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1. Introduction

Given the emergence of intelligent manufacturing capabilities, we
may wonder whether design for manufacturing (DFM) practices
should be reconceptualized to take advantage of these capabilities.
And, if so, what should design for intelligent manufacturing (DFIM)
be? The integration of cloud computing, data analytics, artificial
intelligence (AI), and the Internet of Things (IoT) with advanced
manufacturing technologies has enabled the emergence of what
has been called new-generation intelligent manufacturing [1]. Such
new-generation intelligent manufacturing capabilities will enable
transformational new products and services with unprecedented
levels of quality, responsiveness, and efficiency.

At the same time, products are becoming more intelligent.
Smartphones, self-driving cars, smart appliances for the home,
and many other products have revolutionized customer expecta-
tions regarding product functionality and interactivity. A smart-
phone product is not simply the physical device itself; rather, it
is a complex combination of the device, user interaction languages,
a communications infrastructure, and a computational infrastruc-
ture. Furthermore, the customer does not simply use the physical
device for its physically enabled functionalities; rather, the cus-
tomer utilizes services that are enabled by the device and by the
infrastructures supporting it.

The development of new-generation intelligent manufacturing
systems (NGIMSs) goes hand-in-hand with the development of
transformational products. Both leverage new technologies for
computation and communications. Such products are enabled by
new-generation intelligent manufacturing, as well as by increasing
demand for manufacturing capabilities, which spurs technological
advances. These products become embedded with the services
expected by customers. As a result, product design can no longer
be restricted to the design of a physical device. Instead, design
must encompass the device, the services enabled by the device,
and the infrastructures that support those services. The purpose
of this paper is thus to explore the new paradigm of DFIM that
encompasses the design of the product–service–system (PSS) and
the design of the intelligent manufacturing infrastructure to sup-
port it.

Traditionally, DFM and design for assembly (DFA) have focused
on understanding manufacturing process constraints and how to
design for process capabilities and around those constraints [2].
In contrast, design for additive manufacturing (DFAM) expands
upon DFM/DFA methods to focus on how to take advantage of
the unique capabilities of additive manufacturing (AM) [3]. That
is, designers are encouraged to explore new design concepts
creatively in order to design products that cannot be manufactured
economically by means of conventional processes. DFIM fits into
this overall design for ‘‘X’’ context in that it is more similar to
DFAM than to DFM/DFA, but represents a significant expansion
in scope. In DFIM, designers can explore new services and business
opportunities, as well as new physical devices. However, they
should consider the limitations of user interfaces, communication
and computational infrastructures, and manufacturing processes
during the design process, in a manner consistent with traditional
DFM/DFA practices.

This paper presents a complete description of the new-genera-
tion intelligent manufacturing context for this discussion, and then
describes the characteristics of the new generation of smart, trans-
formational products. An introduction to PSS design provides
important methodology, which is covered next. A framework for
DFIM is offered that connects all the dots together into a coherent
whole to conclude the paper.

2. Intelligent manufacturing context

Much has been written about intelligent manufacturing sys-
tems over the past 20 years and more. The incredible growth in
computing capacity and capabilities, combined with networking
and AI advances, warrants a modern consideration of manufactur-
ing technologies in light of the convergence of communications,
computation, and AI technologies. Zhou et al. [1] offered an impor-
tant treatise on intelligent manufacturing and its evolution over
time. They identified three main phases of development: digital
manufacturing, digital-networked manufacturing, and new-gener-
ation intelligent manufacturing.

The widespread adoption of computers heralded a new era of
manufacturing that saw the development of numerical control
(NC) and computer-numerical control (CNC), which was the advent
of digital manufacturing. When computer networks and the Inter-
net became prevalent, a second phase emerged in the form of
digital-networked manufacturing, where machines, work cells,
factory floors, and even enterprises and supply chains could be
integrated. The concept of cyber–physical systems emerged, with
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the cyber system serving as an intermediary between the human
and the machine tool. Over time, the cyber system took on more
and more tasks, thereby providing a level of automation to free
human operators from much of the detailed manufacturing work.

The third phase, that of NGIMS, leverages the rapid develop-
ment of AI and machine learning technologies to add an element
of intelligence and supervision to the cyber system intermediary.
Furthermore, we are starting to see machine learning technologies
being applied to enable NGIMS to learn and adapt over time in
order to increase their automation capabilities. Zhou et al. [1] illus-
trated NGIMS as shown in Fig. 1. The cyber system depends on
extensive sensors on the machines and factory floor to obtain a
real-time (or near real-time) view of the manufacturing system.
Using this data stream, NGIMS can analyze many aspects of
operations, identify and diagnose problems, make some decisions,
and exert a level of control over the system without burdening
human operators and managers with mundane issues. By
integrating machine learning technologies, it is expected that
NGIMS can learn over time to improve their performance and, per-
haps, take on additional roles and responsibilities.

As is well known, the term ‘‘Industry 4.0” has been applied to
this emerging class of NGIMS and the enterprise practices enabled
by NGIMS. It is important to understand that future manufacturing
systems will comprise hybrid systems of human and robotic
operators; additive, subtractive, and forming processes; and cyber
and physical systems [4]. An important constraint to consider is
the scalability of physical (non-cyber) technologies and systems,
since computation and communication systems seem readily
scalable.

What is important from the perspective of DFIM is the improv-
ing capabilities of manufacturing systems, their reliability and
dependability, and the various developed technologies that can
be leveraged for new intelligent products. The computing infras-
tructure required to support NGIMS is very significant, as is the
communications infrastructure. Central to the cyber system in
NGIMS is the concept of a digital twin—that is, the digital represen-
tation of a machine, work cell, production line, or factory. Data ana-
lytics and simulations can be executed on these digital twins to
extract knowledge about their state, predict maintenance needs,
anticipate significant operational issues, and so forth. These same
concepts and capabilities can be extended to intelligent products,
and impose significant issues and opportunities onto the design
of those products.
Fig. 1. Schematic of
3. New generation of products

It is likely that we will see a stream of new products that follow
the model of smartphones—that is, products that consist of the
combination of a physical asset with support from extensive on-
line systems of information and computational capabilities, in
order to provide a wide range of services. New-generation products
have the following characteristics:

� Adaptivity and responsivity to customers and operating
environments;

� Incorporation of embedded sensors that are connected to the
IoT;

� Presence of a digital twin of the product;
� Provision of automatic updates of software and cloud-based
functionality;

� Provision of predictive maintenance;
� Presence of a combination of the physical product and
services.

We are seeing the integrated development of the production-
based service industry and the service-oriented manufacturing
industry. The current trend is toward their convergence; compa-
nies will span a spectrum of product and service offerings. To
design such complex systems, methods from PSS design can be
leveraged.
4. Product–service–system design

The PSS concept was introduced in the late 1990s. One notable
definition is ‘‘innovation strategies where instead of focusing on
the value of selling physical products, one focuses on the value of
the utility of products and services throughout the product’s life
period” [5]. According to this definition, Maussang et al. [6] stated
that a PSS consists of physical objects and service units that relate
to each other, and that its main focus is to provide functionality to
the customer. They further explained that ‘‘the physical objects are
functional entities that carry out the elementary functions of the
system, [and] the service units are entities (mainly technical) that
will ensure the smooth functioning of the whole system.” Several
types of PSS have been defined. Of these, the use-oriented and
result-oriented categories are of particular interest since they focus
on the usage or service that is delivered, rather than strictly on the
product itself [7]. With the result-oriented type of PSS, customers
an NGIMS [1].



D.W. Rosen / Engineering 5 (2019) 609–614 611
buy services rather than the product itself, although the product is
typically delivered for the customer to use [8].

The prominent PSS design method was developed to provide
engineering designers with specifications related to the require-
ments of the system as a whole [6]. In order to develop a successful
PSS, the whole system must be considered, including the physical
objects and service units. The functional analysis approach [9],
which utilizes a graph of the interactors along with functional
block diagrams, can be used to bridge the gap between the system
approach and product development. The structured analysis and
design technique representation has also been applied to describe
a scenario based on a set of sequential activities. In this proposed
model, operational scenarios are applied to describe systems once
the physical objects and service units on the main level have been
identified. These tools, together with functioning scenarios, have
been proposed for use in designing consistent PSSs. Customer
needs are captured by the concept of receiver state parameters
[7] to characterize the change of state for a customer. This change
of state represents the value that is perceived by the customer. The
topic of designing PSSs is continued in Section 6, where a frame-
work for NGIMS design methods is discussed.
5. Framework for DFIM

This paper proposes a framework for DFIM as a PSS comprised
of an intelligent product and a back-end system, derived from
NGIMS. This framework is presented below with an overview fol-
lowed by an operational view. Some industry examples of PSSs
and digital twins are described briefly.
5.1. Overview

From a high-level perspective, we see customers interacting
with a PSS. That is, customers request services by interacting with
the physical product, and then consume those services. This pro-
cess is illustrated in Fig. 2. Within the PSS, the ‘‘services” portion
acts as an intangible intermediary between the customer and the
product. This portion of the PSS plays the role of the user interface
of the product, which allows the customer to request services and
then receive and consume them.

On the back-end of the PSS, embedded sensors in the product
communicate with a cloud-based product support environment.
A digital twin of the product is maintained by collecting sensor
data. Data analytics can be used to extract important usage data
and update the product state. Simulations of the product in its cur-
rent state can be performed to determine, for example, whether
maintenance is required or software updates are needed. To the
extent that the cloud-based environment contributes to the deliv-
ery of services, data analytics can help determine whether
upgrades to the service-providing software are needed.
Fig. 2. High-level schematic of th
The operation of a current PSS, such as a smartphone, is clearly
illustrated in the schematic in Fig. 2. If the customer wants to find a
new app, for example, they navigate through the phone’s user
interface to the App Store icon, start it, and then browse through
the apps that are retrieved. On the back-end of the PSS, an exten-
sive cloud-based system is required to collect, catalogue, archive,
validate, and retrieve apps. However, most current PSSs lack a
digital twin and services that are enabled by keeping track of the
product’s state. This situation is likely to change soon.
5.2. Operational view

A closer look at the operations of PSSs will provide greater
insight. Consider first the back-end cloud-based product support
environment. As mentioned earlier, the digital twin is a represen-
tation of the product that is updated based on data streaming into
the environment from sensors in the product. To update the
product state, perform data analytics, and perform product
simulations, the environment must have some control and
decision-making capabilities. Ideally, an intelligent environment
should have some executive oversight capabilities so that it can learn
over time to improve its performance and the PSS’s performance.

Similarly, the PSS should have the ability to learn about the cus-
tomer in order to provide better and more tailored services. In
other words, the PSS should have a digital twin of the customer
and use this representation as the basis for data analytics and
simulations.

Fig. 3 shows a more detailed view of the PSS and customer
interaction that includes operational elements within the ‘‘ser-
vices” portion and the cloud-based environment. Similar to the
operations and learning loops in Fig. 1, it is expected that future
intelligent PSSs will have digital twins of the product and of the
customer that are updated and analyzed. Control, analysis, and
decision-making activities are enabled by sensor data and, in turn,
enable the PSS to be responsive and adaptive to the customer and
to the product’s usage environment. Furthermore, the PSS will
have the ability to learn over time.

Of course, the customer also possesses control, analysis, and
decision-making abilities and learns over time about the product
and its services (this is not shown for reasons of clarity).
5.3. Examples

Several industry examples have been described of digital twin
technology being applied to intelligent PSSs. The General Electric
Company embeds sensors into its power-generation turbines—
and, more recently, into its aircraft engines—in order to collect
real-time data [10]. Combined with novel inspection robots, the
company can apply data analytics to predict maintenance needs
and make recommendations to customers. These data and predic-
tive models can be utilized when developing new products.
e interactions within a PSS.



Fig. 3. Schematic of an intelligent PSS at the operational level.
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Tesla constructs a digital twin for each car it sells [11]. Data col-
lected from the car are analyzed, issues are identified, and software
updates are prepared to address those issues. Providing software
updates over the Internet allows customers to continue to use their
cars without the need for a service visit, which significantly
improves the user experience. In the future, as Tesla and other
companies continue to develop autonomous vehicles, it is easy to
imagine that data on driving conditions (i.e., day/night and
weather), road properties (e.g., curves and up/down-hill), and dri-
ver actions, coupled with the occurrence of accidents, could be
aggregated and analyzed to improve the car model’s performance.
Furthermore, data from a single car could be analyzed to provide
fine-tuning of the vehicle’s actions. For the conventional human
driver mode, the maintenance of a digital twin of the driver, in
addition to one of the car, would enable further fine-tuning of
the car’s performance for difficult situations, based on typical dri-
ver reactions.

During new product development, a company that possesses
data from its vehicles being driven over millions of kilometers will
be able to simulate vehicle performance and driver responses to
evaluate the effects of proposed design changes. More generally,
the collection of product usage data and of data on users’ actions
and responses will enable the development of simulation models
that can inform design decisions, explore tradeoffs among design
alternatives, and predict levels of market acceptance.
6. Implications for DFIM

6.1. Underlying principles

Thus far, this paper has explained what an intelligent PSS is,
and that it shares technologies and characteristics with intelligent
manufacturing systems. But what about DFIM? As presented here,
DFIM has little in common with conventional DFM. DFIM has
more in common with DFAM, in that DFAM has two main objec-
tives: to explore new design spaces in order to take advantage of
the unique capabilities of AM, and to design the physical artifact
in a manner that satisfies manufacturing process constraints. As a
consequence, DFIM focuses much more on how to take advantage
of intelligent manufacturing system capabilities and technologies
than on manufacturing constraints. This view of DFIM as consist-
ing of two different aspects is illustrated in Fig. 4; the two aspects
are design for possibilities and opportunities, and design to
constraints.
Before exploring these aspects further in subsequent sections,
some underlying principles of DFIM are identified below:

� DFIM encompasses the design of future intelligent PSSs that
will be manufactured by intelligent manufacturing systems.

� The scope of the DFIM task is to design much more than a
physical product; it requires the design of services to be
offered through a physical device, in addition to the design
of the back-end product support environment and the design
of the physical product.

� Since developing the product support environment requires a
very significant investment, designers should plan to design
several product families and generations of products in order
to amortize the investment.
6.2. Design for possibilities and opportunities

This first aspect of DFIM focuses on the idea of designing for the
possibilities and opportunities that are afforded by new product
and service concepts and new technologies. This aspect is very
much about creatively searching for solutions for new and emerg-
ing customer needs.

The proposed foundation for DFIM is based on the methodology
of PSS design. Other design methodologies support PSS design
methods that are found in the engineering, business/marketing,
and industrial design literatures. Three specific methodologies
are highlighted here as being of great importance, but many others
are relevant as well.

According to the PSS literature [12], PSS design methods involve
the identification of ① customer-oriented functions to be provided
by the PSS, ② measures of customer value, ③ use scenarios,
④ function structure for the PSS, ⑤ product architecture, and
⑥ specifications of product elements. For our purposes, we should
adapt this generic method for intelligent PSSs that are supported
by significant product support environments.

The first three elements of the PSS design method highlight the
importance of identifying the services that customers want and
expect, and then developing metrics for measuring the value that
customers place on these services. The critical consideration is to
plan for a years-long PSS lifetime, by imagining what customers
will want over that lifetime, and imagining what new services
are enabled by a PSS system that learns over time about both the
products and the customers. User-centered design methods [13]
can certainly be applied, albeit with a twist: Designers should
consider how customer expectations and requirements, and the
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capabilities of the PSS system, will evolve over time. Taken to an
extreme, methods for involving customers in the design of their
own products are also being pursued [14].

When designers consider the last three PSS design elements,
they need to develop the PSS architecture and make important
decisions about how to allocate functions to the physical product,
the user interface, and the back-end environment. They also need
to consider the evolution of the communications and computa-
tional infrastructures over the PSS lifetime. For example, designing
for a 5G wireless network will be very different than designing for
4G. The allocation of functions to the PSS elements may also evolve
over time, and designers should consider this potential evolution
as well. These issues were highlighted in the Tesla example, as that
company can identify all opportunities for remotely improving
vehicle performance through software updates. How much vehicle
functionality should be accessible by the manufacturer? How
much should be customer-tunable? Is the communication
infrastructure capable of handling the burdens of data collection
and software upgrades? These and many other questions must
be addressed during the design process.

Design methodology literature includes an extensive body of
research on product family design, which is the idea of designing
a group of similar products with a range of functionalities,
capabilities, and/or sizes [15]. The product family will likely share
core technologies, features, or components. For example, cars are
designed as product families, with a range of sizes (small, medium,
large), styles (coupes, sedans, sport cars), and price points. Product
family design methods involve the identification of product
architectures that are suitable for providing the desired range of
capabilities, while typically sharing as much technology and as
many components as possible [16]. The identification of a common
platform and options packages is a significant step in the design
method [17].

A branch of product family design literature considers product
family design over product generations (surveyed in Ref. [18]). In
this case, the evolution of the product family is planned such that
new functionality and capabilities are introduced over the various
product generations. This method seems highly relevant to intelli-
gent PSS design, in order to ensure that the back-end environment
can support future product generations as the PSS evolves.

The field of multidisciplinary design optimization (MDO) [19]
may also play a role in PSS design. The physical product, the service
delivery system, and the back-end environment can be considered
as different ‘‘disciplines” in the MDO context. That is, they are very
different types of subsystems that need to be designed. During
their design process, significant challenges must be addressed:
The subsystems are coupled to one another and need to integrate
together to form a tightly coupled system from the customer’s per-
spective. Although originally developed for the aerospace industry,
MDO methods have had widespread application [20]. In aerospace,
the coupled competing subsystems tend to include structures,
propulsion, aeronautics, and payload. MDO methods involve the
formulation and solutions methods of large-scale, hierarchical,
and coupled optimization problems. Perhaps these methods could
be adopted for the optimization of PSSs after their architectures
have been determined.

6.3. Design to constraints

The other perspective of DFIM involves designing to the intelli-
gent manufacturing system capabilities and avoiding its con-
straints. From this perspective, we are primarily concerned with
the design of the physical product, which will be manufactured
using the NGIMS. We can expect the NGIMS to be capable of con-
sistent, reliable manufacturing capability, since the systems will be
monitored extensively (using many sensors), problems will be
identified quickly, and the systems will learn and improve over
time.

Products should be designed taking into account the capabili-
ties and limitations of the relevant manufacturing processes. In
one sense, this is straightforward DFM. However, it is necessary
to delve deeper into the consideration of expected market sizes,
response time expectations, and customization opportunities.

It is useful to separate product manufacture into two cate-
gories: the product family platform, which will be manufactured
in high volume, and the components and modules that provide dif-
ferentiation for individual product models, product generations, or
even customized products. The former case falls under conven-
tional DFM, and standard approaches for DFM and DFA should be
practiced. The latter case represents much more challenging issues
on the complexities that arise from the combinatorial explosion of
options. These two categories are explored further below.

Since the product family platform will be present in every pro-
duct, components in the platform can be expected to be produced
in much larger quantities than some specialty options. As such,
conventional manufacturing processes may be appropriate for
these components if they are manufactured in high volumes.
Investments in hard tooling and human-based process planning
can be recouped in high volume production. Nonetheless, product
developers need to select manufacturing processes that are cap-
able of fabricating parts to the expected quality, economically,
and fast enough to satisfy customer delivery times. Alternatively,
the product development organization may decide to outsource
much or all of the platform, depending on whether or not the
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organization believes it can deliver the highest value in the product
family options or in the platform.

For the components and modules, decisions on manufacturing
processes largely depend on expected production volumes. For
low volume options, manufacturing processes that do not require
much hard tooling or manual process planning will be favorable.
Injection molding dozens or even hundreds of parts for a specialty
product option will result in costly parts with long lead times. In
contrast, the usage of AM processes, which require no hard tooling
and aminimumof human intervention inmanufacturing, may have
many benefits. Typically, part costs for AM are constant relative to
production volume, and lead times are several days or less. For
metal parts, five-axis machining may also be favorable, provided
that part-specific fixtures are not needed and process planning
can be automated. Selection methods for manufacturing processes
are well developed [3,21] and are even being standardized [22].

Of course, design constraints also arise from limitations on the
computational and communication systems being designed as part
of the PSS. These constraints need to be quantified and considered
during PSS design. Their evolution throughout the expected life of
the PSS should be considered as well. However, it is expected that
the computation and communication system constraints will not
play as great a role as the manufacturing constraints for the
physical products.
7. Conclusion

This paper considers the design of future intelligent products
from the perspective of the NGIMS that will produce them. This
work is intended to be thought-provoking and speculative. If we
imagine a future of smart products, we can then consider what will
be required to design and manufacture such products. The emer-
gence of a new generation of intelligent manufacturing concepts,
practices, and systems provides additional motivation to consider
what DFIM might entail.

Throughout the paper, the following points are emphasized:
(1) DFIM starts with design concepts for new smart products.
(2) Smart products are PSSs; that is, smart products consist of

physical products that deliver services to customers by interacting
with large computational and communication infrastructures (i.e.,
utilizing cloud-based computing and IoT technologies). As such,
DFIM is highly related to design methods for PSSs.

(3) DFIM comprises two main aspects:
� Design for possibilities and opportunities, which seeks to

develop new design concepts and explore the design spaces
enabled by these concepts (PSS design methods are the pri-
mary means for accomplishing this);

� Design to constraints, which leverages traditional DFM and
DFA methods that seek to avoid constraints imposed by man-
ufacturing process limitations.

(4) A comprehensive DFIM method was not proposed in this
paper, since it is premature to do so. Additional investigations
and design experiences are needed before reliable design methods
will emerge for this domain.
It is hoped that the publication of this paper will promote the
formation of a community of DFIM researchers that develops,
debates, and refines design methods for future smart products that
leverage NGIMS.
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