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In digital cameras, we find a major limitation: the image and video form inherited from a film camera
obstructs it from capturing the rapidly changing photonic world. Here, we present vform, a bit sequence
array where each bit represents whether the accumulation of photons has reached a threshold, to record
and reconstruct the scene radiance at any moment. By employing only consumer-level complementary
metal–oxide semiconductor (CMOS) sensors and integrated circuits, we have developed a spike camera
that is 1000� faster than conventional cameras. By treating vform as spike trains in biological vision,
we have further developed a spiking neural network (SNN)-based machine vision system that combines
the speed of the machine and the mechanism of biological vision, achieving high-speed object detection
and tracking 1000� faster than human vision. We demonstrate the utility of the spike camera and the
super vision system in an assistant referee and target pointing system. Our study is expected to funda-
mentally revolutionize the image and video concepts and related industries, including photography,
movies, and visual media, and to unseal a new SNN-enabled speed-free machine vision era.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Is a digital camera truly digital? The typical answer is yes, as
imaging on film is replaced by imaging with charge-coupled device
(CCD)/complementarymetal-oxide-semiconductor (CMOS) sensors
and digital circuits. However, the essence of the digital camera
remains in the analog age, as it indiscriminately inherits the image
and video form, which are necessary to record the temporal dynam-
ics of light on film [1–3] but are not necessary for a purely digital
system. In fact, an image cannot record the change in light during
the exposure time, and a video evenmisses all of the dynamic infor-
mation between two neighboring exposures. Furthermore, the
frame rate of cost-effective consumer-level cameras is only tens
of hertz, making capture of high-speed scenes impossible. In con-
trast, high-speed cameras can reach a time sampling frequency of
thousands or even tens of thousands of hertz, but they require spe-
cialized sensors and shutters that are highly expensive [4,5]. There-
fore, the image and video form has become the greatest obstacle for
digital cameras to capture the fast-changing photonic world.
In this study, we propose a revolutionary visual representation,
called vform, that breaks the conventional frame-based represen-
tation, allowing cost-effective high-speed cameras to be made.
Inspired by the sampling mechanism of primate fovea [6,7], vform
takes advantage of spike sequences to represent the changes in
light in the spatial–temporal domain and can accurately retain
the timing of physical optical flow. This brings the ability to recon-
struct the scene radiance at any given moment, which is called full-
time imaging.

Based on the new visual representation model, we develop the
VidarOne chip and spike camera with the same CMOS sensors and
consumer-grade integrated circuits as in traditional cameras [8]. A
spike is generated when the accumulated intensity collected by the
photosensitive devices exceeds a given threshold. The photoelec-
tric conversion speed of these photosensitive devices is approxi-
mately 10 ns, which is six orders of magnitude faster than that of
a human retina [9]. Therefore, while having similar mechanisms,
the spike camera avoids the speed limitation of biological vision.
The first spike camera we developed has a time sampling fre-
quency of 40 000 Hz, which can be used to implement high-
speed imaging 1000 times faster than that of human vision and
conventional cameras.
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http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.eng.2022.01.012
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:yuzf12@pku.edu.cn
https://doi.org/10.1016/j.eng.2022.01.012
http://www.sciencedirect.com/science/journal/20958099
http://www.elsevier.com/locate/eng


T. Huang, Y. Zheng, Z. Yu et al. Engineering 25 (2023) 110–119
The spike streams generated by the spike camera have a clear
physical meaning; that is, they encode the spatial–temporal visual
information of the input scene and can thus be used to perform
high-speed vision tasks. However, conventional machine vision
methods based on artificial neural networks (ANNs) [10] cannot
process these spike streams in real time because they must first
convert the spike streams to images (40 000 frames per second)
and then process them frame by frame. In contrast, we find that
spiking neural networks (SNNs) [11,12] can naturally process the
output spike streams of a spike camera in real time. Using this
approach, we developed an SNN-based supervision system that
combines the speed of the machine and the mechanism of biologi-
cal vision [13–18]. The vision process can be understood as the
flow of spike sequences within the SNN; thus, the processing speed
only depends on the physical properties of the SNN. We realized
real-time processing of 40 000 Hz vform spike streams in the
supervision system with ordinary central processing units (CPUs)
and achieved high-speed moving object detection and tracking
that is 1000 times faster than that of human vision. In the future,
by using SNN hardware and higher speed spike cameras, we can
implement object detection, tracking, prediction, and recognition
at electrical speeds and achieve superhuman vision faster by more
orders of magnitude. All we need are regular consumer-grade
optoelectronic devices and circuit technologies that are widely
used today.
2. Methods

(1) Visual texture reconstruction. The texture from window
(TFW) method obtains the pixel value (proportional to the scene
radiance) by calculating the number of spikes in a time window.
Specifically, a moving time window collects spikes in a specific per-
iod. By counting these spikes, the pixel value is estimated by:

Pti ¼
Nw

w
� C ð1Þ

where Pti refers to the pixel value at moment ti; w is the size of the
time window that contains the previous w moments before ti; Nw is
the total number of spikes collected in the time window; and C
refers to the maximum dynamic range of the reconstruction. The
texture from interspike interval (TFI) method assumes that the
scene radiance �I is a constant in a short period. According to the
spike camera mechanism, the spike generation condition can be
simplified as �IDt � /, where Dt is the interspike interval obtained
by calculating the time between two neighboring spikes and /
denotes the trigger threshold. Thus, the pixel value can be esti-
mated with two spikes (i.e., one interspike interval):

Pti ¼
C
Dti

ð2Þ

where Dti represents the interspike interval corresponding to
moment ti.

We test the proposed image reconstruction algorithms and
compare it with conventional camera. We build a hybrid camera
system consisting of the spike camera, conventional camera, and
a beam splitter. Two cameras can record the same scene through
the beam splitter. We employ two no-reference image quality
Table 1
Comparison among TFI, TFW, and conventional camera.

Index Scene TFI

STD Motion 73.81
Static 73.82

2D entropy Motion 12.86
Static 12.83

111
assessment metrics, namely two-dimensional (2D) entropy and
standard deviation (STD). 2D entropy uses both the gray value of
a pixel and its local average gray value to evaluate the amount of
information carried by the image, larger 2D entropy means more
information. STD evaluates the contrast of the image, and larger
STD means higher contrast. As shown in Table 1, our reconstruc-
tion methods achieve better results than conventional camera in
all two metrics.

(2) Dynamic connection gate. The dynamic connection gate is
based on short-term plasticity (STP), which refers to the short-term
change in synaptic strength (usually between tens to thousands of
milliseconds), also known as the dynamic connection between
neurons [19,20]. When a postsynaptic neuron receives a sequence
of action potentials from a presynaptic neuron, the postsynaptic
potential (PSP) changes according to:

PSP tð Þ ¼ A � xðtÞ � uðtÞ ð3Þ

where A is the maximum current value that an action potential can
trigger on a postsynaptic neuron; x(t) (0 < x(t) < 1) represents the
remaining number of available neurotransmitters in the axon ter-
minal at time t; and u(t) denotes the release probability of neuro-
transmitters in the axon at time t. When a postsynaptic neuron
receives a sequence of action potentials with fixed frequency from
a presynaptic neuron, the PSP converges to a stable state after sev-
eral spikes arrive [21] (Fig. 1(a)). If the spike frequency changes,
then the PSP will fluctuate around a stable value (Fig. 1(b)). By tak-
ing advantage of the sensitivity of the STP to the release time mode
of the input spike streams, the spike streams generated by the back-
ground or static areas can be filtered, and only the spike streams
generated by the moving object are retained.

(3) Detection and tracking. The neuron in the filter layer is
connected to nine adjacent leaky integrate-and-fire (LIF) neurons
in the detection layer. Each LIF neuron accumulates current from
presynaptic neurons and fires when the membrane potential
reaches the threshold. As only the area corresponding to a moving
object in the detection layer can generate spike streams, each mov-
ing object can be found by detecting the connected area of the fir-
ing neurons. The tracking-by-detection method is utilized to track
different moving objects. To evaluate algorithm accuracy, we use
the detection success rate (DSR) to measure the effect of object
detection, and multiple-object tracking accuracies (MOTA), false
positive (FP), miss detected (FN), identifier switches (IDS) to eval-
uate the effect of object tracking. The results are shown in Table 2,
we can find that our algorithm can achieve good performance with
low power.

(4) Continuous attractor neural network (CANN) for predic-
tion. A CANN is a canonical network model for neural information
representation. A previous study has revealed that by adding nega-
tive feedback to neuronal dynamics, a CANN can track a moving
object anticipatively with an approximately constant leading time
[22]. Based on this, we develop a CANN model for anticipatively
tracking a fast-moving object in real-world applications, with the
visual inputs coming directly from the spike camera.

(5) Object recognition. The synaptic weights of the recognition
SNN are trained with the backpropagation (BP)-spiking-timing-
dependent plasticity (STDP) learning rule, which is derived from
Tavanaei and Maidi [23]. Here, we use multiple spike neurons to
TFW Conventional camera

74.33 73.25
74.29 73.44

13.17 11.54
13.21 11.78



Fig. 1. PSP changes with respect to the spikes from a presynaptic neuron. (a) The PSP amplitude converges to a stable state for the input spikes with a fixed frequency of
30 Hz; (b) the PSP amplitude (blue curve) fluctuates around a stable value for the input spikes with varying frequency (red curve).

Table 2
Accuracy of detection and tracking. Quantitative evaluation of detection and tracking.

DSP MOTA FP FN IDS Speed (Hz) Power (W)

100% 96.32% 23 23 0 20 811 2.254

Table 3
Unified description of the SCHSSD.

Sequence Length (s) Spike number

Class A: moving target
Moving car (100 km�h�1) 0.20 102206031
Rotating disc (7200 rpm) 3.84 535852602
Rotating fan (2400 rpm) 2.00 407620564
Bursting balloon 0.10 6351184

Class B: moving spike camera
Moving train (350 km�h�1) 0.20 42898223
Forest 0.22 93319068
Viaduct bridge 0.22 136859111
Railway 0.22 87866720
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represent one category in the last layer of recognition SNN. Specif-
ically, m neurons are divided into n groups to represent n cate-
gories (m = kn, where k denotes the number of neurons per
category). The real spike data generated from the spike camera
mixed with the simulated data generated from Spike-Sim are used
as the training dataset. In the training process, the classification
neuron with the maximum membrane potential in the target
group updates its synaptic weights according to STDP [24], while
the misfired classification neurons with the maximum membrane
potential in the nontarget groups undergo anti-STDP [25]. Then,
the modulation of synaptic weights is backpropagated layer by
layer according to presynaptic activities.

(6) Estimation of velocity. As the angular velocity of the fan is
2400 revolutions per minute (rpm) and the distance from the cen-
ter of the characters to the center of the fan is 0.12 m, the linear
velocity of the characters on the fan can be estimated as
2400/60 � 2 � p � 0.12 � 30 m�s�1. Considering that the distance
between the fan and the spike camera is 0.75 m, the vidar camera
and the super vision system can detect, track, and recognize a mov-
ing object with a linear velocity of 40 m�s�1 within 1 m in real time
according to the central perspective principle.

(7) Spike camera high-speed spike dataset (VHSSD). This
dataset includes ① spike streams of high-speed moving targets
captured with a static vidar camera (Class A) and ② spike streams
of natural scenes captured with a high-speed moving spike camera
(Class B). Class A contains a moving car, a rotating disc, a rotating
fan, and a bursting balloon, while Class B contains train, forest, via-
duct bridge, and railway scenes (more details can be found in
Table 3). We also provide SpikePlayer for playback of the spike
sequences.

(8) SpikePlayer. This visualization software can play real and
simulated spatial–temporal spike streams (i.e. dat files) recorded
by the spike camera, providing high frame rate videos recon-
structed with the proposed TFW and TFI. SpikePlayer supports var-
ious resolutions, such as 400 � 250, and even extends the
simulator’s compatibility.
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(9) Spike-Sim. Spike-Sim is a simulator of the spike camera
used to simulate arbitrary camera motion and object motion in
three-dimensional (3D) scenes and provides reference images
and additional information, including camera pose, object velocity,
and so forth. This simulator integrates the principle of spike cam-
era theory and multiple rendering engines, including a fast and
custom renderer developed based on Open Graphics Library
(OpenGL) that can render and generate spike streams in real time
and a photorealistic render based on Blender’s Cycles engine.
3. Results

3.1. Vform: A new and more natural visual form

Before we introduce the new visual representation called vidar,
we briefly review the concepts of images and videos. For a large
number of photons traveling within a camera’s viewing frustum
(Fig. 2(a)), the camera will acquire images at time t1, t2, t3, . . ., tn
(the time interval is 1/f seconds) according to the predetermined
frame rate f. During image capturing, all the photosensitive units
simultaneously capture photons over a duration of Dt (known as



Fig. 2. Overall comparison of image and vform in terms of visual information representation. (a) Visual representation by images and video. The photosensitive units (three
circles) capture a group of photons (yellow shooting stars) and output the accumulated intensity (shown by the brightness of the circle) during the exposure time of 3.0 ms
(red line). An image corresponds to the intensity distribution according to the spatial arrangement of the photoreceptors, and a video is generated by acquiring images every
33.0 ms according to the predetermined frame rate f = 30 Hz. Note that the visual information during the 30.0 ms interval (white line) is completely lost. (b) Visual
representation by vform. The photosensitive units (three circles) continuously capture photons and generate a spike (white circles) when the accumulated intensity exceeds a
given threshold (here, the threshold is four photons). Vform is a bit sequence array arranged in accordance with the spatial arrangement of the device, where a bit 1 indicates
that a spike is generated by the photosensitive unit at that moment, and a bit 0 indicates that the unit is in the cumulative state. The vform for the three photosensitive units

here is
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00000001000000
01101010101011
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4
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the exposure time, Dt < 1=f ) and then record the accumulated
intensities. The distribution of intensities according to the spatial
arrangement of the photoreceptors forms the image, and a
sequence of images arranged at equal time intervals is called a
video. From the perspective of the plenoptic function [26], what
is recorded in the image is not the moment at time t1, t2, t3, . . .,
tn, but the accumulation of physical processes that last Dt. For a
video, the cumulative time (exposure time)Dt used to acquire each
frame is less than or equal to the time interval 1/f between two
frames of the video, which means that the information in period
1
f � Dt is completely lost, and the motion process during time inter-
val Dt is also ‘‘squashed” into the image and lost. Thus, the tempo-
ral domain sampling of the video is not a complete sampling of the
physical process.

The synchronous exposures and the same exposure time in
images and videos impede the ability of digital cameras to cap-
ture the rapidly changing photonic world. However, such a
design is not necessary. Here, we introduce vform, a new visual
representation that can better capture the temporal domain
changes in light by utilizing a new temporal domain sampling
mechanism and allowing asynchronous exposures. Here, vform,
as the combination of ‘‘vi-” (visual) and ‘‘form”, without any cap-
italization, is coined to define a new form of visual information
to replace video.
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Specifically, vform is no different from traditional images and
videos in terms of spatial sampling. Vformuses the samephotosensi-
tive devices (i.e., well-known CMOS or CCD sensors, as in traditional
cameras). Therefore, vform also takes advantage of the spatial
arrangement of a lattice to represent spatial information (Fig. 2(b)).
The fundamental difference between vform and video is the use of
a new temporal domain sampling method. All the photosensitive
units continuously capture photons instead of being synchronously
exposedwith the same exposure time.When the accumulated inten-
sity exceeds a given threshold, a spike is generated (Fig. 2(b)). The
spike and the duration required to generate this spike are called a
vit. The vits generated by each photosensitive unit are arranged in
sequence according to chronological order. The simplest representa-
tion of vits is a bit stream, where 1 indicates that a spike appears at
thatmoment, and 0 indicates that the unit is in the cumulative state.
A bit 1 and all the 0 s between this 1 and the previous 1 constitute a
digital vit. Each photosensitive unit can generate a spike stream, and
the spike streams generated by all the photosensitive units are
arranged in accordance with the spatial arrangement of the device
to form a spike stream array, that is, vform.

The outstanding advantage of vidar over video is that the tem-
poral domain change in light at each sampling position is effec-
tively retained. With a device that is sensitive to a single photon,
a photon can excite a spike. In this case, vform records the exact
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and complete physical process. Ordinary photosensitive devices
excite a spike only when they capture a set of photons, which is
a rough representation of the physical process. However, the time
relationship of the physical process is still preserved to the greatest
extent, in contrast to when the time relationship is arranged uni-
formly at tens of hertz through artificial rules such as in video. In
fact, the time sensitivity of CMOS photosensitive devices widely
used today has reached tens of nanoseconds. With this new model
vform, high-speed temporal domain sampling of ten million hertz
can be achieved, and extremely fast physical processes can be
recorded. Of course, daily vision applications do not require such
a high sampling frequency. The first chip we developed set a sam-
pling frequency of 40 000 Hz, which is 1000 times faster than the
sampling frequency of human vision and traditional cameras.
Clearly, this chip can be utilized to shoot a high-speed rail with a
speed of 350 km�h�1 and a hard drive rotating at a speed of
7200 rpm.

Vform records fine changes in light at various positions within a
certain spatial range, and its physical meaning is very clear. There-
fore, it is expected that vform can be used to generate traditional
images and videos. In fact, for any given moment, the scene radi-
ance at each position and the pixel value of each pixel can be esti-
mated from the vit covering that moment, and more detailed scene
radiance and pixel value can be estimated by referring to the pre-
vious and spatially adjacent vits, thereby obtaining fine images at
arbitrary moments. The ability of vform to reconstruct the scene
radiance at any moment is called full-time imaging or continuous
imaging.

3.2. VidarOne chip and spike camera system

The VidarOne chip is developed based on the new visual repre-
sentation model spike and adopts an asynchronous pixel trigger
architecture. As shown in Fig. 3(a), the 400 � 250 pixel array con-
verts the input photons into a spike stream array and utilizes a roll-
ing shutter to detect the responses of all the pixels. After that, the
row scanner scans the pixel array row by row. When one row of
pixels is selected through the logic control signal, the data are
transferred into the digital buffer for parallel readout. To support
the high-speed output of the spike stream, the VidarOne chip pro-
vides an eight-channel specialized communication interface with a
bandwidth of 500 Mb�s�1. The synchronous readout interface is
clocked at 20 MHz.

The basic circuit in a pixel, as shown in Fig. 3(b), consists of a
spike trigger circuit, a reset circuit, and a readout circuit. The pho-
todiode in the pixel continuously captures photons and converts
the incident light illumination into a continuous photocurrent Iph.
Thereafter, the photodiode voltage Vpix decreases during the collec-
tion of photoelectrons. When the photodiode voltage Vpix reaches a
certain threshold Vref, the output of the comparator toggles, and a
flip (spike) signal is generated (see Fig. 3(c) for illustration). The
latch synchronizes the flip signal of the comparator under the
enable operation of the clock signal (clk). Once the latch detects
the flip signal, the photodiode voltage Vpix is reset to a predefined
reset voltage. Meanwhile, the spike signal is sent to the recom-
mended standard (RS) flip-flop and saved. The row readout signal
Rd controls the sequential scanning and readout of the spike
streams, and the row reset signal Rst is responsible for clearing
the signals in the RS flip-flop. The timing diagram of the spike pixel
is shown in Fig. 3(d). Under the control of the clk, the spike signal is
fixed at a high level lasting 100 ns. For the spike signal generated at
time A (see arrow A), the spike is read out after 50 ns by the row
readout signal Rd at a high level, considering that the row reset sig-
nal Rst is at a low level. For the spike signal generated at time B (see
arrow B), the RS flip-flop captures the spike signal after 50 ns, as
the RS flip-flop is shielded through the reset signal Rst at a high
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level. The spike is read out when the next readout signal Rd arrives.
In a readout cycle, only one spike signal can be processed even if
two or more spike signals are triggered. The reason is that the RS
flip-flop will not respond to the other spikes when it is latched
by a spike signal. As the row scanning time is 100 ns, the time
resolution of spike streams generated by the 250-row pixel array
is 25 ls.

Fabricated using standard 110 nm 1-poly 3-metal process tech-
nology, the VidarOne chip occupies a die area of 9.96 mm
� 7.10 mm (Fig. 3(e)). Each square pixel has a size of 20 lm
� 20 lm and achieves a 13.75% fill factor on the prototype chip.
The large-size pixel detector can guarantee a sufficient photodetec-
tor area after placement of the metal grid. Under natural light, the
chip can provide a high dynamic range of more than 100 dB with-
out using a dynamic range enhancement technique. The energy
consumption of the proposed design is approximately 370 mW.
A physical view of the packaged VidarOne chip is shown in
Fig. 3(f). The placement and routing are carefully designed to min-
imize the silicon area for the pixel circuits.

The spike camera system, which is composed of a visual infor-
mation acquisition module, a high-speed sensing module, and a
real-time visual computing module, is developed (Fig. 3(g)). The
visual information acquisition module converts the input scene
into spike streams, which are passed through the sensing module
to undergo high-throughput real-time data processing operations
and then are sent to the visual computing module through the
peripheral component interconnect express bus.

3.3. Visual texture reconstruction with the spike camera

The spike camera has the ability of full-time imaging. The visual
textures at any given moment can be reconstructed according to
the characteristics of output spike streams (vits), and the dynamic
range and quality of reconstructed textures are very flexible. To
reconstruct the captured scene and bridge the gap between vidar
data and conventional frame-based vision, we propose two visual
texture reconstruction strategies, namely, TFW (Fig. 4(a)) and TFI
(Fig. 4(b)). More details are in Section 2.

Specifically, the TFW method takes advantage of the principle
that the scene radiance is directly proportional to the spike count
(firing rate); thus, one can compute the pixel value (proportional
to the scene radiance) by using a moving time window to collect
the spikes in a specific period (Fig. 4(a)). The reconstruction results
are illustrated in Fig. 4(c), where we present a novel spike dataset
called SCHSSD (see Section 2). The first row of Fig. 4(c) presents the
raw data of the spike camera for eight different scenes and the sec-
ond row shows the texture reconstruction with TFW. The TFW
method is suitable for stationary scenes. In the case of high-
speed moving scenes, the scene radiance received by the spike
camera changes rapidly. At this time, the firing rate over a period
cannot capture this rapid change in the scene radiance, causing
blurry imaging (Fig. 4(c) second row). The TFI method is proposed
to solve this problem by utilizing the fact that the scene radiance is
inversely proportional to the interspike interval (Fig. 4(b)). Thus,
only two spikes (i.e., one interspike interval), are needed to esti-
mate the scene radiance in this period, which can match the rapid
change in the scene radiance for high-speed moving scenes. In fact,
the texture reconstructed with TFI updates the motion nearly syn-
chronously. TFI achieves better results than TFW for high-speed
moving scenes (Fig. 4(c) third row). We also compare our construc-
tion results quantitatively with that of conventional cameras. As
illustrated in Table 1, our reconstruction methods achieve better
results than conventional camera.

To facilitate the demonstration of the new idea, we develop a
spike camera simulator, Spike-Sim, that can simulate arbitrary cam-
era motion and object motion in 3D scenes and generate reliable



Fig. 3. Design of the VidarOne chip and the spike camera system. (a) Schematic of the chip architecture. It mainly consists of a pixel array, a row scanner with the configured
driver, a column readout circuit with an addressable digital buffer, bias/reference circuits, and digital logic control. H: horizontal; V: vertical; LVDS: low voltage differential
signaling. (b) The spike generation unit includes three parts: a spike trigger circuit consisting of a photodiode, a reset transistor, and a comparator; a self-reset unit consisting
of a latch, a not and (NAND) gate, and an inverter; and an in-pixel readout circuit consisting of a recommended standard (RS) flip-flop and a tri-state gate. VDD: supply voltage;
Vbias: bias voltage; Vpix: photodiode voltage; Vref: reference (threshold) voltage; Vrst: reset state voltage; Iph: photocurrent; Rst: row reset signal; Rd: row readout signal. The
latch will be locked when clock signal (clk) is at a high level. (c) Principle of spike triggering and spike coding. The pixel intensity is encoded as 1 at the time when the flip
signal (spike) is triggered and 0 otherwise. (d) Timing diagram of the spike stream. (e) Microphotograph of the VidarOne chip. Each fabricated block corresponds to the
components in (a). (f) Image of the packaged VidarOne chip. (g) The spike camera system includes a visual information acquisition module composed of an industrial camera
lens and a VidarOne chip, a high-speed sensing module implemented by a field-programmable gate array chip, and a real-time visual computing module implemented by a
desktop workstation.
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spike streams similar to the spike camera (see Section 2). In addi-
tion, this simulator provides color images by simulating the red–
green–blue (RGB) channels of the pixel. Here, we construct the sce-
nes of ‘‘PKU flying ball” and ‘‘PKU coin” with Blender and generate
spike streams with Spike-Sim. The first and second rows of Fig. 4
(d) present the reference images generated by an ordinary camera
(f = 30 Hz) for the two scenes and the simulated spikes generated
by Spike-Sim, respectively. The TFW and TFI reconstruction results
are shown in the third and fourth rows. The details in the reference
images are fuzzy,while the images reconstructed based on the spike
streams generated by Spike-Sim show more texture details.

3.4. Super vision system with SNNs

Here, we show that super vision can be achieved by combining
the speed of the machine and the mechanism of biological vision.
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We propose a super vision system for high-speed moving object
detection, tracking, prediction, and recognition based on SNNs that
is 1000 times faster than the human vision system (Fig. 5(a)). Real-
izing these functions involves three major challenges: first, remov-
ing spikes generated from the background/static part of the scene
for subsequent high-level visual tasks; second, detecting and
smoothly tracking high-speed moving objects as well as predicting
the trajectory; and third, recognizing the tracked objects. To
accomplish these tasks, we propose a dynamic connection gate
with STP for filtering spatiotemporal spike sequences, a locally
connected SNN for object detection and tracking, a CANN for pre-
diction, and a three-layer fully connected SNN for object
recognition.

The detailed structure is shown in Figs. 5(b)–(e). As the SCHSSD
camera generates spike streams with a fixed frequency for the
background/static part of the scene, which will hamper the



Fig. 4. Texture reconstruction with the spike camera. (a) Illustration of the TFWmethod. This method uses the principle that the scene radiance is directly proportional to the
spike count. The light blue rectangle represents the spike streams of a pixel and the corresponding reconstructed grayscale value. The TFW method can reconstruct the
texture with a free dynamic range by resizing the time window to different widths and collecting different numbers of spikes (see the four frames on the right). (b) Illustration
of the TFI method. This method uses the principle that the scene radiance is inversely proportional to the interspike interval. The TFI method applies to high-speed moving
scenes. (c) Reconstruction results for the SCHSSD. The three rows represent the raw spikes from the spike camera, texture reconstruction by TFW, and texture reconstruction
by TFI. (d) Reconstruction results for two scenes constructed with a Blender. Scene 1: PKU flying ball (inspired by the ‘‘golden snitch” Quidditch game ball from the Harry
Potter Series). The wings of the flying ball flap at night and enter the field of view of the spike camera from far to near. Scene 2; PKU coin. A gold coin with the Peking
University logo rotates on a wooden desktop and eventually stops. Both scenes consider the slight movement of the camera.
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subsequent high-level visual tasks, the dynamic connection gate
based on STP is introduced here to filter spikes (Fig. 5(b), see Sec-
tion 2). The gate closes when the input spike streams have a fixed
frequency (corresponding to background or static objects) and
opens when the spike frequency changes (corresponding to mov-
ing objects); thus, only the spike streams generated by the moving
objects are retained. The neurons in the filter layer send excitatory
PSPs (EPSPs) to spatially adjacent neurons in the detection layer,
where all the neurons fire spikes according to the LIF model
(Fig. 5(c)). Each moving object is found by detecting the connected
area of the firing neurons, while in the tracking layer, different
moving objects are associated by comparing the position or topol-
ogy similarity of the moving neurons at the previous time with that
at the current time. The next layer is a CANN (Fig. 5(d)), which is
116
used to predict the trajectory by adding negative feedback to the
neuronal dynamics. It can track a moving object anticipatively
with an approximately constant leading time (see Section 2). The
recognition network is a multilayer fully connected SNN (Fig.
5(e)). The network is trained with the BP-STDP learning rule (see
Section 2), and the recognition result is determined by the firing
rate of the neurons in the last layer.

3.5. Demonstration of the utility of the spike camera and the super
vision system

To demonstrate the utility of the spike camera and the super
vision system, we design experiments of auxiliary referee and tar-
get pointing systems. Fig. 6(a) illustrates the auxiliary referee



Fig. 5. Super vision system. (a) Framework of high-speed moving object detection, tracking, prediction and recognition based on SNNs. (b) Dynamic connection gate with STP
for the spatiotemporal spike sequence filter, it removes the spike streams that have a fixed frequency. (c) Locally connected SNN for object detection and tracking. (d) CANN
for predicting the trajectory, the right of the figure is the dynamics of a single neuron, where the neuron receives a recurrent input

P
j Jijrj from other neurons, an external

input Iextðx; tÞ containing the stimulus information and a negative current �V x; tð Þ representing the spike–frequency–adaption (SFA) effect; the feedback of SFA is effectively
delayed by time sv; Uðx; tÞ : the synaptic input at time t to neuron at x. (e) Three-layer fully connected SNN trained for object recognition. IF: integrate-and-fire neuron;
W: weight.
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scene, in which we make use of a table tennis ball machine to
launch a ball to simulate games such as tennis and badminton.
The problem is to determine whether the ball is in or out of bounds
(white line). As making a judgment by the human eye when the
ball drop location is near the bounds is difficult, an eagle eye sys-
tem is often used in the game. In addition to being expensive, the
eagle eye system cannot record the moment when the ball hits the
ground. Generally, it is calculated from the movement trajectory,
which may cause disputes with a referee. In contrast, the spike
camera has the full-time imaging ability to record the entire
process of ball landing, thus enabling the referee to determine
the ball drop location (Fig. 6(b)).

Moreover, a target pointing system is presented to demonstrate
that high-speed vision can be achieved by combining the spike
camera and the super vision system (Fig. 6(c)). The spike camera
is set in front of a high-speed rotating fan (approximately
2400 rpm) with three characters (‘‘P,” ‘‘K,” and ‘‘U”) pasted on its
blades. One can choose one of the characters as the pointing target,
and the laser needs to fire and hit the photographic paper at the
top of the character. Solving this problem requires three steps:
first, detecting and tracking all the moving objects in the scene;
second, recognizing all the moving objects and determining the
position of the character given in advance; and third, predicting
the trajectory of the character and controlling the laser to hit the
target. The proposed super vision system (Fig. 5) is used to accom-
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plish this task. Fig. 6(d) illustrates a comparison of the fan before
and after laser hits. This demonstration provides an appropriate
method to evaluate the performance of the spike camera and the
super vision system. Fig. 6(e) visualizes the output spike train in
response to different characters. Fig. 6(f) illustrates the detection
and tracking performance for the three characters, from which
one can find that the network can detect all the moving objects
and track them smoothly. The spike camera and the super vision
system can detect, track, and recognize the fan moving with a lin-
ear velocity of 30 m�s�1 within 0.75 m in real time (see Section 2).
According to the central perspective principle, this system can
detect, track, and recognize an aircraft flying at the speed of sound
within 10 m. Moreover, it can detect, track, and recognize a high-
speed moving object at Mach 100 within 1 km (Fig. 6(g)).

3.6. Application prospects

The vidar camera is capable of capturing fast object movements.
This camera has a high-speed mode with functions similar to the
human eye and better performance than the human eye. This is
not possible with traditional frame-based cameras due to the sig-
nificant information loss between frames. By increasing the frame
rate, some high-speed cameras, such as Phantom cameras, have
mitigated this problem, but they require specialized sensors and
shutters that are highly expensive. In contrast, the spike camera



Fig. 6. Demonstration of the utility of the vidar camera and the supervision system with auxiliary referee and target pointing systems. (a) Illustration of the auxiliary referee
task, where the spike camera is used to determine whether the ball is in or out of bounds. (b) The spike camera can capture the entire process of the ball landing. Here, the
speed of the table tennis ball is approximately 100 km�h�1. Note that the ball and boundary are colored for emphasis, and only 6 of 170 frames are shown here. (c) Illustration
of the target pointing system. The laser needs to hit the laser printing paper at the top of the known character on a high-speed rotating fan. (d) Comparison of a fan before and
after laser hits. The laser sends 64 pulses and hits the predetermined character ‘‘K.” (e) SNN recognition test. The neuron in the output layer of the recognition SNN
corresponding to the correct category produces the most spikes. (f) Multiobject tracking by detection. The y axis shows the polar angle of each object’s position center point
relative to the center of the fan. The SNNs can obtain a mask of each character and return its bounding box in real time. The mask and bounding box are colored by object
membership. (g) Evaluation of the performance of the vidar camera and the super vision system. 1 mach = 340.3 m�s�1.
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is far more cost-effective because it is built from conventional
CCDs via regular semiconductor manufacturing processes. Thus,
it can be widely used in daily life, such as with mobile phones
and cameras.

Another advantage of the spike camera over traditional cameras
is that it offers a more flexible image acquisition method. The spike
camera can reconstruct the image at any given moment with con-
siderable flexibility in the dynamic range. Distinct from another
retina-inspired camera, the dynamic vision sensor [20–22], whose
photosensitive units only generate events when the brightness
change exceeds a threshold, each photosensitive unit of the spike
camera keeps capturing photons independently and generates a
spike when the accumulated intensity exceeds the given threshold.
Therefore, the scene radiance at each sampling position is effec-
tively recorded by the spike camera. We believe that this system
will create its own niche in surveillance systems, with applications
to dynamic face recognition, fingerprint recognition, and palm
print recognition.

The spike camera is inspired by the neuronal circuitry structure
and information processingmechanism in the primate fovea. It con-
verts light signals into electrical signals, yielding spike trains as out-
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put that can be naturally processed by SNNs. Given that SNNs are
efficient and effective in visual perception and cognitive tasks, we
expect that the combination of the spike camera and the super
vision system based on SNNs will provide plentiful utilities for both
fundamental research questions and practical applications, such as
object detection, recognition, and tracking at electrical speeds.
4. Conclusions

By replacing video with vform, spike cameras will bring camera
development back on the right track, realizing the technological
potential of optoelectronic technology that has been suppressed
for decades and replacing traditional video cameras in almost all
fields, especially for high-speed scenes, thus triggering a revolution
in the camera field.

The essence of vform is a spike stream that characterizes the
process of optical temporal and spatial changes, which is a natural
input of SNNs. Vform, as a new generation of the eye of machine
vision, will play an important role in the era of artificial
intelligence.
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