资源类型

期刊论文 584

年份

2024 24

2023 55

2022 64

2021 49

2020 60

2019 31

2018 22

2017 25

2016 27

2015 24

2014 22

2013 19

2012 31

2011 23

2010 17

2009 18

2008 20

2007 20

2006 5

2005 6

展开 ︾

关键词

力学性能 8

严格雪崩准则 2

人工神经网络 2

动力特性 2

土壤 2

基质吸力 2

微波遥感 2

膨胀土 2

重金属 2

风化砂 2

Al2O3-MxOy 1

CFRP索斜拉桥 1

Chrestenson谱 1

DNA结构 1

DX桩 1

FRP 聚合物 1

GDM过滤技术 1

HDPE 1

MXene纳米片 1

展开 ︾

检索范围:

排序: 展示方式:

LINKING CROP WATER PRODUCTIVITY TO SOIL PHYSICAL, CHEMICAL AND MICROBIAL PROPERTIES

《农业科学与工程前沿(英文)》 2021年 第8卷 第4期   页码 545-558 doi: 10.15302/J-FASE -2020349

摘要:

Agriculture uses a large proportion of global and regional water resources. Due to the rapid increase of population in the world, the increasing competition for water resources has led to an urgent need in increasing crop water productivity for agricultural sustainability. As the medium for crop growth, soils and their properties are important in affecting crop water productivity. This review examines the effects of soil physical, chemical, and microbial properties on crop water productivity and the quantitative relationships between them. A comprehensive view of these relationships may provide important insights for soil and water management in arable land for agriculture in the future.

 

关键词: crop water productivity     crop yield     soil chemical properties     soil microbial properties     soil physical properties     water consumption    

Effect of earth reinforcement, soil properties and wall properties on bridge MSE walls

《结构与土木工程前沿(英文)》 2021年 第15卷 第5期   页码 1209-1221 doi: 10.1007/s11709-021-0764-2

摘要: Mechanically stabilized earth (MSE) retaining walls are popular for highway bridge structures. They have precast concrete panels attached to earth reinforcement. The panels are designed to have some lateral movement. However, in some cases, excessive movement and even complete dislocation of the panels have been observed. In this study, 3-D numerical modeling involving an existing MSE wall was undertaken to investigate various wall parameters. The effects of pore pressure, soil cohesion, earth reinforcement type and length, breakage/slippage of reinforcement and concrete strength, were examined. Results showed that the wall movement is affected by soil pore pressure and reinforcement integrity and length, and unaffected by concrete strength. Soil cohesion has a minor effect, while the movement increased by 13–20 mm for flexible geogrid reinforced walls compared with the steel grid walls. The steel grid stresses were below yielding, while the geogrid experienced significant stresses without rupture. Geogrid reinforcement may be used taking account of slippage resistance and wall movement. If steel grid is used, non-cohesive soil is recommended to minimize corrosion. Proper soil drainage is important for control of pore pressure.

关键词: mechanically stabilized earth walls     precast concrete panels     backfill soil     finite element modeling     earth reinforcement    

Influence of the sewage irrigation on the agricultural soil properties in Tongliao City, China

Hong YAO, Shichao ZHANG, Xiaobo XUE, Jie YANG, Kelin HU, Xiaohua YU

《环境科学与工程前沿(英文)》 2013年 第7卷 第2期   页码 273-280 doi: 10.1007/s11783-013-0497-0

摘要: Increasing shortages of fresh water has led to greater use of treated wastewater for irrigation of crops. This study evaluates the spatial variability of soil properties after irrigation with wastewater and freshwater. Geostatistical techniques were used to identify the variability of soil properties at the different sites. A set of physical and chemical soil properties were measured including total nitrogen (TN), total phosphorus (TP), organic matter (OM) and soil moisture. The TN concentration levels varied from 567 to 700 mg·kg , while OC levels ranged from 7.3 to 16.3 mg·kg in wastewater-irrigated zones. The concentration levels of TP were between 371.53 and 402.88 mg·kg for the wastewater-irrigated sites. Wastewater irrigation resulted in higher TN, TP and OM concentrations by 18.4%, 8% and 25%, respectively. The highest TN and OM occurred along the wastewater trunk. It was also observed that nitrogen concentrations correlate with the soil's organic matter. The increase of salinity may be associated with the increase of pH, which might suggest that a reduction of pH will be beneficial for plant growth due to the decrease of salinity. The average concentrations of nitrogen in topsoil were higher than those in subsurface soils in irrigated areas. Such differences of the N profile might be due to variations in organic matter content and microbial populations. Consistent with TN and OM, soil C:N decreased significantly with an increase of depth. This phenomenon possibly reflects a greater degree of breakdown and the older age of humus stored in the deeper soil layers. The analysis of pH levels at different depths for the three sites showed that pH values for wastewater irrigation were slightly lower than the controlled sites at the same depths.

关键词: spatial variability     soil properties     groundwater and sewage irrigation    

LINKING CROP WATER PRODUCTIVITY TO SOIL PHYSICAL, CHEMICAL AND MICROBIAL PROPERTIES

Di WU, Allan A. ANDALES, Hui YANG, Qing SUN, Shichao CHEN, Xiuwei GUO, Donghao LI, Taisheng DU

《农业科学与工程前沿(英文)》 2021年 第8卷 第4期   页码 545-558 doi: 10.15302/J-FASE-2020349

摘要: Agriculture uses a large proportion of global and regional water resources. Due to the rapid increase of population in the world, the increasing competition for water resources has led to an urgent need in increasing crop water productivity for agricultural sustainability. As the medium for crop growth, soils and their properties are important in affecting crop water productivity. This review examines the effects of soil physical, chemical, and microbial properties on crop water productivity and the quantitative relationships between them. A comprehensive view of these relationships may provide important insights for soil and water management in arable land for agriculture in the future.

关键词: crop water productivity     crop yield     soil chemical properties     soil microbial properties     soil physical properties     water consumption    

Effect of land-use management systems on coupled physical and mechanical, chemical and biological soilprocesses: how can we maintain and predict soil properties and functions?

Rainer HORN, Winfried E. H. BLUM

《农业科学与工程前沿(英文)》 2020年 第7卷 第3期   页码 243-245 doi: 10.15302/J-FASE-2020334

Effects of different types of biochar on the properties and reactivity of nano zero-valent iron in soil

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期 doi: 10.1007/s11783-021-1388-4

摘要:

• Biochar enhanced the mobility and stability of zero-valent iron nanoparticles.

关键词: Nano zero-valent iron     Biochar     BDE209     Transport     Soil    

Using a systems modeling approach to improve soil management and soil quality

Enli WANG, Di HE, Zhigan ZHAO, Chris J. SMITH, Ben C. T. MACDONALD

《农业科学与工程前沿(英文)》 2020年 第7卷 第3期   页码 289-295 doi: 10.15302/J-FASE-2020337

摘要:

Soils provide the structural support, water and nutrients for plants in nature and are considered to be the foundation of agriculture production. Improving soil quality and soil health has been advocated as the goal of soil management toward sustainable agricultural intensification. There have been renewed efforts to define and quantify soil quality and soil health but establishing a consensus on the key indicators remains difficult. It is argued that such difficulties are due to the former ways of thinking in soil management which largely focus on soil properties alone. A systems approach that treats soils as a key component of agricultural production systems is promoted. It is argued that soil quality must be quantified in terms of crop productivity and impacts on ecosystems services that are also strongly driven by climate and management interventions. A systems modeling approach captures the interactions among climate, soil, crops and management, and their impacts on system performance, thus helping to quantify the value and quality of soils. Here, three examples are presented to demonstrate this. In this systems context, soil management must be an integral part of systems management practices that also include managing the crops and cropping systems under specific climatic conditions, with cognizance of future climate change.

关键词: APSIM     available water capacity     nitrogen management     soil functional properties     soil health     soil-plant modeling    

Self-propelled automatic chassis of Lunokhod-1: History of creation in episodes

Mikhail MALENKOV

《机械工程前沿(英文)》 2016年 第11卷 第1期   页码 60-86 doi: 10.1007/s11465-016-0370-5

摘要:

This report reviews the most important episodes in the history of designing the self-propelled automatic chassis of the first mobile extraterrestrial vehicle in the world, Lunokhod-1. The review considers the issues in designing moon rovers, their essential features, and the particular construction properties of their systems, mechanisms, units, and assemblies. It presents the results of exploiting the chassis of Lunokhod-1 and Lunokhod-2. Analysis of the approaches utilized and engineering solutions reveals their value as well as the consequences of certain defects.

关键词: moon rover     self-propelled chassis     propulsion     wheel     suspension     soil properties     cross-country ability    

Mitigation strategies for soil acidification based on optimal nitrogen management REVIEW

《农业科学与工程前沿(英文)》 2024年 第11卷 第2期   页码 229-242 doi: 10.15302/J-FASE-2024562

摘要:

Soil acidification is a serious constraint to food production worldwide. This review explores its primary causes, with a focus on the role of nitrogen fertilizer, and suggests mitigation strategies based on optimal N management. Natural acidification is determined by the leaching of weak acid mainly caused by climate and soil conditions, whereas the use of ammonium-based fertilizers, nitrate leaching and removal of base cations (BCs) by crop harvesting mostly accounts for anthropogenic acidification. In addition, low soil acid buffering capacity, mainly determined by soil parent materials and soil organic matter content, also accelerates acidification. This study proposes targeted mitigation strategies for different stages of soil acidification, which include monitoring soil carbonate content and pH of soils with pH > 6.5 (e.g., calcareous soil), use of alkaline amendments for strongly acidic soils (pH < 5.5) with aluminum toxicity risk to pH between 5.5 and 6.5, and decreasing acidification rates and supplementing BCs to maintain this optimal pH range, especially for soils with low acid buffering capacity. Effective mitigation involves optimizing the rate and form of N fertilizers used, regulating N transformation processes, and establishing an integrated soil–crop management system that balances acid production and soil buffering capacity.

关键词: Soil acidification     nutrient management     nitrogen     soil buffering capacity    

Assessment of glass fiber-reinforced polyester pipe powder in soil improvement

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 742-753 doi: 10.1007/s11709-021-0732-x

摘要: This study investigates the use of glass fiber-reinforced polyester (GRP) pipe powder (PP) for improving the bearing capacity of sandy soils. After a series of direct share tests, the optimum PP addition for improving the bearing capacity of soils was found to be 12%. Then, using the optimum PP addition, the bearing capacity of the soil was estimated through a series of loading tests on a shallow foundation model placed in a test box. The bearing capacity of sandy soil was improved by up to 30.7%. The ratio of the depth of the PP-reinforced soil to the diameter of the foundation model (H/D) of 1.25 could sufficiently strengthen sandy soil when the optimum PP ratio was used. Microstructural analyses showed that the increase in the bearing capacity can be attributed to the chopped fibers in the PP and their multiaxial distribution in the soil. Besides improving the engineering properties of soils, using PP as an additive in soils would reduce the accumulation of the industrial waste, thus providing a twofold benefit.

关键词: shallow foundation     sandy soil     bearing capacity     soil improvement     pipe powder    

SOIL CARBON CHECK: A TOOL FOR MONITORING AND GUIDING SOIL CARBON SEQUESTRATION IN FARMER FIELDS

《农业科学与工程前沿(英文)》 2023年 第10卷 第2期   页码 248-261 doi: 10.15302/J-FASE-2023499

摘要:

● Establishment of a rapid tool for monitoring soil carbon sequestration in farmer fields.

关键词: 4 per 1000 initiative     carbon sequestration     climate action     farmer fields     SDG13     soil organic carbon     soil testing    

Electromagnetic induction mapping at varied soil moisture reveals field-scale soil textural patterns

Hiruy ABDU, David A. ROBINSON, Janis BOETTINGER, Scott B. JONES

《农业科学与工程前沿(英文)》 2017年 第4卷 第2期   页码 135-145 doi: 10.15302/J-FASE-2017143

摘要: Knowledge of the spatial distribution of soil textural properties is important for determining soil moisture storage and soil hydraulic transport properties. Capturing field heterogeneity without exhaustive sampling and costly sample analysis is difficult. Our objective was to employ electromagnetic induction (EMI) mapping in low apparent electrical conductivity (EC ) soils at varying soil water contents to capture time invariant properties such as soil texture. Georeferenced EC measurements were taken using a ground conductivity meter on six different days where volumetric water content ( ) varied from 0.11 to 0.23. The 50 m × 50 m field included a subsurface gravelly patch in an otherwise homogeneous silt-loam alluvial soil. Ordinary block kriging predicted EC at unsampled areas to produce 1-m resolution maps. Temporal stability analysis was used to divide the field into three distinct EC regions. Subsequent ground-truthing confirmed the lowest conductivity region correlated with coarse textured soil parent materials associated with a former high-energy alluvial depositional area. Combining maps using temporal stability analysis gives the clearest image of the textural difference. These maps could be informative for modeling, experimental design, sensor placement and targeted zone management strategies in soil science, ecology, hydrology, and agricultural applications.

关键词: soil electrical conductivity     soil texture mapping     temporal stability analysis    

Soil-water interaction in unsaturated expansive soil slopes

ZHAN Liangtong

《结构与土木工程前沿(英文)》 2007年 第1卷 第2期   页码 198-204 doi: 10.1007/s11709-007-0023-1

摘要: The intensive soil-water interaction in unsaturated expansive soil is one of the major reasons for slope failures. In this paper, the soil-water interaction is investigated with the full-scale field inspection of rainwater infiltration and comprehensive experiments, including wetting-induced softening tests, swelling, and shrinkage tests. It is demonstrated that the soil-water interaction induced by seasonal wetting-drying cycles is very complex, and it involves coupled effects among the changes in water content, suction, stress, deformation and shear strength. In addition, the abundant cracks in the expansive soil play an important role in the soil-water interaction. The cracks disintegrate the soil mass, and more importantly, provide easy pathways for rainfall infiltration. Infiltration of rainwater not only results in wetting-induced softening of the shallow unsaturated soil layers, but also leads to the increase of horizontal stress. The increase of horizontal stress may lead to a local passive failure. The seasonal wetting-drying cycles tend to result in a down-slope creeping of the shallow soil layer, which leads to progressive slope failure.

关键词: strength     intensive soil-water     comprehensive     Infiltration     wetting-induced softening    

Paving the way toward soil safety and health: current status, challenges, and potential solutions

《环境科学与工程前沿(英文)》 2024年 第18卷 第6期 doi: 10.1007/s11783-024-1834-1

摘要:

● The safety and health of soil face global threats from widespread contamination.

关键词: Soil safety and health     Source emission reduction     Process monitoring and simulation     Green remediation technology     Soil health management    

Effect of different high viscosity modifiers on rheological properties of high viscosity asphalt

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1390-1399 doi: 10.1007/s11709-021-0775-z

摘要: High viscosity asphalt (HVA) has been a great success as a drainage pavement material. However, the larger porosity of drainage asphalt mixtures weakens the cohesion and adhesion and leads to premature rutting, water damage, spalling and cracking. The purpose of this study was to investigate the rheological properties of HVA prepared using different high viscosity modifiers through conventional tests, Brookfield viscosity tests, dynamic shear rheometer tests and bending beam rheometer tests. The conventional performance results demonstrated SBS + rubber asphalt (SRA-1/2) exhibited excellent elastic recovery and low-temperature flexibility. The 60°C dynamic viscosity results indicated TPS + rubber asphalt (TRA) had the excellent adhesion. The rotational viscosity results and rheological results indicated that SRA-2 not only exhibited excellent temperature stability and workability, as well as excellent resistance to deformation and rutting resistance, but also exhibited excellent low-temperature cracking resistance and relaxation performance. Based on rheological results, the PG classification of HVA was 16% rubber + asphalt for PG76-22, 20% rubber + asphalt for PG88-22, TRA and SRA-1/2 for PG88-28. From comprehensive evaluation of the viscosity, temperature stability and sensitivity, as well as high/low temperature performance of HVA, SRA-2 was found to be more suited to the requirements of drainage asphalt pavement materials.

关键词: high viscosity asphalt     rheological properties     rubber     modifier     viscosity    

标题 作者 时间 类型 操作

LINKING CROP WATER PRODUCTIVITY TO SOIL PHYSICAL, CHEMICAL AND MICROBIAL PROPERTIES

期刊论文

Effect of earth reinforcement, soil properties and wall properties on bridge MSE walls

期刊论文

Influence of the sewage irrigation on the agricultural soil properties in Tongliao City, China

Hong YAO, Shichao ZHANG, Xiaobo XUE, Jie YANG, Kelin HU, Xiaohua YU

期刊论文

LINKING CROP WATER PRODUCTIVITY TO SOIL PHYSICAL, CHEMICAL AND MICROBIAL PROPERTIES

Di WU, Allan A. ANDALES, Hui YANG, Qing SUN, Shichao CHEN, Xiuwei GUO, Donghao LI, Taisheng DU

期刊论文

Effect of land-use management systems on coupled physical and mechanical, chemical and biological soilprocesses: how can we maintain and predict soil properties and functions?

Rainer HORN, Winfried E. H. BLUM

期刊论文

Effects of different types of biochar on the properties and reactivity of nano zero-valent iron in soil

期刊论文

Using a systems modeling approach to improve soil management and soil quality

Enli WANG, Di HE, Zhigan ZHAO, Chris J. SMITH, Ben C. T. MACDONALD

期刊论文

Self-propelled automatic chassis of Lunokhod-1: History of creation in episodes

Mikhail MALENKOV

期刊论文

Mitigation strategies for soil acidification based on optimal nitrogen management

期刊论文

Assessment of glass fiber-reinforced polyester pipe powder in soil improvement

期刊论文

SOIL CARBON CHECK: A TOOL FOR MONITORING AND GUIDING SOIL CARBON SEQUESTRATION IN FARMER FIELDS

期刊论文

Electromagnetic induction mapping at varied soil moisture reveals field-scale soil textural patterns

Hiruy ABDU, David A. ROBINSON, Janis BOETTINGER, Scott B. JONES

期刊论文

Soil-water interaction in unsaturated expansive soil slopes

ZHAN Liangtong

期刊论文

Paving the way toward soil safety and health: current status, challenges, and potential solutions

期刊论文

Effect of different high viscosity modifiers on rheological properties of high viscosity asphalt

期刊论文