ARTICLE IN PRESS

Engineering xxx (xxxx) xxx

Contents lists available at ScienceDirect

Engineering

journal homepage: www.elsevier.com/locate/eng

Research Environmental Sustainability—Article

Defective Nickle–Iron Layered Double Hydroxide for Enhanced Photocatalytic NO Oxidation with Significant Alleviation of NO₂ Production

Xiaoyu Li^{a,1}, Xiaoshu Lv^{a,1}, Jian Pan^c, Peng Chen^d, Huihui Peng^a, Yan Jiang^a, Haifeng Gong^a, Guangming Jiang^{a,b,*}, Li'an Hou^{b,*}

^a Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China ^b State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China

^c Environmental Technology Innovation Center of Jiande, Hangzhou Bertzer Catalyst Co. Ltd, Hangzhou 310058, China

^d Chongqing Key Laboratory of Green Synthesis and Application, College of Chemistry, Chongqing Normal University, Chongqing 401331, China

ARTICLE INFO

Article history: Received 19 February 2023 Revised 20 June 2023 Accepted 25 June 2023 Available online xxxx

Keywords: Vacancies Layered double hydroxide NO⁺ Photocatalysis NO removal

ABSTRACT

Photocatalysis offers a sustainable avenue for the oxidative removal of low concentrations of NO_x from the atmosphere. Layered double hydroxides (LDHs) are promising candidate photocatalysts owing to their unique layered and tunable chemical structures, and the abundant hydroxide (OH⁻) moieties on their surfaces that are hydroxyl radical (*OH) precursors. However, inferior charge separation and limited active sites on an LDH hinder its practical applications. Herein, we developed a facile N_2H_4 -driven etching (et) approach that introduces dual Ni²⁺ and OH⁻ vacancies (Ni_v and OH_v) into NiFe-LDH nanosheets (referred to as NiFe-LDH-et) that facilitate improved charge-carrier separation and the formation of active Lewis acidic sites (Fe³⁺ and Ni²⁺ exposed at OH_v). In contrast to inert pristine LDH, NiFe-LDH-et actively removes NO when illuminated with visible light. Specifically, Ni₇₆Fe₂₄-LDH-et etched in 1.50 mmol·L⁻ N_2H_4 solution removes 32.8% of the NO from continuously flowing air (NO-feed concentration: \sim 500 parts per billion (ppb)) when illuminated with visible light, thereby outperforming most reported catalysts. Experimental and theoretical data reveal that the dual vacancies promote the production of reactive oxygen species ($^{\circ}O_{2}^{-}$ and $^{\circ}OH$) and the adsorption of NO on the LDH. In-situ spectroscopy revealed that NO is preferentially adsorbed at Lewis acidic sites, particularly exposed Fe³⁺ sites, and then converted into NO^{+} that is subsequently oxidized to NO_{3}^{-} without the formation of any of the more toxic NO_{2} intermediate, thereby alleviating risks associated with its production and emission.

© 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND licenses (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The consumption of considerable quantities of fossil fuels in China has resulted in large annual NO_x emissions. Although many measures have been adopted to reduce the amount of NO_x released into the atmosphere, the proportion of this gas in air still remains high. Developing technology capable of removing NO_x , even at parts per billion (ppb) levels, remains an important objective given that NO_x is highly toxic, very mobile, and reactive [1,2]. In this respect, photocatalysis is regarded to be a promising technology

¹ These authors contribute equally to this work.

for removing NO_x given its green, effective, and sustainable features [3]. Many studies have shown that photocatalysis readily oxidizes NO_x to nitrate, which is then transferred to the water phase for further treatment [4].

Catalysts form the core of photocatalysis technology [5–8]. The light is absorbed at the catalyst surface and converted into hot charge carriers that facilitate the direct oxidation of NO_x or trigger the formation of more oxidative free radicals, such as ${}^{\circ}O_{2}$ and ${}^{\circ}OH$ that oxidize NO_x [9,10]. Layered double hydroxides (LDHs) are a large family of two-dimensional (2D) inorganic layered host materials with the general $[M_{1-x}^{2+}M_{x}^{3+}(OH)_{2}]^{2+}(A^{n-})^{2/n}\cdot mH_{2}O$ formula (where M and A correspond to cations and interlayer anions, respectively). LDHs are effective photocatalysts owing to their layered structures, tunable chemical and band structures, and abundant surface OH⁻ moieties [11–13]. Furthermore, many research groups have

https://doi.org/10.1016/j.eng.2023.06.017

2095-8099/© 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article as: X. Li, X. Lv, J. Pan et al., Defective Nickle–Iron Layered Double Hydroxide for Enhanced Photocatalytic NO Oxidation with Significant Alleviation of NO₂ Production, Engineering, https://doi.org/10.1016/j.eng.2023.06.017

^{*} Corresponding authors at: Chongqing Technology and Business University, Chongqing 400067, China

E-mail addresses: jiangguangming@zju.edu.cn (G. Jiang), houla@cae.cn (L. Hou).

shown that the OH⁻ on an LDH can be converted into oxidative •OH radicals when trapped by photoexcited holes [14–16]. This feature enables LDH to deliver robust and steady photocatalytic performance, even in a water-deficient environment; consequently, LDHs are ideal photocatalysts for abating air pollution. Despite these advantages, developed LDH photocatalysts still show limited performance when illuminated by visible light, which is possibly due to low hot charge-carrier efficiency and few exposed active sites on their surfaces [12,14].

Vacancy engineering is an effective method for activating or promoting the performance of a photocatalyst, and including vacancies has been documented to improve its band structure. Furthermore, vacancies serve as trapping centers for one type of charge carrier, which promotes light absorbance and charge-carrier separation [17]. For example, Miao et al. [18] developed a polymeric carbon nitride (PCN) photocatalyst rich in N_{3C} vacancies that enhance visible-light absorption and promote photoexcited charge-carrier separation. The defective PCN produced H₂O₂ 4.5 times more rapidly than pristine PCN. In addition, the vacancies in some systems are the actual active sites that efficiently adsorb and activate reactants. For instance, Wu et al. [19] recently reported significantly enhanced oxygen evolution reactions (OERs) on oxygen-vacancy-bearing and cation-vacancy-bearing NiFe-LDHs, respectively. Both groups demonstrated that the observed enhancements in activity originate from the superior adsorption of OER intermediates at vacancies. Many research groups have recently reported various strategies for constructing cationic, anionic, or dual vacancies on LDHs, and successfully developed photocatalytic systems for various reactions, including nitrogen-reduction [20], CO₂-reduction [21]. formaldehyde-decomposition [22], and NO_x -oxidation [10,23–25] reactions. However, constructing vacancies, particularly cationic/anionic dual vacancies, on an LDH usually involves a complex or time/ energy-intensive procedure that hinders the scaled use of LDHs in photocatalysis applications.

Herein, we report the development of a facile N_2H_4 -based etching strategy for introducing Ni^{2+} and OH^- dual vacancies in NiFe-LDH under mild conditions. Notably, the etching process takes only 10 min, and the number of vacancies can be tuned by adjusting the N_2H_4 concentration. We investigated the optical properties and charge-separation and -transfer efficiencies of the defective NiFe-LDHs, and how defects affect photocatalytic performance for the oxidative removal of NO when illuminated by visible light. The reactive oxygen species (ROSs) generated during photocatalysis and the reaction pathway for NO oxidation were also examined. Finally, the roles played by the dual vacancies in the NiFe-LDH are discussed based on a combined spectroscopic and density functional theory (DFT) study.

2. Experimental section

2.1. Materials

All chemicals were of analytical grade. Nickel nitrate hexahydrate (Ni(NO₃)₂·6H₂O) and formamide were purchased from the Chengdu Kelong Chemical Co., Ltd. (China). Ferric nitrate nonahydrate (Fe(NO₃)₂·9H₂O), terephthalic acid (TA), and ethanol were purchased from the Shanghai Titan Scientific Co., Ltd. (China). Hydrazine hydrate (N₂H₄·H₂O), silver nitrate (AgNO₃), and acetonitrile were provided by the Shanghai Aladdin Bio-Chem Technology Co., Ltd. (China).

2.2. Photocatalysts synthesis

NiFe-LDH was prepared following a previously reported coprecipitation method [17]. Typically, Ni(NO₃)₂. $6H_2O$ (7.5 mmol) and Fe(NO₃)₃·9H₂O (2.5 mmol) were dissolved in mixture of deionized water (20 mL) and formamide solution (20 mL) with magnetic stirring for 10 min. The mixture was then heated to 80 °C and the pH of the solution was adjusted to ~10 using 2.5 mol·L⁻¹ aqueous NaOH. NiFe-LDH was collected by centrifugation after 10 min, washed with deionized water, and then freeze-dried for 12 h. NiFe-LDH (~0.6 g) and a specific amount of N₂H₄·H₂O were dispersed in deionized water (30 mL) to construct vacancies on the LDH. The mixture was then heated to 70 °C, and maintained at that temperature for 10 min. The product was subsequently collected by centrifugation, washed with water/ethanol, and freeze-dried for 12 h. The N₂H₄ concentration was adjusted to 0.96, 1.50, and 2.64 mmol·L⁻¹ to gain insight into how the N₂H₄ dose affects the number of vacancies.

2.3. Characterization

The crystal phase of the catalyst was examined by X-ray diffractometry (XRD) with Cu Ka radiation (D/max RA, Rigaku Co., Japan). The metal content in the catalyst was determined by inductively coupled plasma atomic emission spectrometry (ICP-AES: Agilent 5110, USA). Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) images were collected using a JEM-2010 microscope (JEOL, Japan), and photoluminescence (PL) spectra were obtained on an F-7000 spectrophotometer (HITACHI, Japan). Ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy (DRS) was performed on a UV-2450 spectrometer (Shimadzu, Japan). Photocurrent testing and electrochemical impedance spectroscopy (EIS) were conducted using a CHI 660E electrochemical workstation (Chenhua, China) [26]. Electron paramagnetic resonance (EPR) spectra were acquired on an EMX PLUS spectrometer (Bruker, Germany). In-situ diffuse reflectance Fourier-transform infrared spectroscopy (DRIFTS) was performed on a Vertex 70v spectrometer (Bruker) [27]. NO temperature-pro grammed-desorption-mass (TPD-mass) testing was conducted using an AutoChem1 II 2920 instrument (Micromeritics, USA) [28].

2.4. Evaluating photocatalytic performance

The photocatalytic performance of various LDH samples for the removal of NO was evaluated under visible light in a sealed rectangular reactor (30 cm \times 15 cm \times 10 cm) (the apparatus is schematically shown in Fig. S1 in Appendix A). The catalyst (0.2 g) was dispersed in ethanol (10 mL) to form a catalyst suspension prior to testing that was then evenly pasted onto the surfaces of two 12 cm diameter culture dishes. The catalyst-loaded dishes were placed in the reactor, sealed, and then charged with flowing air containing \sim 500 ppb NO at a relative humidity of 45%–55%. The catalyst was illuminated with visible light using a 150 W commercial tungsten halogen lamp (note that the ultraviolet region was filtered out using an ultraviolet cut-off filter ($\lambda \ge 420$ nm)). The concentrations of NO and NO₂ in the outlet flow were tracked using a gas analyzer (42i-TL, Thermo Scientific, USA). The NO removal ratio (η) of each catalyst was calculated using: $\eta = (1 - C_t/t)$ C_0 × 100%, where C_t and C_0 are the concentrations of NO at reaction times *t* and 0, respectively.

3. Results and discussion

3.1. Photocatalyst synthesis and characterization

Fig. 1(a) shows the N₂H₄-based etching strategy for producing defective NiFe-LDH (referred to as "NiFe-LDH-et"). In this strategy, N₂H₄ molecules attack the [Ni²⁺(OH)₆] moieties in NiFe-LDH to form soluble Ni(N₂H₄)_x²⁺ species through displacement chemistry, which leaches away Ni²⁺ and OH⁻ to form dual vacancies in the

Fig. 1. (a) Schematical illustration of the procedure for synthesis of defective NiFe-LDH; (b) XRD patterns of the Ni₇₆Fe₂₄-LDH and Ni₇₆Fe₂₄-LDH-et; (c, d) TEM images of (c) Ni₇₆Fe₂₄-LDH and (d) Ni₇₆Fe₂₄-LDH-et (inset is the digital image of the samples that was pasted on the subface of a culture dish); (e) the concentrations of Ni and Fe leached in the N₂H₄ solution; (f) the molar ratio of Ni and Fe in the fine and etched Ni₇₆Fe₂₄-LDH.

LDH. The XRD patterns in Fig. 1(b) reveal that both pristine and defective Ni₇₆Fe₂₄-LDH possess the same hydrotalcite structure (PDF#40–0215), which implies that N₂H₄ etching does not destroy the LDH crystal structure. The photographic and TEM images in Fig. 1(c) and the atomic force microscope (AFM; BRUKER, Germany) image in Fig. S2 in Appendix A show that pristine Ni₇₆Fe₂₄-LDH is light brown in color and has a nanosheet morphology that is approximately 2.04-2.98 nm thick with a lateral dimension of 20–30 nm. Furthermore, Ni, Fe, and O are distributed evenly over the LDH sheet (Fig. 1(c)). In comparison, NiFe-LDH-et exhibits the same nanosheet morphology as pristine Ni₇₆Fe₂₄-LDH but is dark brown in appearance (Fig. 1(d)). Furthermore, a considerable number of nanopores were observed in the sheet (highlighted by vellow arrows) that indicate vacancy formation. The amounts of metals leached from Ni₇₆Fe₂₄-LDH and the metal content in Ni₇₆Fe₂₄-LDH-et were examined using ICP-AES. Fig. 1(e) reveals that 55.9 mg·g⁻¹ of Ni²⁺ and 0.50 mg·g⁻¹ of Fe³⁺ were leached when $Ni_{76}Fe_{24}$ -LDH was treated with 1.50 mmol·L⁻¹ aqueous N_2H_4 . Furthermore, Fig. 1(f) shows that the Ni/(Ni + Fe) molar ratio decreases during etching, from the original value of 76% observed for LDH to 72% in LDH-et. Both sets of results demonstrate that N₂H₄ primarily etches away [Ni²⁺(OH)_x] moieties ($0 < x \le 6$) rather than $[Fe^{3+}(OH)_x]$ moieties.

The defective structure of Ni₇₆Fe₂₄-LDH-et was further investigated using a combination of Raman (DRX, Thermo Scientific, USA) and EPR spectroscopies, along with X-ray photoelectron spectroscopy (XPS; K-Alpha, Thermo Scientific, USA). The Raman spectra in Fig. 2(a) show characteristic bands at 458, 526 and 705 cm⁻¹ that are ascribable to Fe/Ni–OH bond vibrations in Ni₇₆Fe₂₄-LDH; these bands weaken during etching with N₂H₄ [29–31]. Furthermore, a new band assigned to OH⁻ vibrations in close proximity to cationic vacancies is observed at around 590 cm⁻¹ in the spectrum of Ni₇₆-Fe₂₄-LDH-et [32,33]. Taken together, these results reveal that N₂H₄ etching induces the formation of cationic vacancies.

Conversely, EPR spectroscopy and XPS provide evidence for the formation of OH vacancies (OH_v). Both Ni₇₆Fe₂₄-LDH-et and Ni₇₆-Fe₂₄-LDH display characteristic Lorentzian OH_v signals at g = 2.0048 in their EPR spectra (Fig. 2(b)). The more intense signal observed for Ni₇₆Fe₂₄-LDH-et is suggestive of a higher number of OH_v moieties following N₂H₄ etching, which is also supported by XPS. The O 1s spectra shown in Fig. 2(c) reveal that Ni₇₆Fe₂₄-LDH-et has an OH_v/lattice-OH⁻ molar ratio (i.e., O_v/O₁) of 3.54, which is considerably higher than that determined for Ni₇₆Fe₂₄-LDH (2.12) [34–36].

The schematic in Fig. 2(d) shows that LDH structural evolution during N_2H_4 etching can form OH_v sites that lie between Ni^{2+} and

ARTICLE IN PRESS

X. Li, X. Lv, J. Pan et al.

Engineering xxx (xxxx) xxx

Fig. 2. (a) Raman spectra of Ni₇₆Fe₂₄-LDH and Ni₇₆Fe₂₄-LDH-et; (b) EPR spectra of Ni₇₆Fe₂₄-LDH and Ni₇₆Fe₂₄-LDH-et with and without the light irradiation; (c) O 1s XPS results of Ni₇₆Fe₂₄-LDH and Ni₇₆Fe₂₄-LDH-et; (d) the schematic diagram of vacancy formation in LDH.

 $\rm Ni^{2+}$ (site I) or $\rm Ni^{2+}$ and $\rm Fe^{3+}$ (site II). Accordingly, we analyzed the Ni 2p and Fe 2p XPS spectra of $\rm Ni_{76}Fe_{24}-LDH-et$ to determine the OH_v position, the results of which are shown in Fig. S3 in Appendix A; the figure reveals that the Ni²⁺ in Ni₇₆Fe₂₄-LDH-et maintains its +2 valence, whereas Fe³⁺ becomes electron-rich relative to that in Ni₇₆Fe₂₄-LDH. This enrichment is ascribable to the loss of OH⁻, which provides additional electrons to the coordination-unsaturated Fe³⁺. These results imply that OH_v is mainly formed at site II.

Gibbs free energy changes (ΔG) associated with the formation of Ni_v and OH_v at sites I and II were calculated using DFT to rationalize the aforementioned results (details are provided in the Section S1. In Appendix A). Intriguingly, the removal of Ni²⁺ from LDH is calculated to be spontaneous, with a ΔG of -1.37 eV (1 eV = 1.602×10^{-19} J, Fig. 2(d)), while the subsequent removal of OH⁻ at both sites requires additional energy. OH_v is more favorably formed at site II than at site I from a thermodynamic perspective (4.14 vs 4.37 eV), which is consistent with the XPS data that show that OH⁻ positioned between Ni²⁺ and Fe³⁺ is more easily removed.

Given that N₂H₄ effectively forms dual vacancies, Ni₇₆Fe₂₄-LDH was next treated with solutions containing different concentrations of N₂H₄ (i.e., 0.96, 1.50, or 2.64 mmol·L⁻¹) to afford Ni₇₆Fe₂₄-LDH-et-*x* (*x* = 0.96, 1.50, or 2.64). The photographic images in Fig. S4 in Appendix A show that NiFe-LDH-et darkens with increasing N₂H₄ concentration. The TEM images in Fig. S4 reveal that the LDH sheets contain fewer pores when 0.96 mmol·L⁻¹ N₂H₄ was used and are almost fragmented following treatment with 2.64 mmol·L⁻¹ N₂H₄. The XRD patterns in Fig. S5 in Appendix A confirm that the LDH phase is conserved in all three systems. ICP-AES data (Table S1 in Appendix A) show that increasing amounts of Ni²⁺ (from 6.14 to 55.9 and 88.1 mg·g⁻¹) leach from the LDH as the N₂H₄ concentration is increased from 0.96 to 1.50 and 2.64 mmol·L⁻¹, while only low amounts of Fe are lost (0.04–0.67 mg·g⁻¹), as expected.

3.2. Photocatalytic performance for the oxidative removal of NO

The photocatalytic performance of Ni₇₆Fe₂₄-LDH-et-x and Ni₇₆-Fe₂₄-LDH for the oxidative removal of NO was evaluated in terms of the ability of each catalyst to remove NO from continuously $L \cdot min^{-1}$. flowing air (2.4)humiditv of 45%-55%) containing ~500 ppb NO when irradiated with visible light (details of the apparatus used and the testing procedure are provided in Fig. 3(a) and Fig. S1). Fig. 3(b) shows the ratio of the outlet NO concentration to the feed concentration (C/C_0) as functions of reaction time for the various catalysts. Pristine Ni₇₆Fe₂₄-LDH is inert when irradiated with visible light, as $C \approx C_0$. Impressively, all Ni₇₆Fe₂₄-LDH-et-x samples exhibited catalytic activity under visible light, as $C \ll C_0$ for all three systems. NO-removal efficiency was calculated using $(1 - C/C_0) \times 100\%$ with the C/C_0 values presented in Fig. 3(b); the results are shown in Fig. 3(c). Ni₇₆Fe₂₄-LDH-et-1.50 clearly delivers the highest NO-removal efficiency of 32.8%, followed by Ni₇₆Fe₂₄-LDH-et-0.96 and Ni₇₆Fe₂₄-LDH-et-2.64. Notably, Fig. 3(d) reveals that none of the Ni₇₆Fe₂₄-LDH-et catalysts produced notable amounts of NO₂, which is the most toxic molecule in the NO_x family and has an atmospheric threshold concentration of 40 ppb (Level I in Ambient Air Quality Standards, GB 3095-2012); these low NO₂ yields suggest that $Ni_{76}Fe_{24}$ -LDH-et can be used in very reliable and green photocatalytic NO-cleanup procedures [37]. The above results show that, while defects unlock the visible-light photocatalytic activity of NiFe-LDH, an appropriate defect content is required to maximize photocatalytic performance.

Table S2 in Appendix A shows that the developed Ni₇₆Fe₂₄-LDHet-1.50 catalysts outperform most LDH catalysts reported in the literature in terms of NO-removal efficiency under closed reaction conditions. As an important catalyst descriptor for practical applications, the durability of Ni₇₆Fe₂₄-LDH-et-1.50 for photocatalytic NO removal was evaluated through repeated testing under the

Engineering xxx (xxxx) xxx

Fig. 3. (a) Schematic illustration of the reactor for photocatalytic NO oxidation; (b) The reaction time course of the C/C_0 ; (c) corresponding NO removal efficiency at the steady state; (d) the NO₂ yield during the photocatalytic NO oxidation on Ni₇₆Fe₂₄-LDH and Ni₇₆Fe₂₄-LDH-et-*x* (*x* = 0.96, 1.50, and 2.64); (e) C/C_0 profiles and the NO₂ yield during the durability test for the Ni₇₆Fe₂₄-LDH-et-1.50.

Fig. 4. (a) UV–Vis DRS spectra of Ni₇₆Fe₂₄-LDH and Ni₇₆Fe₂₄-LDH-et-*x* (x = 0.96, 1.50, and 2.64); (b) Room-temperature steadystate PL spectra of the Ni₇₆Fe₂₄-LDH and Ni₇₆Fe₂₄-LDH-et-x (x = 0.96, 1.50, and 2.64); (c) Transient photocurrent responses and (d) EIS of the Ni₇₆Fe₂₄-LDH and Ni₇₆Fe₂₄-LDH-et-x (x = 0.96, 1.50, and 2.64); (c) Transient photocurrent responses and (d) EIS of the Ni₇₆Fe₂₄-LDH and Ni₇₆Fe₂₄-LDH-et-x (x = 0.96, 1.50, and 2.64); (c) Transient photocurrent responses and (d) EIS of the Ni₇₆Fe₂₄-LDH and Ni₇₆Fe₂₄-LDH-et-x (x = 0.96, 1.50, and 2.64); (c) Transient photocurrent responses and (d) EIS of the Ni₇₆Fe₂₄-LDH and Ni₇₆Fe₂₄-LDH-et-x (x = 0.96, 1.50, and 2.64); (c) Transient photocurrent responses and (d) EIS of the Ni₇₆Fe₂₄-LDH and Ni₇₆Fe₂₄-LDH-et-x (x = 0.96, 1.50, and 2.64).

same reaction conditions. Figs. 3(e) and (f) show C/C_0 profiles that are similar in shape over five cycles of testing, with low NO₂ yields also observed. Furthermore, the XRD data presented in Fig. S6 in Appendix A show that the LDH crystal structure is preserved during repeated testing using Ni₇₆Fe₂₄-LDH-et-1.50. Taken together, these results imply that Ni₇₆Fe₂₄-LDH-et-1.50 exhibits long-term high photocatalytic performance.

3.3. Origin of the enhanced photocatalytic activity of NiFe-LDH-et

The activity of a photocatalyst is generally associated with its ability to absorb light, separate/transfer charges, and the number of reactive centers and their activities [38]. The light-absorbing efficiencies of Ni₇₆Fe₂₄-LDH and Ni₇₆Fe₂₄-LDH-et-x were first examined using UV-vis DRS. The spectra presented in Fig. 4(a) reveal that Ni₇₆Fe₂₄-LDH and Ni₇₆Fe₂₄-LDH-et-x absorb substantial amounts of visible light in the 400-800 nm wavelength range. However, the NiFe-LDH-et-x absorption edge was observed to gradually redshift with increasing *x*, which significantly enhanced adsorption in the 500-800 nm wavelength region. These results show that the introduction of vacancies in the LDH improves its ability to absorb visible light. As NiFe-LDH-et-2.64 performs most efficiently in the visible-light region but does not deliver peak NO-removal efficiency, we conclude that improved light adsorption is not principally responsible for the superior photocatalytic performance of NiFe-LDH-et.

The charge-separation efficiencies of Ni₇₆Fe₂₄-LDH and Ni₇₆Fe₂₄-LDH-et-*x* were investigated using PL spectroscopy. The PL spectra in Fig. 4(b) reveal that all Ni₇₆Fe₂₄-LDH-et-*x* samples exhibit lower PL intensities than Ni₇₆Fe₂₄-LDH owing to enhanced charge separation ascribable to the presence of vacancies in the LDH [3,39].

Furthermore, the PL intensity of the LDH exhibits a volcano-like relationship with x. Ni₇₆Fe₂₄-LDH-et-1.50 displayed the lowest PL intensity and, consequently, the highest photoexcited charge-carrier separation efficiency. The charge-transfer kinetics of Ni₇₆Fe₂₄-LDH and Ni₇₆Fe₂₄-LDH-et-x were evaluated by transient photocurrent response spectroscopy and EIS, respectively [40,41]. Fig. 4(c) shows that Ni₇₆Fe₂₄-LDH-et-1.50 delivers the highest photocurrent, followed by Ni₇₆Fe₂₄-LDH-et-2.64, Ni₇₆Fe₂₄-LDH-et-0.96, and Ni₇₆Fe₂₄-LDH; hence, the charge-transfer rate follows the order: Ni₇₆Fe₂₄-> Ni₇₆Fe₂₄-LDH-et-2.64 Ni76Fe24-LDH-et-LDH-et-1.50 > $0.96 > Ni_{76}Fe_{24}$ -LDH; the same order was also determined by EIS. Fig. 4(d) shows that Ni₇₆Fe₂₄-LDH-et-1.50 exhibits the smallest EIS semicircle, followed by Ni₇₆Fe₂₄-LDH-et-2.64, Ni₇₆Fe₂₄-LDH-et-0.96, and Ni₇₆Fe₂₄-LDH. Taken together, the data presented above reveal that charge-separation and -transfer efficiency follows the same decreasing order, namely: Ni₇₆Fe₂₄-LDH-et-1.50 > Ni₇₆Fe₂₄-LDH-et- $0.96 > Ni_{76}Fe_{24}$ -LDH-et-2.64 > Ni_{76}Fe_{24}-LDH. Intriguingly, this order is consistent with that observed for photocatalytic NO-removal efficiency, which suggests that enhanced charge separation and transfer in defective LDH is a major factor responsible for its superior photocatalytic performance. Given that Ni₇₆Fe₂₄-LDH-et-2.64 contains the largest number of vacancies but does not exhibit optimal chargecarrier separation and transfer, we infer that an excessive number of vacancies is detrimental [42]. Cao and coworkers also reported similar observations [43].

 OH_v sites have been documented to play critical roles in a variety of catalytic systems [44], with studies demonstrating that OH_v -exposed Lewis acidic sites strongly adsorb and activate reactants. Fe³⁺ and Ni²⁺, which potentially serve as reactive centers that adsorb both NO and O₂, are exposed in Ni₇₆Fe₂₄-LDH-et-*x* due to the formation of OH_v. To confirm this speculation, NO adsorption

Fig. 5. (a) NO TPD-MS for Ni₇₆Fe₂₄-LDH and Ni₇₆Fe₂₄-LDH-et-1.50; (b) DFT calculations on the adsorption energies of NO and O₂ at the Ni_v, OH_v site I and OH_v site II of NiFe-LDH-et. Electron spin resonance (ESR) analyses for the ROS generated on Ni₇₆Fe₂₄-LDH and Ni₇₆Fe₂₄-LDH-et-1.50; (c) methanol dispersion for $^{\circ}O_{2}^{-}$ and (d) aqueous dispersion for $^{\circ}OH$; (e) AgNO₃ content-dependent PL spectra of the acetonitrile solution containing Ni₇₆Fe₂₄-LDH-et-1.50 after visible-light illumination.

on Ni₇₆Fe₂₄-LDH and Ni₇₆Fe₂₄-LDH-et-1.50 was examined by temperature programmed desorption (TPD)–mass spectrometry (TPD-Mass; AutoChem1 II 2920, Micromeritics, USA), while NO- and O₂adsorption energies on defective LDH were calculated using DFT and compared. Fig. 5(a) reveals that Ni₇₆Fe₂₄-LDH-et-1.50 exhibits a considerably larger desorption peak in the 450–700 °C temperature range than Ni₇₆Fe₂₄-LDH, and MS confirmed that this peak corresponds to NO desorption, suggesting that NO is more efficiently adsorbed by defective LDH. The DFT results displayed in Fig. 5(b) reveal that the OH_v site has a larger affinity for both NO and O₂ compared to the Ni_v site. Furthermore, Furthermore, the OH_v site II that exposes Fe³⁺ and Ni²⁺ binds more strongly with NO and O₂, in compared to the OH_v site I that only exposes Ni²⁺. It is suggested that the exposed Fe³⁺ can promote the NO and O₂ adsorption. Similar observations were reported by Yang et al. [45].

Electron-hole pairs are formed in a photocatalyst when irradiated with light; these species can directly oxidize pollutants or trigger the formation of ROS, such as °OH or °O₂, that mineralize pollutants [46]. We first used electron spin resonance (ESR; EMX PLUS, Bruker, Germany) spectroscopy to identify the ROS formed on Ni₇₆Fe₂₄-LDH and Ni₇₆Fe₂₄-LDH-et-1.50, the results of which are shown in Fig. 5(c). Both Ni₇₆Fe₂₄-LDH and Ni₇₆Fe₂₄-LDH et nuder visible light; however, the latter produces more. Fig. 5(d) shows that only Ni₇₆-Fe₂₄-LDH-et-1.50 produce °OH in aqueous solution via the known h⁺ + H₂O \rightarrow °OH + H⁺ reaction under visible light. These EPR results

Engineering xxx (xxxx) xxx

show that a larger number of electron-hole pairs are generated in Ni₇₆Fe₂₄-LDH-et-1.50. More importantly, the holes formed in Ni₇₆-Fe₂₄-LDH-et-1.50 are sufficiently oxidative to transform H₂O into •OH. The OH⁻ in LDH reportedly replaces H₂O as the •OH precursor; consequently, LDH-based photocatalyts usually perform highly in an H₂O-deficint atmospheric environment. To affirm that the OH⁻ in Ni₇₆Fe₂₄-LDH-et-1.50 is available for •OH production, we illuminated the photocatalyst in H₂O-free acetonitrile, with AgNO₃ and TA introduced to trap photoexcited electrons and the generated •OH (TA reacts with •OH to form TAOH), respectively. Fig. 5(e) displays AgNO₃-content-dependent fluorescence spectra of the solution following visible-light illumination for 0.5 h. The inclusion of AgNO₃ and TA led to two characteristic fluorescence peaks at 410 and 431 nm that are assigned to TAOH. Furthermore, they become more intense as more AgNO₃ is included. The results confirm that the OH⁻ in Ni₇₆Fe₂₄-LDH-et-1.50 is available for producing •OH. This feature is significant, as it contributes to photocatalytic NO oxidation even in an H2O-deficient gaseous atmosphere. Taken together, the above results demonstrate that ROS species, including ${}^{\bullet}O_{2}^{-}$ and ${}^{\bullet}OH$, are generated and then photocatalytically oxidize NO.

We next examined the evolution of intermediate products during the reaction over $Ni_{76}Fe_{24}$ -LDH and $Ni_{76}Fe_{24}$ -LDH-et-1.50 by *in-situ* DRIFTS to gain further insight into the photocatalytic NO-oxidation process on defective LDH. The spectra presented in Figs. 6(a) and (b) show that NO is more intensely adsorbed by

Fig. 6. *In-situ* DRIFTS spectra of the photocatalytic NO oxidation on (a) $Ni_{76}Fe_{24}$ -LDH and (b) $Ni_{76}Fe_{24}$ -LDH-et-1.50 under the dark and the simulated sunlight (the peak assignments for N-contained species were presented in Table S3 in Appendix A). (c) Schematical illustration of the roles played by the Ni_v and OH_v in NiFe-LDH in the photocatalytic NO oxidation.

Ni₇₆Fe₂₄-LDH-et than Ni₇₆Fe₂₄-LDH. More intriguingly, NO molecules are primarily adsorbed via hydrogen bonding to the OH⁻ moieties on Ni₇₆Fe₂₄-LDH, while they are adsorbed at Lewis acidic sites (i.e., Fe³⁺ and Ni²⁺ at OH_v sites) on Ni₇₆Fe₂₄-LDH-et-1.50. These results are also consistent with the TPD-MS and DFT results shown in Fig. 5. Intriguingly, the NO adsorbed at Lewis acidic sites is converted into NO⁺, which is reportedly oxidized to NO₃⁻ without the involvement of an NO₂ or N₂O intermediate [34,47]. Therefore, we believe that the Lewis acidic sites contribute to alleviating NO₂ production on defective LDH. Figs. 6(a) and (b) also show that while both NO₃⁻ and NO₂ species are resolved when illuminated by light, NO₃⁻ increasingly accumulates with increasing reaction time. In addition, Ni₇₆Fe₂₄-LDH-et-1.50 exhibited a higher NO₃⁻ yield, consistent with its higher photocatalytic activity for the oxidation of NO.

A clearer picture of the origin of the enhanced photocatalytic ability of defective NiFe-LDH toward the oxidation of NO is provided by the discussion presented above. Fig. 6(c) schematically shows that the N₂H₄-driven etching process triggers the formation of Ni_v and OH_v on the LDH; these dual vacancies promote both light adsorption and charge-carrier separation, leading to the enhanced production of ROS, including ${}^{\bullet}O_{2}^{-}$ and ${}^{\bullet}OH$. Notably, the OH⁻ on LDH is an effective replacement for H₂O during the production of •OH, which endows the LDH with steady photocatalytic performance in H₂O-deficient atmospheric environments. Lewis acidic sites, particularly exposed Fe³⁺ at OH_v sites, play important roles in the photocatalytic NO-oxidation process; they have strong affinities for NO and contribute to the accumulation of NO on the LDH. More importantly, the adsorbed NO is converted into NO⁺ that is subsequently oxidized to NO_3^- without the involvement of any NO₂ intermediate, thereby alleviating any risks associated with its production and emission.

4. Conclusions

We developed a facile N₂H₄-driven etching approach for preparing dual Ni_v- and OH_v-containing NiFe-LDH-et photocatalysts. In contrast to the inertness of pristine LDH, NiFe-LDH-et actively removes NO when illuminated by visible light. Ni₇₆Fe₂₄-LDH-et etched in 1.50 mmol·L⁻¹ N₂H₄ solution removed 32.8% of the NO in continuously flowing air under visible light. The mechanistic study revealed that the introduction of dual vacancies improved charge separation and transfer within the LDH, leading to intensified production of ROS ($^{\bullet}O_2^-$ and $^{\bullet}OH$); they also triggered the formation of Lewis acidic sites (Fe³⁺ and Ni²⁺ exposed at OH_v) that have high NO and O2 affinities. In-situ spectroscopic studies verified that NO is preferably adsorbed at Lewis acidic sites, particularly exposed Fe³⁺. Notably, NO transforms into NO⁺ that is directly oxidized to NO₃⁻ without involving any of the more-toxic NO₂ intermediate. This study provides new perspectives for the development of efficient and durable visible-light-responsive LDH photocatalysts for the abatement of air pollution.

Acknowledgement

The present work is financially supported by the National Natural Science Foundation of China (22176019 and 51978110), and the Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN201800829, KJZD-K202000802, and KJQN201900837).

Compliance with ethics guidelines

Xiaoyu Li, Xiaoshu Lv, Jian Pan, Peng Chen, Huihui Peng, Yan Jiang, Haifeng Gong, Guangming Jiang, and Li'an Hou declare that they have no conflict of interest or financial conflicts to disclose.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.eng.2023.06.017.

References

- Skalska K, Miller JS, Ledakowicz S. Trends in NO_x abatement: a review. Sci Total Environ 2010;408(19):3976–89.
- [2] Li N, Wang C, Zhang K, Lv H, Yuan M, Bahnemann DW. Progress and prospects of photocatalytic conversion of low-concentration NO. Chin J Catal 2022;43 (9):2363–87.
- [3] Cui W, Li J, Dong F. Optimizing the gas-solid photocatalytic reactions for air purification. ACS ES&T Eng 2022;2(6):1103–15.
- [4] Zhao K, Sun X, Wang C, Song X, Wang F, Li K, et al. Supported catalysts for simultaneous removal of SO₂, NO_x, and Hg⁰ from industrial exhaust gases: a review. Chin Chem Lett 2021;32(10):2963–74.
- [5] Zheng Y, Chen Y, Gao B, Lin B, Wang X. Phosphorene-based heterostructured photocatalysts. Engineering 2021;7(7):991–1001.
- [6] Chen WQ, Li LY, Li L, Qiu WH, Tang L, Xu L, et al. MoS2/ZIF-8 hybrid materials for environmental catalysis: solar-driven antibiotic-degradation engineering. Engineering 2019;5(4):755–67.
- [7] Buzzetti L, Crisenza GEM, Melchiorre P. Mechanistic studies in photocatalysis. Angew Chem Int Ed 2019;58(12):3730–47.
- [8] Zhu H, Yuan X, Yao Q, Xie J. Shining photocatalysis by gold-based nanomaterials. Nano Energy 2021;88:106306.
- [9] Wu C, Xing Z, Yang S, Li Z, Zhou W. Nanoreactors for photocatalysis. Coord Chem Rev 2023;477:214939.
- [10] Yang W, Ren Q, Zhong F, Wang Y, Wang J, Chen R, et al. Promotion mechanism of -OH group intercalation for NO_x purification on BiOI photocatalyst. Nanoscale 2021;13(48):20601–8.
- [11] Yan Q, Hou X, Liu G, Li Y, Zhu T, Xin Y, et al. Recent advances in layered double hydroxides (LDHs) derived catalysts for selective catalytic reduction of NOx with NH3. J Hazard Mater 2020;400:123260.
- [12] Jerome MP, Alahmad FA, Salem MT, Tahir M. Layered double hydroxide (LDH) nanomaterials with engineering aspects for photocatalytic CO2 conversion to energy efficient fuels: fundamentals, recent advances, and challenges. J Environ Chem Eng 2022;10(5):108151.
- [13] Zhang S, Zhao Y, Shi R, Zhou C, Waterhouse GIN, Wu LZ, et al. Efficient photocatalytic nitrogen fixation over Cuδ+-modified defective ZnAl-layered double hydroxide nanosheets. Adv Energ Mater 2020;10(8):1901973.
- [14] Lv X, Zhang J, Dong X, Pan J, Zhang W, Wang W, et al. Layered double hydroxide nanosheets as efficient photocatalysts for NO removal: band structure engineering and surface hydroxyl ions activation. Appl Catal B 2020;277:119200.
- [15] Zou J, Wang Z, Guo W, Guo B, Yu Y, Wu L. Photocatalytic selective oxidation of benzyl alcohol over ZnTi-LDH: the effect of surface OH groups. Appl Catal B 2020;260:118185.
- [16] Dong XA, Cui Z, Sun Y, Dong F. Humidity-independent photocatalytic toluene mineralization benefits from the utilization of edge hydroxyls in layered double hydroxides (LDHs): a combined operando and theoretical investigation. ACS Catal 2021;11(13):8132–9.
- [17] Zhang X, Zhao Y, Zhao Y, Shi R, Waterhouse GIN, Zhang T. A simple synthetic strategy toward defect-rich porous monolayer NiFe-layered double hydroxide nanosheets for efficient electrocatalytic water oxidation. Adv Energy Mater 2019;9(24):1900881.
- [18] Miao W, Wang Y, Liu Y, Qin H, Chu C, Mao S. Persulfate-induced three coordinate nitrogen (N3C) vacancies in defective carbon nitride for enhanced photocatalytic H2O2 evolution. Engineering 2023;25(6):214–21.
- [19] Wu Q, Jia Y, Liu Q, Mao X, Guo Q, Yan Y, et al. Ultra-dense carbon defects as highly active sites for oxygen reduction catalysis. Chem 2022;8(10):2715–33.
- [20] Liu G, Tang Z, Gu X, Li N, Lv H, Huang Y, et al. Boosting photocatalytic nitrogen reduction to ammonia by dual defective -C N and K-doping sites on graphitic carbon nitride nanorod arrays. Appl Catal B 2022;317:121752.
- [21] He Y, Lei Q, Li C, Han Y, Shi Z, Feng S. Defect engineering of photocatalysts for solar-driven conversion of CO₂ into valuable fuels. Mater Today 2021;50:358–84.
- [22] Li X, Li H, Huang Y, Cao J, Huang T, Li R, et al. Exploring the photocatalytic conversion mechanism of gaseous formaldehyde degradation on TiO_{2-x}-O_V surface. J Hazard Mater 2022;424:127217.
- [23] Yuan R, Wang M, Liao L, Hu W, Liu Z, Liu Z, et al. 100% N₂O inhibition in photocatalytic NO_x reduction by carbon particles over Bi₂WO₆/TiO₂ Z-scheme heterojunctions. Chem Eng J 2023;453:139892.
- [24] Wang H, Li K, Li J, Sun Y, Dong F. Photochemical transformation pathways of nitrates from photocatalytic NO_x oxidation: implications for controlling secondary pollutants. Environ Sci Technol Lett 2021;8(10):873–7.
- [25] Wang H, Sun Y, Dong F. Insight into the overlooked photochemical decomposition of atmospheric surface nitrates triggered by visible light. Angew Chem Int Ed 2022;61(43):e202209201.
- [26] Liu L, Ouyang P, Li Y, Duan Y, Dong F, Lv K. Insight into the mechanism of deep NO photooxidation by bismuth tantalate with oxygen vacancies. J Hazard Mater 2022;439:129637.

Engineering xxx (xxxx) xxx

- [27] Yu Y, Dong X, Chen P, Geng Q, Wang H, Li J, et al. Synergistic effect of Cu single atoms and Au–Cu alloy nanoparticles on TiO₂ for efficient CO₂ photoreduction. ACS Nano 2021;15(9):14453–64.
- [28] Wang Q, Chen L, Guan S, Zhang X, Wang B, Cao X, et al. Ultrathin and vacancyrich CoAl-layered double hydroxide/graphite oxide catalysts: promotional effect of cobalt vacancies and oxygen vacancies in alcohol oxidation. ACS Catal 2018;8(4):3104–15.
- [29] Bai L, Lee S, Hu X. Spectroscopic and electrokinetic evidence for a bifunctional mechanism of the oxygen evolution reaction. Angew Chem Int Ed 2021;60 (6):3095–103.
- [30] Louie MW, Bell AT. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J Am Chem Soc 2013;135 (33):12329–37.
- [31] Bantignies JL, Deabate S, Righi A, Rols S, Hermet P, Sauvajol JL, et al. New insight into the vibrational behavior of nickel hydroxide and oxyhydroxide using inelastic neutron scattering, far/mid-infrared and raman spectroscopies. J Phys Chem C 2008;112(6):2193–201.
- [32] Bernard MC, Cortes R, Keddam M, Takenouti H, Bernard P, Senyarich S. Structural defects and electrochemical reactivity of β-Ni(OH)2. J Power Sources 1996;63(2):247–54.
- [33] Peng L, Yang N, Yang Y, Wang Q, Xie X, Sun-Waterhouse D, et al. Atomic cationvacancy engineering of NiFe-layered double hydroxides for improved activity and stability towards the oxygen evolution reaction. Angew Chem Int Ed 2021;60(46):24612–9.
- [34] Song X, Jiang W, Cai Z, Yue X, Chen X, Dai W, et al. Visible light-driven deep oxidation of NO and its durability over Fe doped BaSnO3: the NO+ intermediates mechanism and the storage capacity of Ba ions. Chem Eng J 2022;444:136709.
- [35] Zhao K, Qi J, Yin H, Wang Z, Zhao S, Ma X, et al. Efficient water oxidation under visible light by tuning surface defects on ceria nanorods. J Mater Chem A Mater Energy Sustain 2015;3(41):20465–70.
- [36] Hu Z, Li X, Zhang S, Li Q, Fan J, Qu X, et al. Fe₁/TiO₂ Hollow microspheres: Fe and Ti dual active sites boosting the photocatalytic oxidation of NO. Small 2020;16(47):2004583.

- [37] Ruggieri M, Plaia A. An aggregate AQI: comparing different standardizations and introducing a variability index. Sci Total Environ 2012;420:263–72.
- [38] Xiao M, Wang S, Thaweesak S, Luo B, Wang L. Tantalum (oxy)nitride: narrow bandgap photocatalysts for solar hydrogen generation. Engineering 2017;3 (3):365–78.
- [39] Jiang L, Yang J, Yuan X, Guo J, Liang J, Tang W, et al. Defect engineering in polymeric carbon nitride photocatalyst: synthesis, properties and characterizations. Adv Colloid Interface Sci 2021;296:102523.
- [40] Ahsan MA, Puente Santiago AR, Hong Y, Zhang N, Cano M, Rodriguez-Castellon E, et al. Tuning of trifunctional NiCu bimetallic nanoparticles confined in a porous carbon network with surface composition and local structural distortions for the electrocatalytic oxygen reduction, oxygen and hydrogen evolution reactions. J Am Chem Soc 2020;142(34):14688–701.
- [41] Cheng G, Tan X, Song X, Chen X, Dai W, Yuan R, et al. Visible light assisted thermocatalytic reaction of CO + NO over Pd/LaFeO3. Appl Catal B 2019;251:130–42.
- [42] Zhao Y, Zheng L, Shi R, Zhang S, Bian X, Wu F, et al. Alkali etching of layered double hydroxide nanosheets for enhanced photocatalytic N₂ reduction to NH₃. Adv Energy Mater 2020;10(34):2002199.
- [43] Cao J, Zhang J, Dong XA, Fu H, Zhang X, Lv X, et al. Defective borate-decorated polymer carbon nitride: enhanced photocatalytic NO removal, synergy effect and reaction pathway. Appl Catal B 2019;249:266–74.
- [44] Lv X, Jiang K, Wu H, Ao L, Hu L, Li X, et al. Defective layered double hydroxide nanosheet boosts electrocatalytic hydrodechlorination reaction on supported palladium nanoparticle. ACS ES&T Water 2022;2(8):1451–60.
- [45] Yang W, Feng X, Chen X, Wu C, Wang F, Gao Z, et al. Understanding trends in the NO oxidation activity of single-atom catalysts. J Environ Chem Eng 2022;10(6):108744.
- [46] Wu L, An S, Song YF. Heteropolyacids-immobilized graphitic carbon nitride: highly efficient photo-oxidation of benzyl alcohol in the aqueous phase. Engineering 2021;7(1):94–102.
- [47] Liao J, Cui W, Li J, Sheng J, Wang H, Dong XA, et al. Nitrogen defect structure and NO+ intermediate promoted photocatalytic NO removal on H2 treated g-C3N4. Chem Eng J 2020;379:122282.