资源类型

期刊论文 24

年份

2024 1

2023 4

2022 3

2021 2

2020 4

2019 1

2018 2

2016 1

2012 2

2010 1

2007 1

2004 1

展开 ︾

关键词

N∶P比值 1

两弹一星 1

共赢博弈 1

双稳态电润湿;非平面;控制电极;低电压;高对比度 1

变化 1

开发太空 1

李雅普诺夫能量函数 1

滇池 1

生态化学计量学 1

电力系统 1

类人体免疫反应模型 1

航天科技 1

蓝绿藻 1

静止无功发生器 1

展开 ︾

检索范围:

排序: 展示方式:

Dielectric barrier micro-plasma reactor with segmented outer electrode for decomposition of pure CO

Baowei Wang, Xiaoxi Wang, Bo Zhang

《化学科学与工程前沿(英文)》 2021年 第15卷 第3期   页码 687-697 doi: 10.1007/s11705-020-1974-1

摘要: Four coaxial cylinder dielectric barrier discharge micro-plasma reactors were designed for the non-catalytic decomposition of pure CO into CO and O at low temperature and ambient pressure. The influence of segmented outer electrodes on the electrical characteristics and the reaction performance was investigated. Experimental results indicated that the introduction of segmented outer electrodes can significantly promote the decomposition of CO . Encouragingly, the highest conversion of 13.1% was obtained at an applied voltage of 18 kV, which was a substantial increase of 39.4% compared to the traditional device. Compared with other types of dielectric barrier discharge plasma reactors, the proposed segmented outer electrode micro-plasma reactor can give a higher CO conversion and acceptable energy efficiency. The increase in conversion can be attributed mainly to the enhanced corona discharge caused by the fringe effect at electrode edges, the increase in energy density and the increase in the number of micro-discharges. In addition, detailed electrical characterization was performed to reveal some trends in the electrical behavior of proposed reactors.

关键词: CO2 decomposition     dielectric barrier discharge     segmented outer electrodes     electrical analysis     reactor design    

behavior of stiffened joints between concrete-filled steel tubular column and steel beam with narrow outer

Chunyan QUAN,Wei WANG,Jian ZHOU,Rong WANG

《结构与土木工程前沿(英文)》 2016年 第10卷 第3期   页码 333-344 doi: 10.1007/s11709-016-0357-7

摘要: This paper presented an investigation on a stiffened joint in practical engineering which was between concrete-filled steel tubular column and steel beam with narrow outer diaphragm and partial joint penetration welds. Through the low-frequency cyclic loading test, the cyclic behavior and failure mode of the specimen were investigated. The results of the test indicated the failure mode and bearing capacity of the specimen which were influenced by the axial compression ratio of the concrete-filled tubular column. On the contrary, the inner diaphragm and inner stiffeners had limited impacts on the hysteretic behavior of the joint. There was no hysteresis damage fracture on the narrow outer diaphragm connected to the concrete-filled steel tubular column with partial joint penetration welds. Due to the excellent ductility and energy dissipating capacity, the proposed joint could be applied to the seismic design of high-rise buildings in highly intensive seismic region, but axial compression ratio should be controlled to avoid unfavorable failure modes.

关键词: narrow outer diaphragm     concrete-filled tubular column     joint     inner and outer stiffening     cyclic behavior    

Cutting performance of surgical electrodes by constructing bionic microstriped structures

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0728-9

摘要: Surgical electrodes rely on thermal effect of high-frequency current and are a widely used medical tool for cutting and coagulating biological tissue. However, tissue adhesion on the electrode surface and thermal injury to adjacent tissue are serious problems in surgery that can affect cutting performance. A bionic microstriped structure mimicking a banana leaf was constructed on the electrode via nanosecond laser surface texturing, followed by silanization treatment, to enhance lyophobicity. The effect of initial, simple grid-textured, and bionic electrodes with different wettabilities on tissue adhesion and thermal injury were investigated using horizontal and vertical cutting modes. Results showed that the bionic electrode with high lyophobicity can effectively reduce tissue adhesion mass and thermal injury depth/area compared with the initial electrode. The formation mechanism of adhered tissue was discussed in terms of morphological features, and the potential mechanism for antiadhesion and heat dissipation of the bionic electrode was revealed. Furthermore, we evaluated the influence of groove depth on tissue adhesion and thermal injury and then verified the antiadhesion stability of the bionic electrode. This study demonstrates a promising approach for improving the cutting performance of surgical electrodes.

关键词: surgical electrodes     tissue adhesion     thermal injury     bionic structures     cutting performance     medical tools    

Review on cellulose paper-based electrodes for sustainable batteries with high energy densities

《化学科学与工程前沿(英文)》 2023年 第17卷 第8期   页码 1010-1027 doi: 10.1007/s11705-023-2307-y

摘要: Powering the future, while maintaining strong socioeconomic growth and a cleaner environment, is going to be one of the biggest challenges faced by mankind nowadays. Thus, there is a transition from the use of fossil fuels to renewable energy sources. Cellulose, the main component of paper, represents a unique type of bio-based building blocks featuring exciting properties: low-cost, hierarchical fibrous structures, hydrophilicity, biocompatible, mechanical flexibility, and renewability, which make it perfect for use in paper-based sustainable energy storage devices. This review focuses on lithium-ion battery application of celluloses with cellulose at different scales, i.e., cellulose microfibers, and nanocellulose, and highlights the new trends in the field. Recent advances and approaches to construct high mass loading paper electrodes toward high energy density batteries are evaluated and the limitations of paper-based cathodes are discussed. This will stimulate the use of natural resources and thereby the development of renewable electric energy systems based on sustainable technologies with low environmental impacts and carbon footprints.

关键词: cellulose     paper electrodes     Li-ion batteries     high energy density    

Hollow-fiber gas penetration electrodes efficiently produce renewable synthetic fuels

《能源前沿(英文)》 2022年 第16卷 第5期   页码 700-705 doi: 10.1007/s11708-022-0842-8

A High-Resolution Measurement Method for Inner and Outer 3D Surface Profiles of Laser Fusion Targets

Weiqian Zhao,Zihao Liu,Lirong Qiu,

《工程(英文)》 doi: 10.1016/j.eng.2024.05.016

摘要: The high-resolution and nondestructive co-reference measurement of the inner and outer three-dimensional (3D) surface profiles of laser fusion targets is difficult to achieve. In this study, we propose a laser differential confocal (LDC)–atomic force probe (AFP) method to measure the inner and outer 3D surface profiles of laser fusion targets at a high resolution. This method utilizes the LDC method to detect the deflection of the AFP and exploits the high spatial resolution of the AFP to enhance the spatial resolution of the outer profile measurement. Nondestructive and co-reference measurements of the inner profile of a target were achieved using the tomographic characteristics of the LDC method. Furthermore, by combining multiple repositionings of the target using a horizontal slewing shaft, the inner and outer 3D surface profiles of the target were obtained, along with a power spectrum assessment of the entire surface. The experimental results revealed that the respective axial and lateral resolutions of the outer profile measurement were 0.5 and 1.3 nm, while the respective axial and lateral resolutions of the inner profile measurement were 2.0 nm and approximately 400.0 nm. The repeatabilities of the root-mean-square deviation measurements for the outer and inner profiles of the target were 2.6 and 2.4 nm, respectively. We believe our study provides a promising method for the high-resolution and nondestructive co-reference measurement of the inner and outer 3D profiles of laser fusion targets.

关键词: Laser fusion targets     LDC–AFP     High-resolution     Nondestructive     Co-reference    

Ultrafast-laser-treated poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) electrodes with enhanced

《化学科学与工程前沿(英文)》 2023年 第17卷 第2期   页码 206-216 doi: 10.1007/s11705-022-2203-x

摘要: Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is an important organic electrode for solution-processed low-cost electronic devices. However, it requires doping and post-solvent treatment to improve its conductivity, and the chemicals used for such treatments may affect the device fabrication process. In this study, we developed a novel route for exploiting ultrafast lasers (femtosecond and picosecond laser) to simultaneously enhance the conductivity and transparency of PEDOT:PSS films and fabricate patterned solution-processed electrodes for electronic devices. The conductivity of the PEDOT:PSS film was improved by three orders of magnitude (from 3.1 to 1024 S·cm–1), and high transparency of up to 88.5% (average visible transmittance, AVT) was achieved. Raman and depth-profiling X-ray photoelectron spectroscopy revealed that the oxidation level of PEDOT was enhanced, thereby increasing the carrier concentration. The surface PSS content also decreased, which is beneficial to the carrier mobility, resulting in significantly enhanced electrical conductivity. Further, we fabricated semitransparent perovskite solar cells using the as-made PEDOT:PSS as the transparent top electrodes, and a power conversion efficiency of 7.39% was achieved with 22.63% AVT. Thus, the proposed route for synthesizing conductive and transparent electrodes is promising for vacuum and doping-free electronics.

关键词: PEDOT:PSS     ultrafast laser     transparent electrode     ST-PSCs     patterning    

Efficient photoelectrochemical oxidation of rhodamine B on metal electrodes without photocatalyst or

Xuejiao Wang, Xiang Feng, Jing Shang

《环境科学与工程前沿(英文)》 2018年 第12卷 第6期 doi: 10.1007/s11783-018-1061-8

摘要:

•The efficient PEC degradation of RhB is realized using no photocatalyst.

•The efficient PEC degradation of RhB features the low salinity.

•The PEC degradation of RhB takes place on the anode and cathode simultaneously.

关键词: Energy relay structure     Energy saving     Photocatalyst-free and low-salinity degradation     Photoelectrochemical cell    

Performance of activated carbon coated graphite bipolar electrodes on capacitive deionization method

Hossein D. Atoufi, Hasti Hasheminejad, David J. Lampert

《环境科学与工程前沿(英文)》 2020年 第14卷 第6期 doi: 10.1007/s11783-020-1278-1

摘要: Abstract • Graphite bipolar electrodes act as an appropriate bed for the CDI process. • Activated carbon Coating improves the application of the electrodes. • CDI is an environmentally friendly method to apply for brackish water. • Initial concentration is the most important parameter in the CDI method. • CDI process in a batch-mode setup needs more development. This research investigates a capacitive deionization method for salinity reduction in a batch reactor as a new approach for desalination. Reductions of cost and energy compared with conventional desalination methods are the significant advantages of this approach. In this research, experiments were performed with a pair of graphite bipolar electrodes that were coated with a one-gram activated carbon solution. After completing preliminary tests, the impacts of four parameters on electrical conductivity reduction, including (1) the initial concentration of feed solution, (2) the duration of the tests, (3) the applied voltage, and (4) the pH of the solution, were examined. The results show that the maximum efficiency of electrical conductivity reduction in this laboratory-scale reactor is about 55%. Furthermore, the effects of the initial concentration of feed solution are more significant than the other parameters. Thus, using the capacitive deionization method for water desalination with low and moderate salt concentrations (i.e., brackish water) is proposed as an affordable method. Compared with conventional desalination methods, capacitive deionization is not only more efficient but also potentially more environmentally friendly.

关键词: Capacitive deionization (CDI)     Desalination     Electrical conductivity (EC)     Graphite bipolar electrode     Activated carbon coated (ACC)    

Electrospun porous carbon nanofibers derived from bio-based phenolic resins as free-standing electrodes

《化学科学与工程前沿(英文)》 2023年 第17卷 第5期   页码 504-515 doi: 10.1007/s11705-022-2260-1

摘要: Phenolic resins were employed to prepare electrospun porous carbon nanofibers with a high specific surface area as free-standing electrodes for high-performance supercapacitors. However, the sustainable development of conventional phenolic resin has been challenged by petroleum-based phenol and formaldehyde. Lignin with abundant phenolic hydroxyl groups is the main non-petroleum resource that can provide renewable aromatic compounds. Hence, lignin, phenol, and furfural were used to synthesize bio-based phenolic resins, and the activated carbon nanofibers were obtained by electrospinning and one-step carbonization activation. Fourier transform infrared and differential scanning calorimetry were used to characterize the structural and thermal properties. The results reveal that the apparent activation energy of the curing reaction is 89.21 kJ·mol–1 and the reaction order is 0.78. The activated carbon nanofibers show a uniform diameter, specific surface area up to 1100 m2·g–1, and total pore volume of 0.62 cm3·g–1. The electrode demonstrates a specific capacitance of 238 F·g–1 (0.1 A·g–1) and good rate capability. The symmetric supercapacitor yields a high energy density of 26.39 W·h·kg–1 at 100 W·kg–1 and an excellent capacitance retention of 98% after 10000 cycles. These results confirm that the activated carbon nanofiber from bio-based phenolic resins can be applied as electrode material for high-performance supercapacitors.

关键词: lignin     bio-based phenolic resins     electrospinning     activated carbon nanofibers     supercapacitors    

Self-supported copper-based gas diffusion electrodes improve the local CO concentration for efficient

《化学科学与工程前沿(英文)》 2024年 第18卷 第3期 doi: 10.1007/s11705-024-2392-6

摘要: Electrochemical CO2 reduction is a sustainable approach in green chemistry that enables the production of valuable chemicals and fuels while mitigating the environmental impact associated with CO2 emissions. Despite its several advantages, this technology suffers from an intrinsically low CO2 solubility in aqueous solutions, resulting in a lower local CO2 concentration near the electrode, which yields lower current densities and restricts product selectivity. Gas diffusion electrodes (GDEs), particularly those with tubular architectures, can solve these issues by increasing the local CO2 concentration and triple-phase interface, providing abundant electroactive sites to achieve superior reaction rates. In this study, robust and self-supported Cu flow-through gas diffusion electrodes (FTGDEs) were synthesized for efficient formate production via electrochemical CO2 reduction. They were further compared with traditional Cu electrodes, and it was found that higher local CO2 concentration due to improved mass transfer, the abundant surface area available for the generation of the triple-phase interface, and the porous structure of Cu FTGDEs enabled high formate Faradaic efficiency (76%) and current density (265 mA·cm–2) at –0.9 V vs. reversible hydrogen electrode (RHE) in 0.5 mol·L–1 KHCO3. The combined phase inversion and calcination process of the Cu FTGDEs helped maintain a stable operation for several hours. The catalytic performance of the Cu FTGDEs was further investigated in a non-gas diffusion configuration to demonstrate the impact of local gas concentration on the activity and performance of electrochemical CO2 reduction. This study demonstrates the potential of flow-through gas-diffusion electrodes to enhance reaction kinetics for the highly efficient and selective reduction of CO2, offering promising applications in sustainable electrochemical processes.

关键词: CO2 electroreduction     flow-through delivery     hollow fiber structure     local concentration     formate    

phosphonate-derived cobalt/nickel phosphide@N-doped carbon hybrids as efficient bifunctional oxygen electrodes

《化学科学与工程前沿(英文)》 2022年 第16卷 第9期   页码 1367-1376 doi: 10.1007/s11705-022-2153-3

摘要: The exploration of efficient bifunctional electrocatalysts for oxygen reduction reaction and oxygen evolution reaction is pivotal for the development of rechargeable metal–air batteries. Transition metal phosphides are emerging as promising catalyst candidates because of their superb activity and low cost. Herein, a novel metal phosphonate-derived cobalt/nickel phosphide@N-doped carbon hybrid was developed by a carbothermal reduction of cobalt/nickel phosphonate hybrids with different Co/Ni molar ratios. The metal phosphonate derivation method achieved an intimately coupled interaction between metal phosphides and a heteroatom-doped carbon substrate. The resultant Co2P/Ni3P@NC-0.2 enables an impressive electrocatalytic oxygen reduction reaction activity, comparable with those of state-of-the-art Pt/C catalysts in terms of onset potential (0.88 V), 4e selectivity, methanol tolerance, and long-term durability. Moreover, remarkable oxygen evolution reaction activity was also observed in alkaline conditions. The high activity is ascribed to the N-doping, abundant accessible catalytic active sites, and the synergistic effect among the components. This work not only describes a high-efficiency electrocatalyst for both oxygen reduction reaction and oxygen evolution reaction, but also highlights the application of metal phosphonate hybrids in fabricating metal phosphides with tunable structures, which is of great significance in the energy conversion field.

关键词: metal phosphonate     cobalt/nickel phosphide     N-doped carbon     oxygen electrochemistry     Zn−air battery    

Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes

Yan Zhang, Jian Xiao, Qiying Lv, Shuai Wang

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 494-508 doi: 10.1007/s11705-018-1732-9

摘要:

Electrolytic water splitting has been considered as a promising technology to produce highly pure H2 by using electrical power produced from wind, solar energy or other fitful renewable energy resources. Combining novel self-supporting structure and high-performance transition metal phosphides (TMP) shows substantial promise for practical application in water splitting. In this review, we try to provide a comprehensive analysis of the design and fabrication of various self-supported TMP electrodes for hydrogen evolution reaction, which are divided into three categories: catalysts growing on carbon-based substrates, catalysts growing on metal-based substrates and freestanding catalyst films. The material structures together with catalytic performances of self-supported electrodes are presented and discussed. We also show the specific strategies to further improve the catalytic performance by elemental doping or incorporation of nanocarbons. The simple and one-step methods to fabricate self-supported TMP electrodes are also highlighted. Finally, the challenges and perspectives for self-supported TMP electrodes in water splitting application are briefly discussed.

关键词: transition metal phosphide     self-supported electrode     electrocatalysis     hydrogen evolution reaction    

Cross-stacked super-aligned carbon nanotube/activated carbon composite electrodes for efficient water

Min Li, Shuai Liang, Yang Wu, Meiyue Yang, Xia Huang

《环境科学与工程前沿(英文)》 2020年 第14卷 第6期 doi: 10.1007/s11783-020-1286-1

摘要: Abstract • A high-performance electrode was prepared with super-aligned carbon nanotubes. • SACNT/AC electrode achieved a ~100% increase in desalination capacity and rate. • SACNT/AC electrode achieved a ~26% increase in charge efficiency. • CUF process with SACNT/AC achieved an up to 2.43-fold fouling reduction. • SACNT/AC imparts overall improved water purification efficiency. The practical application of the capacitive deionization (CDI) enhanced ultrafiltration (CUF) technology is hampered due to low performance of electrodes. The current study demonstrated a novel super-aligned carbon nanotube (SACNT)/activated carbon (AC) composite electrode, which was prepared through coating AC on a cross-stacked SACNT film. The desalination capability and water purification performance of the prepared electrode were systematically investigated at different applied voltages (0.8–1.2 V) with a CDI system and a CUF system, respectively. In the CDI tests, as compared with the control AC electrode, the SACNT/AC electrode achieved an approximately 100% increase in both maximum salt adsorption capacity and average salt adsorption rate under all the applied voltage conditions, demonstrating a superior desalination capability. Meanwhile, a conspicuous increase by an average of ~26% in charge efficiency was also achieved at all the voltages. In the CUF tests, as compared with the control run at 0 V, the treatment runs at 0.8, 1.0, and 1.2 V achieved a 2.40-fold, 2.08-fold, and 2.43-fold reduction in membrane fouling (calculated according to the final transmembrane pressure (TMP) data at the end of every purification stage), respectively. The average TMP increasing rates at 0.8, 1.0, and 1.2 V were also roughly two times smaller than that at 0 V, indicating a dramatical reduction of membrane fouling. The SACNT/AC electrode also maintained its superior desalination capability in the CUF process, resulting in an overall improved water purification efficiency.

关键词: Carbon nanotube     Super aligned     Conductive membrane     Capacitive deionization     Ultrafiltration     Desalination    

非平面电极双稳态电润湿显示器件研究 Regular Papers-Research Articles

Han ZHANG, Xue-lei LIANG

《信息与电子工程前沿(英文)》 2019年 第20卷 第9期   页码 1289-1295 doi: 10.1631/FITEE.1800167

摘要: 双稳态电润湿显示器仅在状态切换时耗能,在状态稳定时无耗能,是一种非常有潜力的低能耗电子纸显示技术。本文设计和实现了通过常规光刻工艺制备一种非平面电极结构的双稳态电润湿器件。该器件不仅具备视频响应速度,而且有潜力实现可控的像素灰阶。与现有平面电极结构双稳态电润湿器件相比,该新型电极结构可实现更低驱动电压和更高对比度。

关键词: 双稳态电润湿;非平面;控制电极;低电压;高对比度    

标题 作者 时间 类型 操作

Dielectric barrier micro-plasma reactor with segmented outer electrode for decomposition of pure CO

Baowei Wang, Xiaoxi Wang, Bo Zhang

期刊论文

behavior of stiffened joints between concrete-filled steel tubular column and steel beam with narrow outer

Chunyan QUAN,Wei WANG,Jian ZHOU,Rong WANG

期刊论文

Cutting performance of surgical electrodes by constructing bionic microstriped structures

期刊论文

Review on cellulose paper-based electrodes for sustainable batteries with high energy densities

期刊论文

Hollow-fiber gas penetration electrodes efficiently produce renewable synthetic fuels

期刊论文

A High-Resolution Measurement Method for Inner and Outer 3D Surface Profiles of Laser Fusion Targets

Weiqian Zhao,Zihao Liu,Lirong Qiu,

期刊论文

Ultrafast-laser-treated poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) electrodes with enhanced

期刊论文

Efficient photoelectrochemical oxidation of rhodamine B on metal electrodes without photocatalyst or

Xuejiao Wang, Xiang Feng, Jing Shang

期刊论文

Performance of activated carbon coated graphite bipolar electrodes on capacitive deionization method

Hossein D. Atoufi, Hasti Hasheminejad, David J. Lampert

期刊论文

Electrospun porous carbon nanofibers derived from bio-based phenolic resins as free-standing electrodes

期刊论文

Self-supported copper-based gas diffusion electrodes improve the local CO concentration for efficient

期刊论文

phosphonate-derived cobalt/nickel phosphide@N-doped carbon hybrids as efficient bifunctional oxygen electrodes

期刊论文

Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes

Yan Zhang, Jian Xiao, Qiying Lv, Shuai Wang

期刊论文

Cross-stacked super-aligned carbon nanotube/activated carbon composite electrodes for efficient water

Min Li, Shuai Liang, Yang Wu, Meiyue Yang, Xia Huang

期刊论文

非平面电极双稳态电润湿显示器件研究

Han ZHANG, Xue-lei LIANG

期刊论文