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The hydrological process in the dry–warm valley of the mountainous area of southwest China has unique
characteristics and has attracted scientific attention worldwide. Given that this is an area with fragile
ecosystems and intensive water resource conflicts in the upper reaches of the Yangtze River, a systematic
identification of its hydrological responses to climate and land use variations needs to be performed. In
this study, MIKE SHE was employed and calibrated for the Anning River Basin in the dry–warm valley.
Subsequently, a deep learning neural network model of the long short-term memory (LSTM) and a tradi-
tional multi-model ensemble mean (MMEM) method were used for an ensemble of 31 global climate
models (GCMs) for climate projection. The cellular automata–Markov model was implemented to project
the spatial pattern of land use considering climatic, social, and economic conditions. Four sets of climate
projections and three sets of land use projections were generated and fed into the MIKE SHE to project
hydrologic responses from 2021 to 2050. For the calibration and first validation periods of the daily simu-
lation, the coefficients of determination (R) were 0.85 and 0.87 and the Nash–Sutcliffe efficiency values
were 0.72 and 0.73, respectively. The advanced LSTM performed better than the traditional MMEM
method for daily temperature and monthly precipitation. The average monthly temperature projection
under representative concentration pathway 8.5 (RCP8.5) was expected to be slightly higher than that
under RCP4.5; this is contrary to the average monthly precipitation from June to October. The variations
in streamflow and actual evapotranspiration (ET) were both more sensitive to climate change than to
land use change. There was no significant relationship between the variations in streamflow and the
ET in the study area. This work could provide general variation conditions and a range of hydrologic
responses to complex and changing environments, thereby assisting with stochastic uncertainty and
optimizing water resource management in critical regions.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Changes in climatic conditions and land use patterns have been
confirmed to have a significant influence on the spatial and tempo-
ral distribution of water resources within specific watersheds [1–
3]. Such changes affect relevant hydrologic cycles by altering pre-
cipitation, evapotranspiration (ET), and the corresponding stream-
flow regimes [4], which potentially causes a reduction in water
availability and an increase in water conflicts [5,6]. As noted above,
many studies have been conducted to understand and analyze the
hydrological cycles under climate change and human disturbance
[1–7]. However, many challenges arise because of the complexities
associated with certain hydrological cycles, particularly for the
core process of the cycle, that is, streamflow. Generally, the identi-
fication and projection of relevant streamflow is considered an
essential prerequisite for hydrologic cycle analysis. Streamflow
projections under changing conditions are thus regarded as an
important process that can contribute to water facility manage-
ment, reservoir regulation, and water resource planning.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eng.2021.04.029&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.eng.2021.04.029
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http://www.elsevier.com/locate/eng


C. Li, Y. Cai, Z. Li et al. Engineering 19 (2022) 24–39
Consequently, identifying the dynamic characteristics of hydro-
logical processes under climatic and land use variations are critical
for evaluating the usability of water resources and developing
adaptation strategies [8].

Previously, hydrologic models integrated with climatic and land
use projections were adopted to evaluate the possible impacts of
climate change on hydrological processes under multiple scenarios
[9–11]. Wilby and Harris [12] evaluated the contribution of cli-
matic factors to the dry seasonal phenomenon of the Thames
watershed using two sets of parameters with four sets of global cli-
mate model (GCM) outputs and two hydrologic models under two
emission scenarios. Ahiablame et al. [13] designed several scenar-
ios of land use and climatic patterns to analyze the corresponding
possible streamflow responses. Morán-Tejeda et al. [14] combined
a regional climate model and multiple hypothetical land use sce-
narios with hydrologic models in a mountainous watershed. Sev-
eral studies have also revealed that climate change is one of the
dominant factors leading to streamflow variations [15]. The hydro-
logic models were commonly calibrated with historical data and
then driven by future predictions of climate and land use variations
for hydrologic studies. As the environmental changes are increas-
ing significantly, it is predicted that future environmental factors
will lead to dynamic changes in hydrological model parameters.
Compared with indirect impacts of climate change on soil charac-
teristics, land use variation has a much more significant impact by
directly and quickly altering the soil porosity and connectivity [16].
As for land use variation, Merz et al. [17] pointed out that model
parameters can be considered as fixed within five years, and Luo
et al. [18] stated that hydrologic simulation should consider the
different model parameters in different seasons, and then the indi-
rect impact of land use change by changing the soil properties on
the hydrologic process should be considered.

Generally, GCMs are widely used as primary tools for predicting
future climatic changes. However, various uncertainties are associ-
ated with climate projections generated by GCMs owing to the
complexity of climatic systems. The downscaling of GCMs to a suit-
able scale is frequently used to represent spatial heterogeneity
[19]. Two common methods of dynamic and statistical downscal-
ing are typically used for GCM projections [20]. Statistical down-
scaling aims to build statistical relations between historical
GCMs and observations while there are adequate data, which have
wide application in the related fields of hydrologic research [21–
23]. The uncertainties [23,24] in hydrologic forecasting will
increase because of the cumulative impacts of various options of
multiple downscaling methods and GCMs. Multi-ensemble GCMs
have been proven to be superior to an individual GCM, two meth-
ods such as long short-term memory (LSTM) and multi-model
ensemble mean (MMEM) were usually adopted for ensembling
GCMs [25–28]. There is little agreement on metrics to distinguish
between ‘‘good” and ‘‘bad” models, and an ensemble of multiple
climate models generally outperformed any individual model; this
can improve the reliability and resolution of future climate projec-
tions [29–31]. Using machine learning models to ensemble or aver-
age multi-GCMs can reduce bias in projecting future hydrological
responses [32].

Furthermore, there exist only a few models to project the land
use variation because of the spatial characteristics and diversity
of land use types. The current common methods include the cellu-
lar automata (CA) model, the Markov model, and the conversion of
land use and its effects at small region extent (CLUE-S) model. The
CLUE-S model has been widely used in small-scale applications,
but there are limits on the number of types and grids [33]. The
Markov model was primarily used to predict the temporal resolu-
tion, but it cannot present the spatial distribution of land use
variations. This model is usually used along with other models to
develop its advantages [34]. The CA model can identify the spatial
25
dynamic evolution process for complex systems, but it is difficult
to effectively reflect macro influences, such as social and economic
factors. The CA–Markov model has a great advantage as it combi-
nes the powerful spatial computing ability of the CA model and
the long-term prediction of the Markov model for spatial and tem-
poral pattern stimulation, and is widely used for land use projec-
tions [35]. Moreover, the CA–Markov model contains the effects
of natural, social, economic, administrative centers, transportation,
and climate conditions on land use projections. However, most
studies of the CA–Markov model have focused on large cities,
and there are few studies on land use projection at the watershed
scale, especially in mountainous areas.

The Anning River Basin (ARB) is a tributary of the upper Yangtze
River and an ecotone of agricultural and animal husbandry. Because
of its unique topography characterized by undulating terrain, high
altitude, steep slopes, and valleys; the local ecosystem is inherently
fragile. There exists an uneven seasonal and regional distribution of
precipitation, strong storm intensity in the rainy period, little pre-
cipitation, and large ET in the dry season [36]. The climatic variation
in the Yangtze River Basin has been analyzed in numerous previous
studies using multiple methods and technologies [37]. An assess-
ment of the hydrologic process under the combined influence of cli-
mate and land use should be conducted, particularly for fragile arid
or semi-arid regions in the Yangtze River.

With the increase in complexity and uncertainty of changing
conditions, the investigation and understanding of hydrological
progress in ARB are challenging because of the following: ① the
scarcity of hydrological modeling in a fragile region with complex
terrains,② finding an applicable technique for climatic projections
among various scenarios,③ spatial and temporal variations of land
use for the future, and ④ diversity between simplified hydrologic
models and nonlinear hydrologic processes [30]. It is a critical sci-
entific issue that must be addressed immediately to consider the
influencing factors of climate and land use under multiple spatial
and temporal scales for long-term hydrologic forecasting in the
dry–warm valley of the Yangtze River.

Therefore, the objectives of this research are ① to evaluate the
feasibility of MIKE SHE in a mountainous area, ② to predict pre-
cipitation and temperature in the ARB with an ensemble of 31
GCMs to improve accuracy through LSTM and MMEM; ③ to
explore land use projections in consideration of natural, social,
and economic conditions, and ④ to investigate the underlying
influence of climatic and land use variation on streamflow and
actual ET. The developed model incorporated an ensemble of 31
GCMs for climate projections and a CA–Markov-based model for
land use projections, which can not only resolve meteorological
and land use projection uncertainties, but also investigate the
dynamic variation condition and range of hydrologic processes.
Consequently, this is of great significance in dealing with stochas-
tic uncertainty and the optimization management of water
resources under complex changing conditions. This work provides
benchmarked information on adaptive measures for water
resources and environmental sustainability in the upper Yangtze
River for local and downstream areas.
2. Overview of the study site

The dry–warm valley in the Hengduan Mountain has a unique
climatic, geographical, and hydrological features. It has a typical
non-zonal climate, not only based on global climate change, but
also closely related to local physical conditions. Zhang et al. [38]
found that the climate in the dry–warm valley is inconsistent with
global climate change; the temperature has declined since the
1950s, while the precipitation increased. As a typical potential
ecological degradation region and an important agricultural
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production base in China, hydrologic analysis under changing con-
ditions is helpful for decision-making regarding development in
the cropping system, biological resources, and ecological
restoration.

The Anning River watershed, located in the dry–warm valley of
southwest China, is a secondary tributary of the upper Yangtze
River (Fig. 1). The range in latitude is between 102�060E and
102�100E and in longitude between 26�380N and 29�020N, with an
elevation of 900–4750 m. It has a total length of 337 km and flows
through Mianning, Xichang, Dechang, and Miyi, with a valley area
of approximately 11 150 km2. For several years, the average pre-
cipitation was 1240 mm, while the average temperature was 17–
19 �C. There were distinct wet and dry seasons; the rainy season
was from June to October and accounted for more than 90% of
the annual rainfall. Intense rainfall, along with steep slopes and
valleys, usually leads to flash floods. Alternatively, there is usually
little precipitation and large evaporation during dry seasons. In
both wet and dry seasons, precipitation exhibits significant spatial
variability, with more rainfall in mountainous areas and less rain-
fall in the valleys.

As the mother river of Liangshan State, ARB is a gathering place
for 14 national minorities. It is also the second-largest valley plain
in Sichuan Province and an ecologically fragile region in the upper
Yangtze River, which is a vital area for western economic develop-
Fig. 1. The Anning River watershed. Jinsha River is the upper
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ment in China. Over the years, because of the influence of global
climatic and land use variations, many eco-environmental prob-
lems, such as water shortages, land desertification, and water qual-
ity deterioration, have become serious obstacles to the
development of ecological economics in southwest China. There
are relatively concentrated social and economic activities, planning
and construction of water conservancy and hydropower projects,
large irrigation districts, and major cities, which have brought
increasing uncertainties and difficulties to the system manage-
ment of the watershed. Therefore, it is an urgent issue to analyze
hydrologic responses of climate and land use variations for the
rational use of water resources, constructing ecological barriers,
and sustainable development for the Yangtze River.

3. Methodology

3.1. Integrated modeling framework

The main research objective is to project the hydrologic
response to climate and land use variation using a hydrologic
model. A flowchart of the hydrologic response projection is illus-
trated in Fig. 2. First, according to the availability and continuity
of the meteorological and hydrological data, MIKE SHE was
calibrated from 1977 to 1983 and validated from 1984 to 1986.
stream of Yangtze River. DEM: digital elevation model.



Fig. 2. Diagram for hydrologic response projection under climate and land use changes. NSE: Nash–Sutcliffe efficiency; RCP: representative concentration pathway; MCE:
multi-criteria evaluation; LogisticReg: LogisticRegression.
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Land use data from 1980 and the daily streamflow data at Wantan
station were used for both calibration and validation. Subse-
quently, MIKE SHE was further validated from 2006 to 2007 with
the land use data of 2005, and the sensitivity parameters remained
unchanged, the performance of MIKE SHE remained well. Then,
two climate ensembles of 31 GCMs based on LSTM and MMEM
were developed to predict future climatic changes. The LSTM-
based ensemble was trained using historical data from 1961 to
2000 and was tested using data from 2001 to 2010. Subsequently,
the CA–Markov model combined with multi-criteria evaluation
(MCE) and spatial multiple regression (LogisticReg) modules were
used to project the three types of land use projections. Finally, we
employed four sets of climate data projected by LSTM and MMEM
and three sets of land use projections to drive MIKE SHE to evalu-
ate future hydrologic responses in ARB.

3.2. Hydrologic modeling

A typical representative of the distributed hydrologic model
based on the physical mechanism, MIKE SHE, was selected to
explore the impacts of climate and land use changes on the hydro-
logical process [39]. The model mainly considers hydrological pro-
cesses such as plant interception, ET, overland flow, unsaturated
27
and saturated zones, surface water, groundwater exchange, and
snowmelt runoff, which can be estimated from the measured data
as the parameters have physical significance [40]. The MIKE SHE
model is mainly applied in the following four aspects: ① exploring
the applicability of the model and the model construction process
[41],② parameter sensitivity analysis [42], calibration and verifica-
tion [43], andmodel uncertaintyanalysis [44];③ feasibility analysis
of constructing distributed hydrologic models in areas with insuffi-
cient data [45]; and④hydrologic responses to climatic and land use
variation under the background of globalwarming [46].MIKE SHE is
a hydrologic model that has been universally used inmultiple fields
in numerous scales and has great application potential in humid and
arid regions [47]. Additionally, researchers can choose suitablemod-
ules for modeling along with different climatic conditions, geologi-
cal characteristics, and available data in the study region, which
are different from the distributed hydrologicmodels such as the soil
and water assessment tool (SWAT), variable infiltration capacity
(VIC), and TOPMOEL [48].

3.2.1. Input data of hydrological model
The digital elevation model (DEM), meteorological, land use,

soil, and hydrological data were used to characterize the spatial
heterogeneity for hydrological modeling and analysis (Table 1).



Table 1
The input data for MIKE SHE model.

Data type Name Data Source

DEM ASTER GDEM
(30 m � 30 m)

GS Cloud

Climate data Precipitation National Meteorological Center
Temperature National Meteorological Center
Reference
evapotranspiration

Penman’s equation

Vegetation Land use map
(30 m � 30 m)

Resource & Environment Cloud

Leaf area index FAO and field collection
Root depth FAO and field collection

Soil Surface and
sectional
type (1 km � 1 km)

Harmonized World Soil Database

Hydrology Streamflow The People’s Republic of China
Hydrologic Yearbook

Table 2
Sensitive parameters of MIKE SHE for calibration.

Parameter Initial value Value range Final value

Manning coefficient 20 5–50 25
Detention storage 2 0–20 4
Horizontal

hydraulic
conductivity

1.00 � 10�4 1.00 � 10�5–2.00 � 10�3 1.25 � 10�3

Vertical hydraulic
conductivity

1.00 � 10�5 1.00 � 10�6–2.00 � 10�4 1.25 � 10�4

Specific yield 0.20 0.10–0.50 0.11
Storage coefficient 1.00 � 10�4 1.00 � 10�7–1.00 � 10�3 2.22 � 10�5

Drainage level �0.5 �2.0–�0.1 �1.2
Time constant 1.00 � 10�6 1.00 � 10�7–1.00 �10�5 3.45 � 10�7
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Three meteorological stations (Mianning, Xichang, and Miyi)
located upstream of the outlet station were selected. The National
Meteorological Center acquired downscale precipitation, high tem-
perature, and low temperature-based stations from 1961 to 2010.
The available Food and Agriculture Organization (FAO) Penman–
Monteith method was used to evaluate the reference ET in this
study [49]. Daily discharge observation values at the Wantan
hydrologic station from the People’s Republic of China Hydrologic
Yearbook were used to calibrate and validate the MIKE SHE. DEM
and land use data were acquired from the data platforms of the
Chinese Academy of Sciences, whereas soil data were obtained
from the Harmonized World Soil Databasey. The Geographic Infor-
mation System (GIS) tool was used to process and obtain spatial data
information such as flow direction, flow concentration, drainage net-
work, soil, and land use data in the study area.

Additionally, it is difficult for the static parameters of the hydro-
logical model to reflect the changes in the hydrologic characteris-
tics of the future environment. Vegetation coverage is one of the
most critical environmental factors in the watershed, and it
directly affects the distribution of rainfall between evaporation
and runoff. For this study, the leaf area index (LAI) and root depth
(RD) of vegetation were used as the characterization factors for the
dynamic changes in model parameters, and the vegetation growth
period and non-growth period were divided. Subsequently, based
on climate change conditions such as precipitation and tempera-
ture, the functional relationship between LAI and RD was estab-
lished and analyzed, and the dynamic parameters of LAI and RD
for every decade in the future were estimated. The dynamic
parameters of the hydrological model established the response
relationship between the model parameters and vegetation
changes.
3.2.2. Calibration and validation
The parameter calibration process adjusts the model to match

the simulation results with the observed data. Over-
parameterization occurs if all the parameters are freely adjusted
during the calibration process. The primary sensitivity parameters
are listed in Table 2, based on a literature review [50,51]. The auto
calibration tool of the MIKE SHE model was adopted to calibrate
the parameters (Table 2).

The Nash–Sutcliffe efficiency (NSE) coefficient and coefficient of
determination (R) were used as statistical criteria to assess the
MIKE SHE model performance in this study. The Nash–Sutcliffe
coefficient is sensitive to both the mean and variance of the simu-
y http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-
world-soil-database-v12/en/.
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lated and measured values. The coefficients of the NSE and R are as
follows:

NSE ¼ 1�
Xn
i¼1

ðQm � Q sÞ2=
Xn
i¼1

ðQm � Qm Þ2 ð1Þ

R ¼
Xn

i¼1

ðQm � Qm Þ � ðQ s � Q s Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
i¼1

ðQm � Qm Þ2 �
Xn
i¼1

ðQ s � Q s Þ
2

vuut

ð2Þ
where Qm is the observation value, Q s is the simulation value, and
Qm and Q s are the average value of Qm and Q s, respectively. n rep-
resents the number of observation values (simulation values), and i
represents the nth value.

The NSE value ranges from 0 to 1; the closer it is to 1, the better
the simulation effect, and the higher the simulation accuracy. Gen-
erally, the model can be used for calculation when R of the simu-
lated value and the measured value is greater than 0.6, and the
simulation results reach a better level when the NSE value is
between 0.50 and 0.95.

3.3. Multi-ensemble GCMs for climate projection

In this research, 31 GCMs at a monthly scale covering the time
period 1961–2050 were downloaded from the Coupled Model
Intercomparison Project Phase 5 (CMIP5) website� (Table 3). The
statistical downscaling model of a weather generator (NWAI-WG)
developed by Liu and Zuo [52] was used to obtain data every day
for each meteorological station. The dataset covers three variables:
precipitation, maximum temperature, and minimum temperature.
The Intergovernmental Panel on Climate Change 5 (IPCC5) report
stated that greenhouse gas emissions are the main source of uncer-
tainty for future temperature and precipitation. Representative con-
centration pathway 4.5 (RCP4.5) and RCP8.5 are moderate and
higher mitigation scenarios, respectively, which are appropriate for
research on the influence of climate [53].

Climate projections generated by GCMs are subject to signifi-
cant uncertainties at large spatial scales and deviations in simula-
tion. Multi-ensemble GCMs are generally considered superior to
single models [54]. LSTM and MMEM methods were adopted for
climate change projections to improve the prediction accuracy of
the simulated outputs from multiple GCMs. MMEM is a traditional
method that is evaluated using mean values from the multi-model
ensemble. LSTM is a special type of recurrent neural network
(RNN), capable of learning long-term dependencies and remem-
bering information for long periods and has been proven to capture
the temporal relationship among time series data better than tra-
ditional RNNs [26]. The introduction of LSTM was used to detect
� https://www.cesm.ucar.edu/experiments/cmip5.html.

http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.cesm.ucar.edu/experiments/cmip5.html


Table 3
Basic information of 31 GCMs in CMIP5.

Model Region Resolution Model Region Resolution

ACCESS1.0 Australia 1.87� � 1.25� GISS-E2-R The United States 2.50� � 2.00�
ACCESS1.3 Australia 1.87� � 1.25� GFDL-CM3 The United States 2.50� � 2.00�
BCC-CSM1.1 China 2.80� � 2.80� GFDL-ESM2G The United States 2.50� � 2.00�
BCC-CSM1.1(m) China 1.10� � 1.10� GFDL-ESM2M The United States 2.50� � 2.00�
BNU-ESM China 2.80� � 2.80� HadGEM2-AO Republic of Korea 1.87� � 1.25�
CanESM2 Canada 2.80� � 2.80� INM-CM4 Russia 2.00� � 1.50�
CCSM4 The United States 1.25� � 0.94� IPSL-CM5A-MR France 1.27� � 2.50�
CESM1(BGC) The United States 1.25� � 0.94� IPSL-CM5B-LR France 1.89� � 3.75�
CESM1(CAM5) The United States 1.25� � 0.94� MIROC5 Japan 1.40� � 1.40�
CESM1(WACCM) The United States 2.50� � 1.90� MIROC-ESM Japan 2.80� � 2.80�
CMCC-CM Europe 0.75� � 0.75� MPI-ESM-LR Germany 1.87� � 1.86�
CMCC-CMS Europe 1.86� � 1.87� MRI-CGCM3 Japan 1.10� � 1.10�
EC-EARTH Europe 1.10� � 1.10� NorESM1-M Norway 2.50� � 1.90�
FIO-ESM China 2.80� � 2.80� NorESM1-ME Norway 2.50� � 1.90�
GISS-E2-H The United States 2.50� � 2.00� MIROC-ESM-CHEM Japan 2.80� � 2.80�
GISS-E2-H-CC The United States 2.50� � 2.00�
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temporal signals and build the nonlinearity correlation between
downscaled data from the 31 GCMs and the observed data of the
reference period, and then propagate the long-term information
to a future period. The primary purpose of the LSTM was to inte-
grate the GCM ensembles into high-quality and highly accurate
precipitation and temperature.

The special structure of LSTM is that it has a memory cell, which
is used to store information and propagate outputs for different
time steps. A structure known as gates, which includes a forget
gate, input gate, and output gate, manages the cell states and out-
puts. The gate consists of a sigmoid function with a multiplication
operation. The sigmoid function varies from 0 to 1, indicating how
much information can be passed through or discarded. Specifically,
first, a sigmoid layer called the ‘‘forget gate layer” determines how
much information to be discarded from the previous cell state, for
example, 0 represents all of the information that would be aban-
doned; second, a sigmoid layer called the ‘‘input gate” combined
with a hyperbolic tangent (i.e., an activation function in neural net-
work to push the values to be between �1 and 1) layer created a
new cell state; finally, the ‘‘output gate” will output determined
parts based on the cell state.

In this research, LSTM models were built for temperature and
precipitation projections with 31 GCMs. First, the inputs of the
LSTM model for temperature contain 31 mean temperatures calcu-
lated by the maximum and minimum daily temperatures of the 31
GCMs. The paired dataset between the calculated mean daily tem-
perature of 31 GCMs and the observed daily temperature was
obtained from 1961 to 2010. The paired dataset for precipitation
prediction was formulated based on the monthly precipitation of
31 GCMs and the monthly observed precipitation from 1961 to
2010. Then, temporal signals were detected, and nonlinearity cor-
relations were developed between the downscaled historical and
observation data. The period for training the model was deter-
mined to be 40 years from 1961 to 2000, and for testing, it was
ten years from 2001 to 2010. The evaluation criteria NSE and R
were used to represent the prediction accuracy in the reference
period. Finally, the temperature (or precipitation) of the 31 GCMs
from 2021 to 2050 was fed into the aforementioned LSTM models
during 1961–2010 to predict the corresponding future tempera-
ture and precipitation, respectively.

Better climatic projections from 2021 to 2050 would be
achieved if the temporal signals between the downscaled data
from 31 GCMs and the observed data were detected from 1961
to 2010. Deep learning and remembering through LSTM were used
to improve the prediction accuracy using observed and down-
scaled climate data from 1961 to 2010. Using multi-ensemble
GCMs and taking 1961 to 2010 as the reference period, the projec-
29
tion of precipitation and temperature from 2021 to 2050 would
propagate outputs based on the memory cell of the LSTM. The pre-
cipitation and the temperature from 2021 to 2050 were directly
averaged from the 31 GCMs using MMEM.

3.4. CA–Markov model

The CA–Markov model, which is formed by integrating the CA
model with the Markov model, was adopted to reflect the dynam-
ics of land use patterns. The CA–Markov model synthesizes the
advantages of applying multi-standard evaluation and multi-
objective decision support systems to define the transfer rules
between land use types.

The Markov model is a stochastic process and optimal control
theory method for predicting the types and transfer rates of land
use [35]. The land use projections based on Bayes are as follows:

Cðt þ 1Þ ¼ Pij � CðtÞ ð3Þ
where C(t) and C(t + 1) are the states at time t and t + 1, respectively,
and Pij is the shift probability matrix of a status, which can be cal-
culated as follows:

Pij ¼

P11 P12 � � � P1n

P21 P22 � � � P2n

� � � � � � � � � � � �
Pn1 Pn2 � � � Pnn

2
6664

3
7775

0 � Pij < 1;
Xn

j¼1

Pij ¼ 1 ði; j ¼ 1;2;3; � � � ;nÞ

ð4Þ

The CA model is a grid dynamics model with discrete-time,
space, and state, and can comprehensively consider historical
trends, including natural, social, and economic conditions for land
use projections. The CA model can be calculated as follows [54]:

Cðt þ 1Þ ¼ f ðCðtÞ;DÞ ð5Þ
where t and t + 1 represent time, C is the set of cellular status, D rep-
resents all the cells in a certain neighborhood, and f is the transfor-
mation rule of the cellular status. For this research, D contains the
influence factors (i.e., elevation, slope, precipitation, temperature,
river, road, and population density), f represents the combined rule
of each cell in the neighborhood, and C(t + 1) represent the land use
status at the latter moment, which is affected by the status of the
previous moment C(t).

Specifically, the CA–Markov model in the IDRISI software was
used to project the long-term land use variation at ten-year inter-
vals of 2025, 2035, and 2045 based on land use maps of 1995, 2005,
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and 2015. The detailed processes are as follows: ① calculation of
the transfer area matrix and transfer probability matrix of land
use types in ARB from 1995 to 2005 and 2005 to 2015;② selection
of natural factors such as elevation, slope, precipitation, tempera-
ture, river, and human factors of road and population density as
driving factors for land use projection. The MCE and LogisticReg
in the module were used to create transition suitability images
for each land use type. ③ Based on the spatial distribution and
driving factors in 1995 and 2005, the spatial variation of land use
for 2015 was simulated, and the actual interpretation data for
2015 were used to verify the simulation results to ensure the reli-
ability of the model. ④ Based on the links between the change and
various driving factors, three sets of land use projections for 2025,
2035, and 2045 were projected using three methods.
4. Results and discussion

4.1. Performance of MIKE SHE

The DEM, land use map, soil data, rainfall, wind speed, sunshine
duration, and daily maximum and minimum temperatures were
used to calibrate the MIKE SHE. The daily streamflow at the water-
shed outlet was compared with the measured data to assess the
model performance under climatic changes. First, MIKE SHE was
calibrated during the calibration period (1977–1983) and was vali-
dated during the validation period (1984–1986) with data from the
daily streamflow at theWantan station and the 1980 land use map.
The model was further validated from 2006 to 2007 using the 2005
land use map (Fig. 3). For the daily simulation, the R and the NSE
values were 0.85 and 0.72 in the calibration period, 0.87 and
0.73 in the first validation period, and 0.84 and 0.70 in the second
validation period, respectively. There was no obvious systematic
shift of the relevant points in each period and there were consis-
tent trends, indicating that theWantan hydrologic station has good
consistency for the watershed streamflow. The R and NSE values in
the calibration period were 0.88 and 0.79, respectively, compared
to the monthly streamflow, which was 0.86 and 0.74. The results
suggest that MIKE SHE can effectively simulate daily streamflow
of ARB. The simulation effect of the monthly scale is better than
that of the daily scale, which shows good applicability in moun-
tainous areas as a whole.

We can see from Fig. 3 that the streamflow during spring and
winter was relatively small, while it was relatively large during
the summer and autumn. From the peak simulation, the simulated
value was smaller than the observed value at a certain time. The
hydrologic model did not perform well during the second valida-
tion period as there were changes in the input vegetation types,
Fig. 3. MIKE SHE simulated and observed daily streamflow at Wantan station during (a
2006–2007).
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illustrating that land use change also affects the hydrological pro-
cess. Additionally, precipitation and other meteorological data can-
not fully represent each calculation unit as the meteorological
stations in this study area are sparse, which will have a certain
impact on the simulation accuracy of the model.

To validate the applicability of the MIKE SHE model to other
hydrologic elements, the actual ET from 1977 to 1986 was simu-
lated and translated into the average value of the study area. The
annual mean actual ET was approximately 580–720 mm�a�1 in
the study area, which was consistent with the range of the latest
research from the National Tibetan Plateau Data Center, indicating
that the actual ET in the southwest river basin (including the
Yangtze River) should be significantly higher than 400 mm�a�1

[55]. The actual ET from 2021 to 2050 will be further analyzed
and discussed in the following sections.
4.2. Performance of multi-ensemble GCMs for climate projection

The future climatic conditions were obtained from 31 GCMs
using the LSTM and MMEM methods under scenarios of RCP4.5
and RCP8.5, from 2021 to 2050. The downscaled historical data
and measured climate data for the period from 1961 to 2000 were
used to train the model, whereas data from the period of 2001 to
2010 were used to test the model performance. Table 4 shows
the daily temperature and monthly precipitation of meteorological
stations from 1961 to 2010 using the twomethods. The coefficients
of R and NSE suggest that the LSTM method has a strong ability for
an ensemble of GCMs and can better reflect the daily temperature
in the ARB over the reference period. However, certain extreme
values still existed that could not be captured perfectly. As 90%
of the daily precipitation was zero or extremely low, the LSTM
could not predict the extreme values well for capturing most of
the data. Certain studies have also indicated that it is usually diffi-
cult for RNNs to predict high floating and low regular data impec-
cably, and daily precipitation has irregular changes and large
fluctuations [56]. Thus, daily precipitation with large fluctuations
was transformed into monthly precipitation to eliminate zero val-
ues, and the results suggested that the LSTM had a strong ability to
project monthly precipitation. Furthermore, the coefficients of R
and NSE indicate that the projected monthly precipitation has a
better performance than the daily temperature.

The performance of the LSTM method was evaluated by com-
paring the projections to the observed precipitation, and it was
found that the dataset projected from 31 GCMs of the LSTM
method can fit better than the MMEM method (Fig. 4). The
monthly average precipitation and daily temperature from the
LSTM projection had a stronger correlation with the observed data
) the calibration period (1977–1983) and (b) the validation period (1984–1986 and
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as a whole and could better project the temperature and precipita-
tion over the reference period. For the multi-year monthly precipi-
tation and temperature of Xichang, the precipitation and
temperature curves estimated by MMEM were closer to the obser-
vations, especially from May to September. However, for monthly
precipitation and temperature from 1961 to 2010, the coefficients
of R and NSE indicate that the climate data estimated by LSTM have
a better performance than MMEM at the three stations. The
advanced deep learning method of LSTM proved to be more
efficient at dealing with temporal signals than the conventional
average method of MMEM.

4.3. Future climate projections

Considering the historical period (1961–2010) as the baseline
period, the trend of temperature variation in the time period
2021 to 2050 was analyzed using the LSTM and MMEM methods
(Fig. 5). Therefore, four sets of climate change scenarios were gen-
erated for the influence study from 2021 to 2050 (i.e., RCP4.5_L,
RCP8.5_L, RCP4.5_M, and RCP8.5_M). Different variation trends
were observed under different ensemble methods from the per-
spective of the monthly average temperature. The projected values
from the LSTM in different scenarios were generally higher than
the historical values from October to April, but lower from May
Table 4
Accuracy test of daily temperature and monthly precipitation projection at the three met

Station Period Temperature

LSTM MMEM

R NSE R

Mianning 1961–2000 0.89 0.79 0.84
2000–2010 0.85 0.72 0.83

Xichang 1961–2000 0.88 0.76 0.81
2000–2010 0.81 0.64 0.79

Miyi 1961–2000 0.86 0.73 0.82
2000–2010 0.84 0.71 0.81

Fig. 4. Multi-year monthly average precipitation and temperature obtained fromMMEM
projected by MMEM; Pre_L: precipitation projected by LSTM; Tem_O: observed tempera
LSTM.
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to September. The temperature from the MMEM value was higher
in the meteorological stations of Mianning and Xichang, but lower
in the Miyi station compared to the historical temperature. It also
showed different levels of the increasing trend under the two
greenhouse emission scenarios of RCP4.5 and RCP8.5, of which
the latter had a slightly higher temperature. For the Mianning
and Xichang stations, the average annual temperature under
RCP4.5 and RCP8.5 projected from LSTM both increased compared
with the historical period (1961–2010), and the latter increased
approximately 1.4 �C than the former, which is consistent with
the results predicted in the IPCC5 report. The increase in watershed
temperature will inevitably lead to the rapid melting of glaciers
and snow in the ARB headwaters, and a change in the runoff
generation mechanism, which will bring new opportunities and
challenges to local water resource management and use.

Fig. 6 illustrates the changing trend of projected monthly aver-
age precipitation in the future period (2021–2050) under two sce-
narios (RCP4.5 and RCP8.5) from the MMEM and LSTM values. The
precipitation projected from the LSTM was higher than the MMEM
at the Mianning and Xichang stations. For the future period (2021–
2050), the monthly precipitation under multiple scenarios fluctu-
ated significantly compared to the historical precipitation from
May to September, while changing minutely in the other months.
The results also indicate that the average annual precipitation
eorological stations from 1961 to 2010.

Precipitation

LSTM MMEM

NSE R NSE R NSE

0.69 0.92 0.83 0.76 0.76
0.68 0.90 0.79 0.82 0.80
0.65 0.92 0.84 0.74 0.74
0.62 0.89 0.76 0.79 0.75
0.66 0.92 0.84 0.71 0.71
0.65 0.88 0.76 0.76 0.74

and LSTMmethod (1961–2010). Pre_O: observed precipitation; Pre_M: precipitation
ture; Tem_M: temperature projected by MMEM; Tem_L: temperature projected by



Fig. 5. Monthly average temperature for projected period (2021–2050). Hist: historical period from 1961 to 2010; RCP4.5_L: RCP4.5 projected from LSTM; RCP8.5_L: RCP8.5
projected from LSTM; RCP4.5_M: RCP4.5 projected from MMEM; RCP8.5_M: RCP8.5 projected from MMEM.
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under RCP4.5 and RCP8.5 increased relative to the historical period,
and the former had an increase of 1.9 mm, especially from June to
October.

4.4. Land use projections

The land use during the years 1980, 1995, 2005, and 2015
was classified into five major types, including cropland, forest,
grassland, water, and built-up land (Table 5). Specifically, accord-
ing to the available remote sensing image data, the 1980 land
Fig. 6. Monthly average precipitation for
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use map in the study area was acquired, and was adopted for
calibration during the calibration period (1977–1983) and for
validation during the validation period (1984–1986). We mainly
obtained the future land use projections based on the land use
data from 1995, 2005, and 2015 with transition matrix per dec-
ade; thus, the changes from 1980 to 1985 had little influence on
land use projections from 2021 to 2050. As presented in Table 5,
the dominant land use was forest, followed by cropland and
grassland in ARB. This demonstrated that the land use in differ-
ent types of cropland have sustained reductions over the past
the projected period (2021–2050).
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decades, which may be attributed to national conservation pro-
grams such as the ‘‘Grain for Green Project” since the 1990s.
The change in the watershed may have been caused by the con-
struction and operation of the Daqiao reservoir in the upper
basin since the 1990s and may have been affected by water con-
servancy projects.

With a comprehensive consideration of the driving factors of
land use change, the elevation, slope, precipitation, temperature,
river, road, and population density were selected to generate tran-
sition suitability images. The representative modules of MCE and
LogisticReg combined with the CA–Markov model were adopted
to evaluate the relationship between the land use and the driving
factors for three sets of land use projections. To test the accuracy
of the CA–Markov model’s prediction of the quantity and spatial
distribution for each land type, the land use of 2015 was projected
based on the land use data of 1995 and 2005. The Crosstab module
in IDRISI software was used to compare three sets of projections
and actual land use maps, the kappa coefficients obtained were
0.96, 0.89, and 0.91, respectively. The results indicate that the
CA–Markov model is a dependable estimator and can be used to
conduct future land use prediction simulations.

Because of the satisfaction of the calibrated module for 2015,
three Markov-based modules (i.e., scenario 1 from MCE; scenario
2 from LogisticReg; scenario 3 from Markov; Fig. 7) were executed
to project the land use change of 2025, 2035, and 2045; each land
use projection represents the land use map of ten years (i.e., 2025
represents the period of 2021–2030; 2035 represents the period of
2031–2040; and 2045 represents the period of 2041–2050). As can
be seen in Fig. 7, the forest area is the largest, followed by cropland
and grassland. Built-up land has generally expanded in three sce-
narios, mainly concentrated in the residential and industrial areas
along with the transportation land, especially for the midstream
and downstream. The primary trend was the conversion from
natural land type to artificial land use type, which seems reason-
ably feasible to happen because of the regional economic develop-
ment, increase in population, and other factors. There is no specific
methodology to assess the results, and all the future scenarios can
occur as no evidence of future conditions exists. As land use varies
and spatial variation becomes more complex, it is necessary to
strengthen the protection of cropland, forest, and water bodies
for the rational use of land.
Fig. 7. Three scenarios of land use map projections in 2025, 2035, and 2045.
(a) MCE method; (b) LogisticReg method; (c) Markov method.
4.5. Evaluation of hydrologic responses

4.5.1. Streamflow variation to climate and land use changes
Subsequently, based on the above four sets of climate projec-

tions and three sets of land use projections, the MIKE SHE model
was used to assess the hydrological process in the corresponding
period. Cross combination of 12 scenarios were used as inputs to
project the process and the trend of streamflow as well as the tem-
poral and spatial variability of the actual ET under climate and land
use variations, respectively. The simulated average annual stream-
Table 5
Various land use types and changing rates over 1980–2015 in the watershed.

Type Land-use area (km2) Change rate (%)

1980 1995 2005 2015 1980–1995 1995–2005 2005–2015

Cropland 2673 2661 2636 2613 �0.45 �0.94 �0.87
Forest 5990 5978 5978 6003 �0.20 0 0.42
Grassland 2233 2248 2254 2225 0.67 0.27 �1.29
Water 110 112 128 127 1.82 14.29 �0.78
Built-up 57 64 67 95 12.28 4.69 41.79
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flow under different scenarios is illustrated in Fig. 8. The stream-
flow with climate projections from LSTM was higher than that
from MMEM. We can see that there was no obvious change in
the streamflow under the three land use projections, but it was
more sensitive to changes in climate variables. The climatic change
is the principal cause of streamflow variations during the historical
period, which is consistent with previous research. From the per-
spective of the multi-year average discharge, the simulated value
under the RCP4.5 scenario was higher than that under the
RCP8.5, particularly for the period from 2031 to 2040. Even though
there was no significant difference in temperature under RCP4.5
and RCP8.5, the future streamflow of the former was higher
because of precipitation variations. As precipitation had a great
influence on the hydrologic change, the streamflow prediction of
low precipitation projections from MMEM was much lower than
that from LSTM. We can conclude that the annual runoff increased
significantly with an increase in precipitation and decreased with
an increase in temperature.

To further analyze the multi-year monthly average distribution
of future streamflow variations, box–whisker plots of the change
rate under RCP4.5 and RCP8.5 in the future period (2021–2050)
were compared with the baseline period (1977–1986) (Fig. 9).
Fig. 8. Streamflow under different scenarios in the future (2021–2050). (a) Climate chan
LU3: three land use scenarios.
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The monthly streamflow had an obvious increase from January to
April, while it had a dramatic decline from August to November.
The reason for the significant increase may be because of the slight
increase in temperature, which will inevitably lead to the melting
of glaciers and snow in the headwater of ARB. As illustrated in
Fig. 9, there was a higher variation in the monthly flows from
May to September than in the other months, which indicates a
higher uncertainty in the streamflow predictions. Two reasons
can illustrate the slight decreasing trend in streamflow under dif-
ferent emission scenarios for the flood period. First, the calibrated
hydrologic model did not perform well for the peak value in the
flood period because of the deep slopes, valleys, and geographical
conditions. Second, although the precipitation had a slight increase
during this period, the hydrologic process may be affected by other
factors, such as the increased temperature, surface type, cloud
cover, sunshine hours, and wind speed. Runoff is likely to increase
in the rainy season, especially from May to August; therefore,
attention should be paid to prevent the occurrence of flood disas-
ters. The runoff is likely to increase in the dry season compared
with the reference period, especially from February to April, while
a decrease in runoff during November indicates an increased risk of
drought.
ge projected from LSTM; (b) climate change projected from MMEM. LU1, LU2, and
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4.5.2. Temporal and spatial variability of actual ET
For a better assessment of the hydrologic process under chang-

ing conditions, an analysis of actual ET was conducted. For this
study, the temporal and spatial actual ET was acquired from the
output result of MIKE SHE using the two-layer unsaturated zone/
evapotranspiration (UZ/ET) model based on a formulation pre-
sented by Yan and Smith [57]. Fig. 10 illustrates the spatial vari-
ability of the actual annual ET for different climate and land use
scenarios. For the simulation results of MIKE SHE, dynamic changes
in the actual ET under two climate scenarios and three land use
scenarios from 2021 to 2050 were presented compared to the
reference period (1977–1986). The actual ET increased with an
increase in temperature, and the increase under RCP8.5
(Figs. 10(c) and (d)) was higher than that under RCP4.5
(Figs. 10(a) and (b)), owing to the higher temperature. The actual
ET was more sensitive to climate variation than to land use varia-
tion according to the influence study.

Fig. 11 illustrates the comparison of streamflow and actual
mean ET per decade for each of these scenarios. The annual average
streamflow under RCP4.5 was higher than that under RCP 8.5,
while the actual ET exhibited a consistent variation trend under
different scenarios except for the first land use scenarios under
RCP8.5. The components for water balance include precipitation,
canopy interception, surface runoff, unsaturated and saturated
flow, and so forth. Clearly, precipitation is closely related to the
Fig. 9. Projected change of streamflow at the monthly scale in the future period (2021–20
scenario.
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changes in streamflow and the actual ET. Moreover, the increase
in temperature can influence ET and reduce canopy resistance in
a certain temperature range, of which soil moisture in arid and
semi-arid areas positively impacts the actual ET [11]. There was
no consistent or opposite correlation between the actual ET and
the streamflow, which may be attributed to the uncertainties of
future climate and land use projections, as well as the complex
topographic conditions.
5. Conclusions

This research revealed the influences of climatic and land use
changes on the hydrological process in the dry–warm valley of
the Anning River watershed. To address the uncertainty issue that
arises from a single GCM, multi-ensemble GCMs using an advanced
method of LSTM and a traditional method of MMEM were used in
this study to obtain four climatic projections. Three sets of land use
projections were generated using a comprehensive consideration
of driving factors such as elevation, slope, precipitation, tempera-
ture, river, road, and population density. With the constraints of
data availability and the large-scale heterogeneity of mountainous
areas, this study evaluates the dynamic variation condition and
range of hydrologic processes in ARB under complex changing
conditions.
50) compared with the baseline period (1977–1986). (a) RCP4.5 scenario; (b) RCP8.5



Fig. 10. Spatial variability of annual average ET in 2021–2030, 2031–2040, and 2041–2050 compared with the baseline period of 1977–1986 under RCP4.5 and RCP8.5.
(a) climate data projected from LSTM under RCP4.5; (b) climate data projected from MMEM under RCP4.5; (c) climate data projected from LSTM under RCP8.5; (d) climate
data projected from MMEM under RCP8.5.
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The results showed that the hydrologic model could be effec-
tively applied to streamflow simulation in the dry–warm valley
of the ARB. The LSTM method had a better performance for daily
36
temperature and monthly precipitation projections than the
traditional MMEM method. However, it was difficult for the LSTM
to predict daily precipitation with zero values. The future



Fig. 11. Comparison of streamflow and actual mean ET per decade. (a) RCP4.5; (b) RCP8.5. C1 and C2: two climate scenarios; L1, L2, and L3: three land use scenarios; P1, P2,
and P3: 2021–2030, 2031–2040, and 2041–2050, respectively.
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temperature projection under RCP8.5 was slightly higher than that
under RCP4.5, while the precipitation projection was slightly lower
from June to October. The annual streamflow increased signifi-
cantly with an increase in precipitation and decreased with an
increase in temperature. Runoff and actual ET are more sensitive
to climate change than land use changes. Runoff is likely to
increase in the rainy season from May to August and decrease dur-
ing the dry season of November. The actual ET increased with an
increase in temperature and had a higher increase under RCP8.5.
In future changing environment, effective measures should be
taken to deal with flood disasters fromMay to August, and drought
disasters in the dry season, especially in November. As an essential
branch of the upper Yangtze River with a fragile ecological envi-
ronment, it is essential to investigate complicated spatial and tem-
poral variability and stochastic hydrologic processes for complex
terrain regions. Consequently, this work could provide an effective
guidance for dealing with the risk of flooding and drought in a
changing environment, contributing to the sustainable develop-
ment of the upper Yangtze River’s local and downstream areas.

The changing environment presents new challenges to water
resources and environmentally sustainable development for the
eco-fragile and downstream regions. A dynamic hydrologic model
37
with more updated parameters is expected to explore the complex
and uncertain future changing environment.
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