对策研究

任静,李娟,席北斗,杨洋,鹿豪杰,史俊祥

《中国工程科学》 2022年 第24卷 第5期   页码 161-168 doi: 10.15302/J-SSCAE-2022.05.019

摘要:

地下水是我国重要的饮用水源和战略资源,但我国地下水水质总体不容乐观,污染防治工作总体起步较晚,地下水环境保护形势严峻,系统研判地下水污染防治工作面临的问题并提出针对性的对策,是遏制地下水污染趋势并实现稳中向好的重要保障。本文围绕地下水污染防治现有法规政策、管理现状及要求进行了系统梳理,并结合污染防治工作基础,对未来管理形势进行科学研判。结果表明,① 地下水污染底数尚不清晰,分级分类管控基础不牢;② 地下水污染形势日趋复杂,协同监管体系尚不完善;③ 地下水污染治理难度加大,污染防治成果应用不够;④ 地下水环境管理要求不断提升,污染防治创新动能不足。研究建议,通过持续推进重点区域地下水环境调查评估查明污染底数,支撑地下水污染的分级分类管控体系的建设;通过将多级地下水环境监测网建设和信息化监管手段相结合,实现地下水污染全过程防治的智能化、可视化协同监管;通过地下水污染防治项目试点实施及全国21 个地下水污染防治试验区建设,形成可复制、可推广的绿色可持续地下水污染防治模式;通过地下水污染溯源、标准体系构建、自主知识产权软件等关键技术问题集中攻坚,提升地下水污染防治技术原始创新与管理支撑能力。希望相关研究能为新发展阶段国家地下水污染防治提供理论指导和决策支撑。

关键词: 地下水污染防治;地下水监测网;地下水环境管理    

PLANT DENSITY, IRRIGATION AND NITROGEN MANAGEMENT: THREE MAJOR PRACTICES IN CLOSING YIELD GAPS FOR AGRICULTURAL

《农业科学与工程前沿(英文)》 2021年 第8卷 第4期 doi: 10.15302/J-FASE -2020355

摘要:

Agriculture faces the dual challenges of food security and environmental sustainability. Here, we investigate current maize production at the field scale, analyze the yield gaps and impacting factors, and recommend measures for sustainably closing yield gaps. An experiment was conducted on a 3.9-ha maize seed production field in arid north-western China, managed with border and drip irrigation, respectively, in 2015 and 2016. The relative yield reached 70% in both years. However, drip irrigation saved 227 mm irrigation water during a drier growing season compared with traditional border irrigation, accounting for 44% of the maize evapotranspiration (ET). Yield variability under drip irrigation was 12.1%, lower than the 18.8% under border irrigation. Boundary line analysis indicates that a relative yield increase of 8% to 10% might be obtained by optimizing the yield-limiting factors. Plant density and soil available water content and available nitrogen were the three major factors involved. In conclusion, closing yield gaps with agricultural sustainability may be realized by optimizing agronomic, irrigation and fertilizer management, using water-saving irrigation methods and using site-specific management.

 

关键词: boundary line analysis     irrigation method     precision agriculture     spatial variability     yield gaps     yield-limiting factors    

Optimization model analysis of centralized groundwater source heat pump system in heating season

Shilei LU,Yunfang QI,Zhe CAI,Yiran LI

《能源前沿(英文)》 2015年 第9卷 第3期   页码 343-361 doi: 10.1007/s11708-015-0372-8

摘要: The ground-water heat-pump system (GWHP) provides a high efficient way for heating and cooling while consuming a little electrical energy. Due to the lack of scientific guidance for operating control strategy, the coefficient of performance (COP) of the system and units are still very low. In this paper, the running strategy of GWHP was studied. First, the groundwater thermal transfer calculation under slow heat transfixion and transient heat transfixion was established by calculating the heat transfer simulation software Flow Heat and using correction factor. Next, heating parameters were calculated based on the building heat load and the terminal equipment characteristic equation. Then, the energy consumption calculation model for units and pumps were established, based on which the optimization method and constraints were established. Finally, a field test on a GWHP system in Beijing was conducted and the model was applied. The new system operation optimization idea for taking every part of the GWHP into account that put forward in this paper has an important guiding significance to the actual operation of underground water source heat pump.

关键词: optimization model     groundwater source heat pump system     theoretical analysis     example verification     heating season    

Using hydrochemical signatures to characterize the long-period evolution of groundwater information in

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期 doi: 10.1007/s11783-021-1393-7

摘要:

• The long-period groundwater evolution was identified by hydrochemical signatures.

关键词: Groundwater quality     Hydrochemical signatures     Spatial-temporal variations     Water-rock interactions     Anthropogenic interventions    

标题 作者 时间 类型 操作

Influence of the sewage irrigation on the agricultural soil properties in Tongliao City, China

Hong YAO, Shichao ZHANG, Xiaobo XUE, Jie YANG, Kelin HU, Xiaohua YU

期刊论文

Modeling of hydrological processes in arid agricultural regions

Jiang LI,Xiaomin MAO,Shaozhong KANG,David A. BARRY

期刊论文

An emerging market for groundwater remediation in China: Policies, statistics, and future outlook

Deyi Hou, Guanghe Li, Paul Nathanail

期刊论文

水稻节水灌溉及其对环境的影响

茆智

期刊论文

Numerical simulation of benzene transport in shoreline groundwater affected by tides under different

期刊论文

Influence of sprinkler irrigation droplet diameter, application intensity and specific power on flower

Yisheng ZHANG, Delan ZHU

期刊论文

Arsenic geochemistry of groundwater in Southeast Asia

Kyoung-Woong Kim, Penradee Chanpiwat, Hoang Thi Hanh, Kongkea Phan, Suthipong Sthiannopkao

期刊论文

CFD based combustion model for sewage sludge gasification in a fluidized bed

Yiqun WANG, Lifeng YAN

期刊论文

Alternate partial root-zone irrigation with high irrigation frequency improves root growth and reduces

Shaoqing DU, Ling TONG, Shaozhong KANG, Fusheng LI, Taisheng DU, Sien LI, Risheng DING

期刊论文

Effects of irrigation and nitrogen management on hybrid maize seed production in north-west China

Hui RAN,Shaozhong KANG,Fusheng LI,Ling TONG,Taisheng DU

期刊论文

Evaluation of groundwater quality in the Xinjiang Plain Area

Jinlong ZHOU, Xinguang DONG, Yiping WANG, Guomin LI, Xiaojing GUO,

期刊论文

我国地下水污染防治现状与对策研究

任静,李娟,席北斗,杨洋,鹿豪杰,史俊祥

期刊论文

PLANT DENSITY, IRRIGATION AND NITROGEN MANAGEMENT: THREE MAJOR PRACTICES IN CLOSING YIELD GAPS FOR AGRICULTURAL

期刊论文

Optimization model analysis of centralized groundwater source heat pump system in heating season

Shilei LU,Yunfang QI,Zhe CAI,Yiran LI

期刊论文

Using hydrochemical signatures to characterize the long-period evolution of groundwater information in

期刊论文