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Model parameters estimation is a pivotal issue for runoff modeling in ungauged catchments. The nonlin-
ear relationship between model parameters and catchment descriptors is a major obstacle for parameter
regionalization, which is the most widely used approach. Runoff modeling was studied in 38 catchments
located in the Yellow–Huai–Hai River Basin (YHHRB). The values of the Nash–Sutcliffe efficiency coeffi-
cient (NSE), coefficient of determination (R2), and percent bias (PBIAS) indicated the acceptable perfor-
mance of the soil and water assessment tool (SWAT) model in the YHHRB. Nine descriptors belonging
to the categories of climate, soil, vegetation, and topography were used to express the catchment char-
acteristics related to the hydrological processes. The quantitative relationships between the parameters
of the SWAT model and the catchment descriptors were analyzed by six regression-based models, includ-
ing linear regression (LR) equations, support vector regression (SVR), random forest (RF), k-nearest neigh-
bor (kNN), decision tree (DT), and radial basis function (RBF). Each of the 38 catchments was assumed to
be an ungauged catchment in turn. Then, the parameters in each target catchment were estimated by the
constructed regression models based on the remaining 37 donor catchments. Furthermore, the similarity-
based regionalization scheme was used for comparison with the regression-based approach. The results
indicated that the runoff with the highest accuracy was modeled by the SVR-based scheme in ungauged
catchments. Compared with the traditional LR-based approach, the accuracy of the runoff modeling in
ungauged catchments was improved by the machine learning algorithms because of the outstanding
capability to deal with nonlinear relationships. The performances of different approaches were similar
in humid regions, while the advantages of the machine learning techniques were more evident in arid
regions. When the study area contained nested catchments, the best result was calculated with the
similarity-based parameter regionalization scheme because of the high catchment density and short spa-
tial distance. The new findings could improve flood forecasting and water resources planning in regions
that lack observed data.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Hydrological models are popular tools for hydrological process
modeling, and these models have been extensively applied in flood
forecasting, water resources management, and the assessment of
climate change impact in recent decades [1,2]. With the improve-
ment of computer technology and the application of multiple
interdisciplinary subjects, hydrological models can now describe
hydrological processes more accurately. Hydrological models have
developed from the original conceptual models (Tank and Sacra-
mento) and centralized models (Xin’anjiang and simplified hydrol-
ogy model (SIMHYD)) to the current popular semi-distributed
models (TOPMODEL; soil and water assessment tool (SWAT));
and distributed model (variable infiltration capacity (VIC)) [3–5].
The accurate estimation of model parameters directly influences
the accuracy of runoff simulation. Generally, the model parameters
are optimized and calibrated by observed streamflow data at the
outlet of a basin. However, numerous catchments are limited by
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geographical or economic conditions and lack adequate observed
data to calibrate model parameters [1]. Therefore, runoff modeling
in ungauged catchments has become a focus for researchers [6,7].
This problem is termed the ‘‘prediction in ungauged basins” (PUB)
in hydrology. To tackle the PUB issues, various regionalization
approaches are widely used to simulate runoff in ungauged catch-
ments by transferring the model parameters from similar catch-
ments to ungauged ones [8,9].

The three widely used parameter regionalization approaches
are regression-based, physical similarity-based, and spatial
proximity-based. Regression analysis method is the most popular
and widely studied approach [10,11]. The key steps are to establish
regression equations between model parameters and catchment
descriptors in gauged catchments, and to estimate model parame-
ters in ungauged catchments with the constructed regression rela-
tionship [12,13]. However, some studies have reported that the
relationships between model parameters and catchment descrip-
tors are often complex, and estimation in ungauged catchments
usually leads to large errors [14].

The physical similarity approach assumes that catchments with
the same physical attributes (such as climate, vegetation, and
topography) have similar modes of runoff generation and conflu-
ence processes [1,15]. The spatial proximity method selects the
donor catchments according to the spatial distance between the
neighboring observed and ungauged catchments, and the parame-
ters of the donor catchment are transferred to the target catchment
[16]. The advantage of the above two approaches over the regres-
sion analysis method is that they do not make linear assumptions,
and these methods have been widely used in recent years [17,18].
However, the spatial proximity approach is not suitable for the
large spatial variation of adjacent basins [19], and the physical sim-
ilarity approach is limited by the rationality of selecting catchment
characteristics [20]. Some researchers have compared and evalu-
ated the three approaches. In most cases, the spatial proximity
and the physical similarity approaches are the most effective [21].
In addition, some researchers have combined the physical similar-
ity and spatial proximity approaches to estimate the model param-
eters of ungauged catchments. The results found that the integrated
similarity-based approach performed slightly better than spatial
proximity-based or physical similarity-based alone [22].

Catchment descriptors and model parameters are interdepen-
dent, and their relationship may be nonlinear [23,24]. Further-
more, a hydrological model is a generalized description of the
catchment hydrological process, and it will inevitably have the
phenomenon of equifinality, making it challenging to obtain the
only optimal solution of the model parameters through calibration.
Estimating the model parameters with the traditional multiple
regression scheme may result in large errors. With the develop-
ment of data mining and artificial intelligence technology, the
machine learning technique has been successfully applied in flood
forecasting, earth science modeling, and remote sensing due to its
good performance in dealing with nonlinear relationships [25]. In
the last decade, some machine learning models have received
increasing attention in the field of model parameters regionaliza-
tion, including support vector machine (SVM), random forest
(RF), and decision tree (DT). For example, Saadi et al. [23] investi-
gated the potential of RF algorithms in the regionalization of the
hourly hydrological model parameters. Hao et al. [26] used an RF
model to regionalize the parameters of the mountain flood predic-
tion model. Jafarzadegan et al. [14] estimated the parameters of an
environmental model in data-scarce regions with the SVM tech-
nique. Ragettli et al. [27] used the splitting rules of classification
and regression trees (CART) to regionalize the parameters of 35
catchments in China. The results showed that machine learning
algorithms could present accurate predictions in general. However,
most existing research focuses on the comparative analysis
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between a single machine learning algorithm and the traditional
regionalization approach. The applicability of different machine
learning algorithms in parameter regionalization has not been
assessed.

The main objective of this paper is to evaluate different
machine learning techniques for parameter regionalization in the
Yellow–Huai–Hai River Basin (YHHRB), analyzing their advantages
and limitations. The performances of the five classical machine
learning-based approaches were compared with linear regression
(LR)-based and similarity-based schemes (combining the physical
similarity and spatial proximity). The performances of the different
parameter regionalization approaches in various climate regions
were further compared. The sections of this paper are organized
as follows: Section 2 describes the study area and the datasets;
Section 3 introduces the methodology used; Sections 4 and 5
describe and discuss the regionalization results, and the conclu-
sions are summarized in Section 6.
2. Study area and datasets

Located in northern China (95�E–123�E, 30�N–43�N), the
YHHRB is the general name of the three first-class basins (Yellow
River Basin, Huai River Basin, and Hai River Basin) in China. The
YHHRB covers 16 provinces with a total area of 1 445 000 km2.
The Yellow River Basin, Huai River Basin, and Hai River Basin have
drainage areas of 795 000 km2, 330 000 km2, and 320 000 km2,
respectively. The population and the gross domestic product
(GDP) of the YHHRB account for about 35% and 32% of the national
total, respectively. The eastern plains in the YHHRB are a substan-
tial agricultural production base in China, and the areas of culti-
vated land and grain output account for 20.4% and 23.6% of the
country’s total, respectively [28]. Thirty-eight typical catchments
with different hydrologic and climatic conditions in the YHHRB
were selected as the study areas in this study (Fig. 1(a)), including
22 catchments in relatively humid regions (aridity index u < 1.7),
and 16 catchments in relatively arid regions (u > 1.7). The detailed
information for the 38 catchments is presented in Table 1.

The monthly mean streamflow of the 38 catchments was
obtained from China’s Hydrological Yearbook, published by the
Hydrological Bureau of the Ministry of Water Resources, China.
The daily data of the rainfall, temperature, wind speed, relative
humidity, and solar radiation during 1961–2015 were extracted
from the gridded daily observation dataset over the China region
(CN05.1), published by the National Climate Center of the China
Meteorological Administration [29]. The digital elevation model
(DEM) of the YHHRB was derived from the Shuttle Radar Topogra-
phy Mission (SRTM) data provided by the Geospatial Data Cloud
Platformy, with a resolution of 30 m, and these data were used to
generate the river network of the hydrological model. The land use
data in 1980 with a spatial resolution of 1 km were obtained from
the Resources and Environment Data Cloud Platform� of the Institute
of Geographic Sciences and Natural Resources Research, Chinese
Academy of Sciences (Fig. 1(b)). The soil data was extracted from
the Harmonized World Soil Database (HWSD), constructed by the
Food and Agriculture Organization (FAO) and the International Insti-
tute for Applied Systems Analysis (IIASA), with a spatial resolution of
1 km (Fig. 1(c)).
3. Methodology

The observed streamflow data were used to calibrate the SWAT
model parameters of 38 typical catchments, and the sensitivity and

http://www.gscloud.cn/home
http://www.resdc.cn


Fig. 1. The basic information of the YHHRB. (a) Location of the study area; (b) landuse type; (c) soil type. KSh: haplic kastanozems; LVk: calcic luvisols; CMe: eutric cambisols;
ATc: cumulic anthrosols; CMc: calcaric cambisols; FLc: calcaric fluvisols; KSi: luvic kastanozems; RGe: eutric regosols; GYh: haplic gypsisols; CMi: gelic cambisols; GLm:
mollic gleysols; LVh: haplic luvisols.
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applicability of these parameters were analyzed. Then, each of the
38 catchments was assumed to be an ungauged catchment in turn,
that is, the target catchment. The model parameters of the target
95
catchment were estimated with machine learning techniques, LR-
based method, and similarity-based approach. Finally, the esti-
mated model parameters were input into the SWAT model to sim-



Table 1
General information for the 38 catchments in the YHHRB.

Basin Station Available data Longitude (�E) Latitude (�N) Area (km2) P (mm) T (�C) NDVI u

Yellow River Minhe 1962–1980 102.80 36.33 15 296.21 450.05 0.84 0.32 2.15
Xiangtang 1961–1973 102.83 36.35 13 833.36 460.42 �2.80 0.34 2.13
Hongqi 1961–1975 103.57 35.80 23 754.83 633.48 1.36 0.41 1.33
Tangnaihai 1961–1976 100.15 35.50 114 132.04 508.86 �3.11 0.34 1.52
Huangfu 1961–1979 111.08 39.28 2 995.68 420.87 6.66 0.19 2.47
Hejin 1961–1971 110.80 35.57 36 753.48 583.02 8.09 0.36 2.03
Daning 1964–1980 110.72 36.47 3 668.02 559.48 8.66 0.35 1.85
Qinan 1961–1985 105.67 34.90 9 274.43 539.07 6.13 0.26 1.76
Wulongkou 1961–1975 112.68 35.15 8 627.86 643.59 8.91 0.45 1.82
Longmenzhen 1961–1970 112.47 34.55 5 053.27 809.80 11.77 0.49 1.53
Baimashi 1961–1969 112.58 34.72 9 728.62 750.97 11.15 0.46 1.59
Changshui 1961–1970 111.44 34.33 5 931.04 765.35 10.40 0.50 1.52
Heishiguan 1961–1969 112.93 34.72 17 288.82 745.30 11.86 0.46 1.61
Linjiaping 1961–1970 110.87 37.70 1 765.52 428.10 7.77 0.28 2.34
Maqu 1963–1976 102.08 33.96 82 808.09 504.34 �3.22 0.34 1.46
Runcheng 1963–1978 112.51 35.47 6 811.32 640.60 8.68 0.45 1.83
Xianyang 1964–1980 108.70 34.32 43 108.76 604.57 7.05 0.38 1.53
Lingkou 1961–1980 110.47 34.08 2 357.79 727.11 10.13 0.53 1.49

Huai River Bantai 1961–1975 115.06 32.71 11 280.02 870.91 14.62 0.48 1.18
Jiangjiaji 1968–1980 115.73 32.30 5 634.37 1 305.43 14.37 0.52 0.85
Linyi 1965–1976 118.40 35.02 6 280.05 731.15 11.91 0.38 1.32
Xixian 1966–1980 114.73 32.33 6 547.73 1 024.95 14.54 0.49 1.00
Zhoukou 1961–1975 114.65 33.63 17 100.01 742.70 13.73 0.48 1.56
Changtaiguan 1965–1980 114.07 32.31 2 940.93 1 032.69 14.44 0.49 1.00
Huaibin 1965–1980 115.41 32.44 14 645.73 1 047.39 14.73 0.48 0.98
Huangchuan 1965–1980 115.04 32.13 1 909.01 1 130.45 14.74 0.49 0.90
Shakou 1970–1981 114.42 32.88 1 878.62 934.07 14.46 0.49 1.14
Suiping 1965–1980 113.97 33.14 1 673.29 885.96 14.19 0.44 1.20
Dapoling 1965–1980 113.75 32.43 1 573.70 1 032.86 14.30 0.50 1.01

Hai River Zhongtangmei 1964–1980 114.88 38.88 3 190.59 501.64 6.41 0.34 1.93
Xiahui 1961–1980 117.17 40.62 4 132.02 549.64 5.67 0.44 1.81
Taolinkou 1961–1980 119.05 40.13 4 502.12 636.02 7.74 0.42 1.39
Guantai 1961–1973 114.08 36.33 16 640.03 643.61 8.62 0.38 1.77
Weishui 1961–1970 114.13 38.03 4 907.88 695.82 9.18 0.36 1.65
Zhangjiafen 1961–1980 116.78 40.62 8 031.28 507.13 4.52 0.43 2.11
Xiaojue 1961–1980 113.71 38.39 13 051.19 514.22 6.23 0.35 1.84
Zijingguan 1961–1970 115.17 39.43 1 639.49 557.36 6.40 0.40 1.97
Sandaohezi 1961–1967 117.70 40.97 15 329.89 443.62 2.51 0.36 2.10

P: annual precipitation; T: annual mean temperature; NDVI: normalized difference vegetation index.
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ulate the runoff process in the target catchment. Based on the
results of the parameter regionalization and the runoff simulation
in the 38 catchments, various regionalization approaches perfor-
mance was evaluated.

3.1. SWAT model

The SWAT model is a physically-based, semi-distributed, and
continuous hydrological model developed by the Agricultural
Research Service of the US Department of Agriculture (USDA)
[30]. The model can simultaneously consider meteorological con-
ditions, soil types, land use patterns, and various water conser-
vancy engineering conditions, and it has been widely used to
simulate the hydrological change process at the watershed scale
[31]. The detailed steps of model construction can be found in
the literature [32]. The parameters of the SWAT model need to
be calibrated to achieve the optimal simulation effect after the
model is built and run. The sequential uncertainty fitting version
2 (SUFI2) algorithm in SWAT calibration and uncertainty programs
(e.g., SWAT-CUP) software is used to calibrate and validate the
model parameters, and the effect of the simulation results is eval-
uated with three indexes: Nash–Sutcliffe efficiency coefficient
(NSE), coefficient of determination (R2), and percent bias (PBIAS),
which can be expressed as follows:

NSE ¼ 1�
Xn

i¼1
Q s � Qoð Þ2

Xn

i¼1
Qo � Qo

� �2 ð1Þ
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R2 ¼
Xn

i¼1
ðQo � QoÞðQ s � Q sÞ

h i2
Xn

i¼1
ðQo � QoÞ

2Xn

i¼1
ðQ s � Q sÞ

2
ð2Þ

PBIAS ¼
Xn

i¼1
Qo � Q sð ÞXn

i¼1
Qo

ð3Þ

where Qo and Q s are the observed and simulated streamflow
(m3�s�1), Qo and Q s are mean observed and simulated streamflow
(m3�s�1), and n is the amount of measured data. Existing studies
have demonstrated that the model simulation results are credible
when NSE > 0.5, R2 > 0.5, �25% < PBIAS <25%, and simulation results
with NSE above 0.75 are considered to be very good [33].

3.2. Regression-based methods

Six regression-based models were introduced to estimate
model parameters, including the LR equations, support vector
regression (SVR), RF, k-nearest neighbor (kNN), DT, and radial basis
function (RBF). Based on the constructed models, the model
parameters were modeled with nine catchment descriptors,
including the catchment area (Area), mean catchment elevation
(Ele), mean catchment slope (Slope), soil sand content (Sand), soil
clay content (Clay), annual precipitation (P), annual mean temper-
ature (T), normalized difference vegetation index (NDVI), and u.
The regression model can be expressed as follows:

y ¼ f ðx;uÞ ð4Þ
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where y and x are the model parameters and the catchment charac-
teristic values, respectively, and u is the vector of the model
parameters.

Since the LR analysis cannot describe the nonlinear relationship
between the model parameters and the catchment descriptors, the
more complex algorithms were used, including SVR, RF, kNN, DT,
and RBF. As a supervised learning method, the SVR can describe
the nonlinear relationship between variables by mapping the ker-
nel function to the high dimensional space [34,35]. The RF is stable
and insensitive to overfitting because some training samples are
randomly selected from the regression tree. It also has good
robustness compared with other algorithms [36]. The kNN is a
non-parametric estimation method that is fitted by calculating
the distance between different eigenvalues of samples, and it does
not require making assumptions about data input [37]. The DT
does not depend on the distribution of the sample data in the
model construction and sample prediction, making the estimate
results more stable [27]. The RBF is a type of feedforward neural
network with wide application, and it can approximate any arbi-
trary nonlinear function with unlimited accuracy [38]. Based on
these advantages, the above five classical machine learning algo-
rithms were applied to the parameter regionalization as a supple-
ment to the traditional LR approach.

A Taylor diagram was used to quantify the similarity of the
model parameters between two patterns (calibration and estima-
tion). It contains three indicators: standard deviations (STDs), root
mean squared error (RMSE), and correlation coefficient (r) [39].

3.3. Similarity-based method

The similarity-based approach integrated consideration of both
the physical similarity and the spatial proximity, which were com-
bined according to their respective weights. Two options were con-
sidered to combine the information from the donor catchments:
parameter weighted averaging (PA) and output weighted averag-
ing (OA). The PA method involved combining the model parame-
ters of the donor catchments according to their corresponding
weights, and then substituting the integrated parameters into the
SWAT model to simulate the runoff of the target catchment (Q1j).

Q1j ¼ Q j;
Pk

i¼1ðwi � XiÞ
� �

ð5Þ

where k is the number of donor catchment; and j is the time step.
In the OA method, the model parameters of the donor catch-

ment were substituted into the SWAT model to simulate the run-
off, and then the simulation results were combined according to
their corresponding weights to estimate the runoff of the target
catchment (Q2j).

Q2j ¼ Pk
i¼1wi � Q j; Xið Þ ð6Þ
Table 2
The parameters information of the SWAT model.

Parameter name Parameter definition

CN2 SCS runoff curve number
SOL_AWC Available water capacity of the soil layer
SOL_K Saturated hydraulic conductivity
ALPHA_BF Baseflow alpha factor
GW_DELAY Groundwater delay time
GWQMN Threshold depth of water in the shallow aquifer required for ret
ESCO Soil evaporation compensation factor
GW_REVAP Groundwater re-evaporation coefficient
REVAPMN Threshold depth of water in the shallow aquifer for re-evaporat
CH_K2 Effective hydraulic conductivity in the main channel alluvium
ALPHA_BNK Base flow alpha factor for bank storage

t-stat* and p-value* are the median of the t-stat and p-values of the 38 catchments.
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where Xi is the model parameters of the donor catchment, and wi is
the integrated weights of the spatial proximity and the physical
similarity methods. The calculation method of wi can be found in
the literature [40].
4. Results

4.1. Runoff modeling and parameter sensitivity analysis of typical
catchment

Eleven parameters related to runoff in the SWAT model were
selected for calibration and sensitivity testing. The physical mean-
ing and the original range of the parameters are summarized in
Table 2. These parameters could be divided into four groups:
parameters that control water movement between soil aquifers
(ALPHA_BF, GW_DELAY, GWQMN, GW_REVAP, and REVAPMN),
soil hydraulic characteristics (SOL_AWC, SOL_K, and ESCO),
hydraulic channel parameters (CH_K2 and ALPHA_BNK) and the
Soil Conservation Service (SCS) curve number (CN2). The t-stat
and the p-value were used to represent the sensitivity of the model
parameter. The higher the absolute value of the t-stat was and the
lower the p-value was, the more sensitive the parameter was. Gen-
erally, the most sensitive parameters were CN2, ALPHA_BNK, ESCO,
and GWQMN. The result was generally consistent with previous
studies [41,42].

The runoff simulation accuracy of the SWAT model in the 38
catchments, indicated by NSE, R2, and PBIAS, was quantitatively
assessed on the monthly scale. To reduce the influence of the initial
conditions of operation, the first year of the calibration period was
used as the warm-up period of the model. The calibration and vali-
dation results of the SWAT model are shown in Fig. 2. During the
simulation periods, the values of NSE and R2 for all catchments
were greater than 0.5, and the PBIAS values were less than 25%.
The values of NSE and R2 were not as high as expected during
the calibration and validation periods, mainly because the con-
structed model was not perfect for some basins. Because the effi-
ciency in the simulation period was acceptable, this part of the
error was believed to be acceptable. The efficiency of the model
in the validation period was usually inferior to that of the calibra-
tion period, because the model parameters were not adjusted to
match the observed data during the validation period [5]. The
SWAT model performed better in humid regions than in arid
regions. For example, the 50th percentile values of NSE (R2) in
the humid and arid regions in the calibration period were 0.85
(0.87) and 0.78 (0.81), respectively. The runoff simulation in arid
areas was still a challenge for hydrology [43]. The performance of
the SWAT model in the simulation period indicated that the con-
structed model had good applicability in the study area, and its cal-
ibrated parameters were reliable for parameter regionalization.
Default range t-stat* p-value* Sensitivity order

�0.2–0.2 12.25 0 1
�0.2–0.4 3.29 0 6
�0.8–0.8 6.55 0 5

0–1 0.66 0.51 10
0–500 1.98 0.05 8

urn flow to occur 0–5000 6.68 0 4
0–1 8.24 0 3
0–0.25 2.78 0.01 7

ion to occur 0–600 0.51 0.61 11
0–500 1.85 0.06 9
0–1 10.45 0 2



Fig. 2. The boxplot of (a) NSE, (b) R2, and (c) PBIAS of calibration and validation periods. The boxes indicate the 25th and 75th percentiles; whiskers represent the lowest and
highest value; the red and blue central lines indicate the 50th percentile; ‘‘+” represents the mean value.

Fig. 4. The VIF test values among nine catchment descriptors.
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4.2. Model parameters regionalization based on regression-based
method

The degree of correlation between the model parameters and
the catchment descriptors is illustrated in Fig. 3(a). The result indi-
cated that CN2, SOL_K, ESCO, and GW_REVAP were correlated with
multiple descriptors. Taking CN2 as an example, its absolute value
of correlation coefficients with Slope, Clay, P, and uwere all greater
than 0.5, indicating that these descriptors were relatively crucial to
CN2. The sensitivity of REVAPMN, CH_K2, and ALPHA_BF in the
calibration period was low (Table 2), and these parameters were
difficult to obtain the optimal solution, resulting in the low
correlation between the parameters and the catchment descriptors
[40]. Although ALPHA_BNK and GWQMN were the sensitivity
parameters of the model, the correlation coefficients between
these parameters and catchment descriptors were low, mainly
because the physical meaning of the model parameters had little
correlation with the descriptors.

The heat map of the correlation coefficients among the nine
catchment descriptors is plotted in Fig. 3(b). The result indicated
that Area and Ele, T and Ele, P and NDVI, u and NDVI, T and P, u
and P had strong correlations, and their absolute value of correla-
tion coefficients were greater than 0.7, thus indicating the poor
independence of the variables. The variance inflation factor (VIF)
values of Ele, P, and T were greater than 10 (Fig. 4), indicating sta-
tistically significant multicollinearity between the catchment
descriptors. Hence, the principal component analysis (PCA)
method was used to reduce the dimensions of nine descriptors to
solve the collinearity problem. Based on the principle that the
cumulative variance contribution rate was greater than 85%, four
Fig. 3. The heat map of the correlation coefficients: (a) calibrated model parameters
descriptors.
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principal components were selected, and the final variables were
calculated according to the principal component coefficients.

The four principal component variables were identified as the
input of six regression-based models, and the model was evaluated
with the leave-one-out method. The correlation diagrams of the
estimated and calibrated high sensitivity parameters are shown
in Fig. 5, including CN2, SOL_AWC, SOL_K, GW_DELAY, ESCO, and
GW_REVAP. The correlation coefficients between the estimated
values of CN2 and SOL_K and the calibration values were greater
than 0.5, indicating the high estimation accuracy. The remaining
versus catchment descriptors; and (b) catchment descriptors versus catchment



Fig. 5. Taylor diagrams of model parameters estimated by six regression-based models.
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five model calibration parameters were difficult to estimate using
the catchment descriptors due to their low correlation with the
descriptors and low sensitivity. In comparing the estimation
results of the six regression-based models, SVR performed better
than the other models, and the estimation effect of DT was rela-
tively poor. After the estimated values of the model parameters
were obtained, which were input into the SWAT model of the
ungauged catchment for runoff simulation.

4.3. Model parameters regionalization based on similarity-based
method

The number of donor catchments directly affects the simulation
accuracy of the target catchment for the similarity-based approach.
Therefore, donor catchment numbers from 1 to 38 were tested, and
the relationship between the number of donor catchments and the
model evaluation criterion (NSE and PBIAS) was analyzed (Fig. 6).
The results indicated that one donor catchment was the most suit-
able when the PA and the OA methods were adopted. For example,
the 50th percentile values of NSE were the highest when one donor
catchment was used, and the 50th percentile values of PBIAS were
low. One donor catchment meant that the catchment closest to the
target catchment was used. In this case, the results of the two
Fig. 6. Impact on model accuracy of the number of donor catchments used for ungauge
represents the nested catchments are contained; ‘‘�” represents nested catchments are
lowest and highest values; the black central lines represent the 50th percentile.
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methods were consistent. The number of donor catchments
obtained was smaller than that from Bao et al. [40] and Oudin
et al. [44] used. Compared with these studies, multiple nested
catchments were used in this study (Fig. 1(a)), including four
catchments within the Heishiguan basin, seven catchments within
the Huaibin basin, and one catchment within the Xianyang basin.
The hydrometeorological conditions in the nested catchments
were similar, leading to the excellent performance of the given
regionalization methodology. In order to investigate the suitable
number of donor catchments after the nested catchments were
excluded, numbers of donor catchments from 1 to 26 were tested.
In this case, one donor catchment was the most suitable when the
PA method was used. When the OA method was used, three donor
catchments were the most suitable. The regionalization perfor-
mance decreased significantly when the nested catchments were
excluded.

4.4. Results of regionalization approaches

Based on the calibration results indicated by NSE and PBIAS, the
runoff simulation accuracy of the assumed ungauged catchment
under the regression-based schemes and similarity-based
approach was compared (Fig. 7). In 38 catchments, the simulation
d catchment simulation, including PA and OA methods: (a) NSE and (b) PBIAS. ‘‘+”
excluded; the boxes indicate the 25th and 75th percentiles; whiskers represent the



Fig. 7. Comparison of calibrated and regionalized results: (a) NSE and (b) PBIAS. Ca: calibration; Si: similarity-based. The boxes indicate the 25th and 75th percentiles;
whiskers represent the lowest and highest values; and the red and blue central lines indicate the 50th percentile.
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accuracy of SVR-based and RBF-based regionalization approaches
was higher than that of the LR-based method. However, the runoff
simulation result based on the similarity-based approach (Si) was
more accurate than the six regression-based methods. The 50th
percentile values of NSE and PBIAS of Si method were 0.71 and
12.5%, respectively, and their accuracy was significantly higher
than that of the regression-based approaches. The reason for this
phenomenon might have been the impact of the nested catch-
ments. Therefore, the nested catchments in the study area were
excluded, and the accuracy of different regionalization methods
was compared in the remaining 26 catchments (Fig. 7). In this case,
the 50th percentile values of NSE (PBIAS) were 0.68 (29%), 0.66
(28.15%), and 0.62 (39.05%) for the SVR, Si, and LR, respectively.
The results indicated that the runoff simulation accuracy of the
SVR-based approach was higher than that of Si and LR-based meth-
ods in the ungauged catchments.

According to Fig. 8, the most successful regression-based
schemes were distributed differently in the 38 catchments. The
LR-based method performed poorly, there were only 2 out of 38
catchments in which the NSE values were higher than that for
other machine learning techniques when the LR-based method
was used, and only 6 out of 38 catchments had the lowest PBIAS
values. The number of the three best performing regionalization
approaches on each catchment was investigated. The results
showed that the performances of SVR, RBF, and kNN were signifi-
Fig. 8. Spatial distribution of the most successful regionalization methods: (a) method
minimum absolute values of PBIAS. The bar diagram represents the statistics of the thre
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cantly better than those of the other methods in the 38
catchments.

As presented in Fig. 9, all regionalization approaches performed
better in humid regions than in arid regions. In humid regions, the
50th percentile values of NSE for different methods were all greater
than 0.7. In contrast, the 50th percentile values of PBIAS varied in
these regions. Generally, the regionalization effect order in humid
regions from good to poor was kNN, Si, RF, SVR, RBF, DT, and LR. In
arid regions, the 50th percentile values of NSE for different
methodologies varied greatly. The 50th percentile values of PBIAS
with the regression-based schemes were greater than 30%. Gener-
ally, the accuracy of the regionalization methods in arid regions,
from high to low, was in the following order: Si, SVR, RF, RBF,
kNN, LR, and DT.
5. Discussion

5.1. Application of machine learning algorithm in parameter
regionalization

Given that catchment descriptors and model parameters are
interdependent, and their relationship is complex and nonlinear.
The machine learning technique is an interesting modeling struc-
ture for parameter regionalization, which can accurately capture
corresponding to the maximum NSE values; and (b) method corresponding to the
e best performing regression-based regionalization methods on each catchment.



Fig. 9. Comparison of regionalized results estimated by calibration (Ca), similarity-based approaches (Si), and six regression-based approaches (LR, SVR, RF, DT, kNN, RBF) in
two types of climatic zones: median (a) NSE and (b) PBIAS for ungaged catchments.
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the intrinsic relationships between the input and output variables,
regardless of their internal physical links. This might be a reliable
and robust solution to the PUB issues. Booker and Snelder [45]
and Golian et al. [8] also found that complex modeling techniques
were superior to the linear method in predicting hydrologic prop-
erties. These technologies produced improved performances and a
high degree of flexibility in capturing nonlinear and complex rela-
tionships between the model parameters and catchment descrip-
tors [46,47]. Unlike the single machine learning algorithm used
in previous research, the potential of multiple methods in region-
alization application was compared in this study, and the result
showed that the SVR-based method performed better than other
algorithms. SVR sought to minimize structural risk in the modeling
process, giving it additional generalization capabilities. Patel and
Ramachandran [48] also found that SVR provided superior perfor-
mance in modeling the discharge time series data. The perfor-
mance of different machine learning algorithms varied
significantly in different climate regions. Different data input
might have had a greater impact on some model performance than
the algorithm itself. It was difficult to determine whether the
machine learning model was the best solution to all problems.

The parameter regionalization error of the regression-based
schemes was larger than that of the similarity-based approach,
because there were fewer training samples and the nonlinear
relationship between the catchment descriptors and the model
parameters was not fully learned. When the parameter regional-
ization results of the various methods were compared with the
calibration results, the performances of the six regression-based
schemes were significantly inferior to that of the calibration
method. Regardless of the strength of the correlation between
the model parameters and the catchment descriptors, with the
use of the descriptors alone, estimating the model parameters
would lead to the decline of parameter regionalization perfor-
mance, indicating that there was still considerable room for
improvement in the problem of model parameterization.
5.2. Donor catchment selection

As an important parameter regionalization methodology, the
similarity-based approach involved the selection of donor catch-
ment using the spatial distance and the physical similarity of the
catchment. The number of donor catchments was related to the
study area, basin density, and the approach (physical similarity
or spatial proximity) used [1]. The regionalization performance
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was best when one donor catchment was selected in this study,
whether the PA method or the OA method was adopted (Fig. 6).
One reason for this was that the 38 catchments included multiple
nested catchments. The similarity degree of the hydrometeorolog-
ical conditions in the nested catchments was relatively high,
resulting in a better performance of parameter regionalization.
When the donor catchments did not contain nested catchments,
the accuracy of the parameter regionalization decreased signifi-
cantly. In addition to the impact of the nested catchments, the
hydrologic and climatic conditions of some typical catchments
had a large span, resulting in low similarity among catchments.
For example, the Huangfu, Linjiaping, Daning, and Hejin catch-
ments were significantly different from other catchments regard-
less of the spatial distance or physical similarity. In terms of the
physical attributes, the existence of a gauged catchment adjacent
to ungauged catchments was more important than the similarity
between gauged and ungauged catchments [49].

Whether or not the study area contained nested catchments,
the regionalization performance of the OA method was signifi-
cantly better than that of the PA method (Fig. 6). The OA method
was used to directly apply the model parameters from the donor
catchment to the ungauged basin without modification, and the
method involved the use of all information for the calibrated model
parameters. However, the PA method was used to weigh and aver-
age the model parameters of the donor catchment, and then apply
these parameters to the unmeasured catchment. There is strong
interdependence among hydrological model parameters, which is
weakened when the parameters are averaged [44]. Therefore, the
PA method is commonly used when the correlation between the
hydrological model parameters is small.
5.3. Descriptor importance in parameter regionalization

The application of regression-based schemes to parameter
regionalization assumed that the selected catchment descriptors
could describe the hydrological behavior of a basin well. Therefore,
the selection of descriptors is crucial to the success of parameter
regionalization. Although the selection of suitable catchment
descriptors in hydrological parameterization studies has been
widely discussed, no universally accepted selection criteria exist
[14,50]. Merz and Blöschl [51] mentioned that the selected catch-
ment descriptors should be the influence factors that can drive the
watershed hydrological response. Mwakalila [52] proposed that
the catchment descriptors should have both geographical and
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parameter spatial significance. In previous studies, the selection of
catchment descriptors was mainly based on geography, meteorol-
ogy, hydrology, and soil [53]. Other descriptors have occasionally
been used, such as land use, drainage density [49], and other mete-
orological data (mean annual evaporation) [47]. In addition, the
selection of appropriate catchment descriptors also depends on
the physical significance of the model parameters. For example,
the CN2 in the SWAT model depends on the soil and land use char-
acteristics of a catchment [18], and the catchment descriptor in
this respect should be considered. The regional climate, soil types,
and vegetation make regionalization special, and the SWAT model
parameters are mostly related to these factors [49]. The nine catch-
ment descriptors selected in this study covered these factors, but
statistically significant multicollinearity problems existed among
the descriptors. Saadi et al. [23] only retained the catchment
descriptors with low correlation values to each other. Penas et al.
[47] selected predictor variables based on the combination of scat-
ter plots (hydrological indices versus environmental variables) and
parametric correlations. The PCA method used in this study
reduced the dimensions of the catchment descriptors. With the
reduction of descriptors dimensions, the information regarding
the original variables was retained to the greatest extent.
5.4. Influence of hydrologic and climatic conditions on regionalization

The study area included two climatic regions, namely, a rela-
tively humid region and a relatively arid region. The humid areas
were mainly located in the Huai River Basin, where the mean
annual precipitation was 976.23 mm (Table 1), and the mean value
of NSE in the calibration period was 0.82 (Fig. 2). The arid regions
were distributed in the Yellow River Basin and the Hai River Basin,
where the mean annual precipitation was 561.01 mm (Table 1),
and the mean value of NSE in the calibration period was 0.77
(Fig. 2). Given the influence of the precipitation distribution, the
runoff simulation accuracy of the SWAT model in the humid
regions was better than that in the arid regions. According to the
results of the parameter regionalization (Fig. 9), the regionalization
performance in the humid areas was better than that in the arid
areas, which was consistent with the runoff simulation results.
Therefore, the hydrological model parameters regionalization
results largely depended on the accuracy of the runoff simulation
in the donor catchment. Only when the parameters with sufficient
accuracy were obtained, could the simulation results in the
ungauged catchments be obtained with parameter regionalization.
In arid regions, the economy was usually undeveloped, the moni-
toring stations were few, and the hydrological data were relatively
scarce. Moreover, the runoff simulation was more sensitive to the
model parameters in these regions than in the humid regions. For
the same parameter error, the deviation of the simulation results in
arid regions was greater than that in humid regions [40]. Parajka
et al. [54] and Yang et al. [55] also pointed out the impact of cli-
mate conditions on regionalization performance.

The most successful regionalization methodology in humid
catchments may be differ from those in arid catchments. The per-
formance of a particular approach varies between different studies
more often than between methods tested in a single study [53,56].
As shown in Fig. 9, the SVR showed better regionalization perfor-
mance in arid areas, while the kNN had higher regionalization
accuracy in humid areas. Different data inputs may have a greater
impact on the performance of some models than the algorithm
itself, and determining the machine learning model to use as the
best solution to the problem was difficult [57]. To improve the
accuracy of parameter regionalization, the next challenge to con-
sider is the introduction of more machine learning techniques.
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5.5. Uncertainty and limitation of the results

The uncertainty of this study came from three aspects. First, the
selected catchment descriptors imposed limitations on the inter-
pretation of some ungauged catchments. This also illustrated a fun-
damental challenge to the parameter regionalization, that is, the
number or quality of selected catchment descriptors was insuffi-
cient to represent the catchment heterogeneity [58]. Second, the
nonlinear relationship between the model parameters and the
catchment descriptors is difficult to express perfectly with statisti-
cal models. Third, the SWATmodel has an excellent performance in
the runoff simulation, but uncertainty still exists [59,60], which
due to the following reasons: ① parameter uncertainty, in which
the inconsistency of the model inputs and parameters in space
and time leads to error in model parameter values; ② data uncer-
tainty, in which the variability of natural conditions, limitation of
measurement conditions, and the uncertainty of measurement
methods all affect the accuracy of the model input data; and ③
the model uncertainty, in which the hydrological models general-
ize hydrological processes and cannot accurately represent the
actual physical process of a watershed. Additionally, most of the
parameters in the SWAT model adopt the default values, which
deviate from the actual values, which also affects the accuracy of
the model simulation.
6. Conclusions

The regionalization approach is a crucial method for solving the
problem of runoff modeling in ungauged catchments. Different
regionalization methods were used to estimate SWAT model
parameters in this study, and runoff simulation was studied in
38 catchments located in the YHHRB. Due to the weakness of the
LR-based method in coping with nonlinear relationships, five
machine learning algorithms (SVR, RF, kNN, DT, and RBF) were
used to describe the quantitative relationships between the model
parameters and the catchment descriptors to improve the param-
eter regionalization performance. We found that the SVR-based
regression scheme had the highest simulation accuracy in
ungauged catchments, indicating that its performance was better
than traditional LR-based and similarity-based approaches. The
performance of different regionalization methods was similar in
humid regions due to the relatively simple hydrometeorological
processes and easy runoff simulation. However, the runoff simula-
tion results in arid areas were more sensitive to the model param-
eters, and the advantages of the machine learning techniques were
outstanding in these regions. The regionalization performance of
the SVR, RBF, and RF based methods was better than that of the tra-
ditional LR techniques in arid regions. When the study area con-
tained nested catchments, the best parameter regionalization
performance was derived through similarity-based methods
because of the high basin density and similarity among catch-
ments. The study results enrich the method of parameter regional-
ization and provide a reference for future water resources planning
and management in ungauged catchments.
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