检索范围:
排序: 展示方式:
Cécile DURANTON, Cory MATTHEW
《农业科学与工程前沿(英文)》 2018年 第5卷 第1期 页码 87-97 doi: 10.15302/J-FASE-2018202
关键词: farm system configuration herb pasture metabolic energy budgeting plantain sheep and beef farming
《农业科学与工程前沿(英文)》 2022年 第9卷 第2期 页码 167-169 doi: 10.15302/J-FASE-2022446
Intensive agriculture, characterized by strong reliance on excessive amount of external agrochemical inputs in simplified cropping systems has contributed successfully to feeding an increasing number of humans, but at the expense of severe resource and environmental costs. Consequently, the Earth is facing multifaceted challenges, including increasing food demand both in quantity and quality, global warming associated with extreme weather events, soil degradation and depletion of natural resources. To address some of these challenges, we have developed this Special Issue on Sustainable Crop and Pasture Systems for Frontiers of Agricultural Sciences and Engineering (FASE). The issue addresses the research frontiers of two main themes: (1) aboveground-belowground ecological and physiological mechanisms, processes and ecosystem functions; and (2) the synergies and trade-offs between multiple ecosystem services in sustainable crop and pasture systems. There are 10 articles in this Special Issue including review and research articles with contributions from Australia, China, France, the Netherlands, and the UK. The contributors are all highly-regarded scientists devoted to studies on mechanisms and applications of sustainable crop and pasture systems.
Sustainable crop and pasture systems have a potential to enhance the synergies in multiple ecosystem services, consisting of higher food production, lower environmental impacts and climate change mitigation. To innovate sustainable cropping systems requires deeper and comprehensive understanding of mechanisms underlying above- and belowground interactions. Hans Lambers and Wen-Feng Cong emphasized the importance of diversifying crop species or genotypes with complementary or facilitative functional traits. This will mediate key ecosystem processes related to water, carbon and nutrients, contributing to higher resource-use efficiency and enhancing synergies in ecosystem services ( https://doi.org/10.15302/J-FASE-2022444). Root functional traits such as root exudates are pivotal in nutrient mobilization, either directly mobilizing plant nutrients in the soil or indirectly so via modifications of the soil microbiome. Cathryn A. O'Sullivan and coworkers reported a novel role of root exudates from canola in inhibiting nitrification in soils. They found that these root exudates (called biological nitrogen (N) inhibitors) can significantly reduce nitrification rates of both Nitrosospira multiformis cultures and native nitrifying communities in soil. This would reduce nitrate losses, but increase plant N uptake and microbial N immobilization, subsequently benefiting the following cereal crops through mineralization of this organic N pool ( https://doi.org/10.15302/J-FASE-2021421). Jonathan Storkey and Andrew J. Macdonald used the longest-lasting grassland biodiversity experiment in the world to examine the relationships between plant functional traits and ecosystem services. They reported a strong trade-off between plots with high productivity, N inputs and soil organic carbon and plots with a large number of plant species with contrasting nutrient-acquisition strategies. An increasing proportion of forbs with greater longevity and lower leaf dry matter content can partly mitigate the trade-offs between plant diversity and productivity ( https://doi.org/10.15302/J-FASE-2021438).
John A. Raven further explored synergies or trade-offs of ecosystem services regulated by above- and belowground interactions, mainly functioning through energy, material and information pathways. Solar energy is the key driver for photosynthesis and transpiration, modulating the flow of water and nutrients in soils moving aboveground and the flow of carbohydrates feeding belowground biota. Information transfer can be through hydraulic, electrical and chemical signaling, regulating plant development, abiotic and biotic damage and resource excess and limitation ( https://doi.org/10.15302/J-FASE-2021433).
Timothy S. George and coauthors highlighted the importance of harnessing biodiversity principles and physiological mechanisms in diversified cropping systems to achieve agricultural sustainability. They demonstrate that crop diversification combined with optimized management such as minimum tillage and reduced fertilizer inputs can improve soil quality, promoting soil biotic activities and associated functions. This will reduce the reliance on agrochemical inputs and environmental impacts, and increase climatic resilience ( https://doi.org/10.15302/J-FASE-2021437). Ruqiang Zhang and coworkers applied the One Health concept to design healthy dairy farms. They employed a wide range of soil and plant diversity measures such as intercropping, crop rotation and flower strips at both field and landscape scales to reduce the inputs of fertilizers, pesticides as well as soil compaction caused by heavy machines. The biodiversity-based solutions can help dairy farmers maintain a healthy eco-environment, while producing high-quality milk ( https://doi.org/10.15302/J-FASE-2022445). Emily C. Cooledge and her colleagues show that introducing multispecies leys with perennial legumes and other forbs into arable rotations will achieve multiple ecosystem benefits. This occurs mainly in three ways—return of livestock manure, permanent soil cover and less disturbance of soil—which promote soil food web interactions and soil aggregate stability, subsequently sequestering more carbon in soils ( https://doi.org/10.15302/J-FASE-2021439). Ting Luo and coauthors used the sugarcane cropping system in China as an example and analyzed the current challenges and problems and proposed a wide range of crop, soil and input management practices such as crop rotation, strategic tillage and optimized nutrient management to achieve sustainable sugarcane cropping systems ( https://doi.org/10.15302/J-FASE-2022442).
Focusing on the multi-objective assessment of different cropping systems, Léa Kervroëdan and coworkers assessed the agronomic and environmental impacts of food, feed and mixed (food, feed and biogas) cropping systems. They found that mixed cropping systems had a greater potential of bioenergy production and agronomic performance, but also higher greenhouse gas emissions. This warrants long-term examination of whether short-term higher greenhouse gas emissions can be offset by long-term soil carbon sequestration in this system ( https://doi.org/10.15302/J-FASE-2021435). Jeroen C. J. Groot and Xiaolin Yang applied a new mathematical approach of evolutionary multi-objective optimization to 30 cropping systems practiced on the North China Plain with the aim of overcoming the trade-offs between revenues, energy and nutrient supply and groundwater depletion at a regional level. This approach allows national or regional policymakers to plan growing area of certain sustainable cropping systems ( https://doi.org/10.15302/J-FASE-2021434).
As the Guest Editors, we thank all authors and reviewers for their valuable contributions to this Special Issue on Sustainable Crop and Pasture Systems. We also thank the FASE editorial team for their professional support.
Dr. Wen-Feng Cong, Associate Professor at College of Resource and Environmental Sciences, China Agricultural University. He obtained his PhD at Wageningen University in the Netherlands and conducted postdoctoral research at Aarhus University in Denmark. His research focuses on understanding the mechanisms underlying the positive effects of crop, genotype and cropping system diversity on soil carbon sequestration and soil phosphorus utilization, and applying the ecological mechanisms to design sustainable diversified cropping systems. He is author of over 30 papers in peer-reviewed scientific journals, including Trends in Plant Science, Trends in Ecology & Evolution, and Global Change Biology. He is leading or participating in sustainable cropping systems related projects funded by the National Natural Science Foundation of China and the Chinese Academy of Engineering. He is acting as a member of the editorial board of Frontiers in Agronomyand Frontiers in Soil Science.
Dr. Hans Lambers, Emeritus Professor at the University of Western Australia and Distinguished Professor at College of Resource and Environmental Sciences, China Agricultural University. He obtained his PhD at the University of Groningen in the Netherlands and conducted postdoctoral research in Australia and the Netherlands, before taking up a position of Professor of Plant Ecophysiology at Utrecht University in the Netherlands and then Professor of Plant Biology and Ecology at the University of Western Australia in Australia. His research focuses on understanding plant–soil interactions and plant nutrition, with an emphasis on Australian plants and crop legumes. He is author of over 550 papers in peer-reviewed scientific journals, including Annual Review of Plant Biology,Trends in Plant Science, Trends in Ecology & Evolution, New Phytologist, Plant and Soil,Global Change Biology, andNature Plants. He is leading or participating in projects on plant nutrition funded by the Australian Research Council. He is the lead author of an influential textbook, Plant Physiological Ecology (1998, 2008, and 2019), Editor in Chief of Plant and Soil(1992–present), and Associate Editor in Chief ofFrontiers of Agricultural Sciences and Engineering
null
《医学前沿(英文)》 2015年 第9卷 第4期 页码 457-467 doi: 10.1007/s11684-015-0417-8
Herbal medicines have recently been recognized as the second most common cause of drug-induced liver injury (DILI) in the United States. However, reliable methods to identify the DILI causality of some herbs, such as Heshouwu (dried root of Polygonum multiflorum), remain lacking. In this study, a total of 12 307 inpatients with liver dysfunction and 147 literature-reported cases of Heshouwu DILI were screened. A general algorithm indicated that only 22.5% (9/40) and 30.6% (45/147) of all hospitalization and literature case reports, respectively, demonstrate the high probability of DILI causality of Heshouwu. By contrast, 95% (19/20) of all cases prospectively investigated by pharmacognosy, phytochemistry, and metabolomic tests exhibited highly probable causality, including a patient who was previously incorrectly attributed and a case that was excluded from Heshouwu causality by pharmacognostic evidence. Toxin (heavy metals, pesticides, and mycotoxins) contamination was also excluded from Heshouwu DILI causality. The objectivity of these screening methods for Heshouwu DILI diagnosis addresses safety concerns regarding stilbene-containing herbal medicines and dietary supplements.
关键词: drug-induced liver injury pharmacognosy metabolomics stilbene Polygonum multiflorum Chinese herbal medicine
《农业科学与工程前沿(英文)》 2022年 第9卷 第2期 页码 245-271 doi: 10.15302/J-FASE-2021439
Agricultural intensification and the subsequent decline of mixed farming systems has led to an increase in continuous cropping with only a few fallow or break years, undermining global soil health. Arable-ley rotations incorporating temporary pastures (leys) lasting 1–4 years may alleviate soil degradation by building soil fertility and improving soil structure. However, the majority of previous research on arable-ley rotations has utilized either grass or grass-clover leys within ungrazed systems. Multispecies leys, containing a mix of grasses, legumes, and herbs, are rapidly gaining popularity due to their promotion in agri-environment schemes and potential to deliver greater ecosystem services than conventional grass or grass-clover leys. Livestock grazing in arable-ley rotations may increase the economic resilience of these systems, despite limited research of the effects of multispecies leys on ruminant health and greenhouse gas emissions. This review aims to evaluate previous research on multispecies leys, highlighting areas for future research and the potential benefits and disbenefits on soil quality and livestock productivity. The botanical composition of multispecies leys is crucial, as legumes, deep rooted perennial plants (e.g., Onobrychis viciifolia and Cichorium intybus) and herbs (e.g., Plantago lanceolata) can increase soil carbon, improve soil structure, reduce nitrogen fertilizer requirements, and promote the recovery of soil fauna (e.g., earthworms) in degraded arable soils while delivering additional environmental benefits (e.g., biological nitrification inhibition and enteric methane reduction). Multispecies leys have the potential to deliver biologically driven regenerative agriculture, but more long-term research is needed to underpin evidence-based policy and farmer guidance.
Multistage analysis method for detection of effective herb prescription from clinical data
null
《医学前沿(英文)》 2018年 第12卷 第2期 页码 206-217 doi: 10.1007/s11684-017-0525-8
Determining effective traditional Chinese medicine (TCM) treatments for specific disease conditions or particular patient groups is a difficult issue that necessitates investigation because of the complicated personalized manifestations in real-world patients and the individualized combination therapies prescribed in clinical settings. In this study, a multistage analysis method that integrates propensity case matching, complex network analysis, and herb set enrichment analysis was proposed to identify effective herb prescriptions for particular diseases (e.g., insomnia). First, propensity case matching was applied to match clinical cases. Then, core network extraction and herb set enrichment were combined to detect core effective herb prescriptions. Effectiveness-based mutual information was used to detect strong herb–symptom relationships. This method was applied on a TCM clinical data set with 955 patients collected from well-designed observational studies. Results revealed that groups of herb prescriptions with higher effectiveness rates (76.9% vs. 42.8% for matched samples; 94.2% vs. 84.9% for all samples) compared with the original prescriptions were found. Particular patient groups with symptom manifestations were also identified to help investigate the indications of the effective herb prescriptions.
关键词: effective prescription detection herb set enrichment analysis core network extraction insomnia personalized treatment
null
《医学前沿(英文)》 2017年 第11卷 第2期 页码 253-265 doi: 10.1007/s11684-017-0508-9
The main constituents of a typical medicinal herb, Polygonum multiflorum (Heshouwu in Chinese), that induces idiosyncratic liver injury remain unclear. Our previous work has shown that cotreatment with a nontoxic dose of lipopolysaccharide (LPS) and therapeutic dose of Heshouwu can induce liver injury in rats, whereas the solo treatment cannot induce observable injury. In the present work, using the constituent “knock-out” and “knock-in” strategy, we found that the ethyl acetate (EA) extract of Heshouwu displayed comparable idiosyncratic hepatotoxicity to the whole extract in LPS-treated rats. Results indicated a significant elevation of plasma alanine aminotransferase, aspartate aminotransferase, and liver histologic changes, whereas other separated fractions failed to induce liver injury. The mixture of EA extract with other separated fractions induced comparable idiosyncratic hepatotoxicity to the whole extract in LPS-treated rats. Chemical analysis further revealed that 2,3,5,4'-tetrahydroxy trans-stilbene-2-O-β-glucoside (trans-SG) and its cis-isomer were the two major compounds in EA extract. Furthermore, the isolated cis-, and not its trans-isomer, displayed comparable idiosyncratic hepatotoxicity to EA extract in LPS-treated rats. Higher contents of cis-SG were detected in Heshouwu liquor or preparations from actual liver intoxication patients associated with Heshouwu compared with general collected samples. In addition, plasma metabolomics analysis showed that cis-SG-disturbing enriched pathways remarkably differed from trans-SG ones in LPS-treated rats. All these results suggested that cis-SG was closely associated with the idiosyncratic hepatotoxicity of Heshouwu. Considering that the cis-trans isomerization of trans-SG was mediated by ultraviolet light or sunlight, our findings serve as reference for controlling photoisomerization in drug discovery and for the clinical use of Heshouwu and stilbene-related medications.
关键词: Polygonum multiflorum idiosyncratic hepatotoxicity metabolomics stilbene cis-transisomerization
Screening for main components associated with the idiosyncratic hepatotoxicity of a tonic herb,
Chunyu Li, Ming Niu, Zhaofang Bai, Congen Zhang, Yanling Zhao, Ruiyu Li, Can Tu, Huifang Li, Jing Jing, Yakun Meng, Zhijie Ma, Wuwen Feng, Jinfa Tang, Yun Zhu, Jinjie Li, Xiaoya Shang, Zhengsheng Zou, Xiaohe Xiao, Jiabo Wang
《医学前沿(英文)》 2021年 第15卷 第2期 页码 330-332 doi: 10.1007/s11684-020-0819-0
一种知识引导的基于中医学信息的药材推荐方法 Research Article
金哲,张引,苗嘉旭,杨易,庄越挺,潘云鹤
《信息与电子工程前沿(英文)》 2023年 第24卷 第10期 页码 1416-1429 doi: 10.1631/FITEE.2200662
关键词: 中医;药材推荐;知识图谱;图注意力网络
标题 作者 时间 类型 操作
Impact of introducing a herb pasture area into a New Zealand sheep and beef hill country farm system:
Cécile DURANTON, Cory MATTHEW
期刊论文
SUSTAINABLE CROP AND PASTURE SYSTEMS: FROM ABOVE- AND BELOWGROUND INTERACTIONS TO ECOSYSTEM MULTIFUNCTIONALITY
期刊论文
Evidence chain-based causality identification in herb-induced liver injury: exemplification of a well-knownliver-restorative herb
null
期刊论文
AGRONOMIC AND ENVIRONMENTAL BENEFITS OF REINTRODUCING HERB- AND LEGUME-RICH MULTISPECIES LEYS INTO ARABLE
期刊论文
Multistage analysis method for detection of effective herb prescription from clinical data
null
期刊论文
Screening for main components associated with the idiosyncratic hepatotoxicity of a tonic herb, Polygonum
null
期刊论文
Screening for main components associated with the idiosyncratic hepatotoxicity of a tonic herb,
Chunyu Li, Ming Niu, Zhaofang Bai, Congen Zhang, Yanling Zhao, Ruiyu Li, Can Tu, Huifang Li, Jing Jing, Yakun Meng, Zhijie Ma, Wuwen Feng, Jinfa Tang, Yun Zhu, Jinjie Li, Xiaoya Shang, Zhengsheng Zou, Xiaohe Xiao, Jiabo Wang
期刊论文