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The soft sensing of key performance indicators (KPIs) plays an essential role in the decision-making of
complex industrial processes. Many researchers have developed data-driven soft sensors using cutting-
edge machine learning (ML) or deep learning (DL) models. Moreover, feature selection is a crucial issue
because a raw industrial dataset is usually high-dimensional, and not all features are conducive to the
development of soft sensors. A perfect feature-selection method should not rely on hyperparameters
and subsequent ML or DL models. Rather, it should be able to automatically select a subset of features
for soft sensor modeling, in which each feature has a unique causal effect on industrial KPIs. Therefore,
this study proposes a causal model-inspired automatic feature-selection method for the soft sensing of
industrial KPIs. First, inspired by the post-nonlinear causal model, we integrate it with information theory
to quantify the causal effect between each feature and the KPIs in the raw industrial dataset. After that, a
novel feature-selection method is proposed to automatically select the feature with a non-zero causal
effect to construct the subset of features. Finally, the constructed subset is used to develop soft sensors
for the KPIs by means of an AdaBoost ensemble strategy. Experiments on two practical industrial appli-
cations confirm the effectiveness of the proposed method. In the future, this method can also be applied
to other industrial processes to help develop more advanced data-driven soft sensors.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Over the past decade, data-driven intelligence has been rapidly
pushing the envelope in the construction of complex industrial
processes by taking advantage of the Industrial Internet of Things
(IIoT), big data analytics (BDA), and artificial intelligence (AI) tech-
nologies [1–3]. In this context, in order to better create products
and services from various materials and resources, the perfor-
mance of complex industrial processes should be further improved
in areas such as product quality, production efficiency, energy con-
sumption, and pollutant emissions. However, these key perfor-
mance indicators (KPIs) usually cannot be measured and
analyzed online through existing sensors [4,5]. Offline laboratory
analysis introduces high delay, making it challenging to improve
industrial production in time [6,7]. Therefore, the soft sensor tech-
nique has attracted extensive efforts for the online estimation of
industrial KPIs.
The soft sensor technique aims to describe the input–output
behavior of the system by constructing mathematical models with
easy-to-measure variables as the input and KPIs as the output. It
can be roughly classified into two categories: first-principle
(white-box) models and data-driven (black-box) models [8,9].
Models in the former category represent the causality of actual sys-
tems, which can only work well by a prior understanding of the
physical or chemistry knowledge [10,11]. As a result, data-driven
models, which focus on association relationships without reflect-
ing actual causality, have become the mainstream to develop soft
sensors for industrial KPIs [12].

For example, shallow machine learning (ML) models, such as
partial least-squares (PLS), support vector regression (SVR), and
their extensions, have been employed to learn quality characteris-
tics from the historical data of complex industrial processes. In Ref.
[13], an optimized sparse PLS (OSPLS) model is proposed to esti-
mate the product quality of batch process industries. A robust
multi-output least-squares SVR (M-LS-SVR) has been proposed
for the online estimation and control of molten iron quality indices
in blast furnace ironmaking [14]. Furthermore, deep learning (DL)
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models have been widely studied to capture nonlinear features in
complex industrial data. Aiming for multisource heterogeneous
data, Ren et al. [15] proposed a wide–deep–sequence (WDS) model
combining a wide–deep (WD) model and a long short-term mem-
ory (LSTM) network to extract quality-related information from
both key time-invariant variables and time-domain features. Yuan
et al. [16] developed a sampling interval-attention LSTM (SIA-
LSTM) to deal with time series with irregularly sampled data in
the soft sensing of key quality variables. Ou et al. [17] proposed a
stacked autoencoder (SAE) with quality-driven regularization for
quality prediction in an industrial hydrocracking process. To
reduce the information loss and generalization degradation of DL
models, Yuan et al. [18] proposed a layer-wise data
augmentation-based SAE (LWDA-SAE) for the soft sensing of boil-
ing points in the hydrocracking process. Considering the issue of
input feature selection in DL, Wang et al. [19] proposed a multi-
objective evolutionary nonlinear ensemble learning model with
evolutionary feature selection (MOENE-EFS) for silicon prediction
in blast furnace ironmaking. Furthermore, in Ref. [20], a deep proba-
bilistic transfer learning (DPTL) framework is proposed to tackle
the distribution discrepancy and missing data in a multiphase flow
process. Although the above methods have achieved acceptable
results in some industrial applications, there are still some
research gaps.

Feature selection is still a crucial issue, because a raw industrial
dataset is usually high-dimensional, and not all features are con-
ducive to the development of soft sensors. Data-driven soft sensor
modeling is essential to recognize patterns in industrial data, so as
to determine the quantitative relationships between industrial
KPIs and their related features (variables). Selecting a compact
and informative subset of features can greatly reduce the complex-
ity of models and help us to fully understand the operation mecha-
nisms of complex industrial processes [21–23]. If the selected
features are the causal variables of KPIs, data-driven soft sensors
will undoubtedly be more interpretable and stable. Otherwise,
blindly improving data-driven models will introduce a complex
model structure and difficult-to-tune hyperparameters, which are
contrary to the principle of Occam’s Razor and the reliability
requirements of industry [24]. In other words, it is preferable for
a feature-selection method to automatically select a subset of fea-
tures for soft sensor modeling in which each feature has a unique
causal effect on industrial KPIs.

Furthermore, actual industrial data is difficult to obtain and
expensive, especially for discrete industries, which hinders the
industrial applications of data-driven soft sensors. Based on the
production behaviors, complex industrial processes can be classi-
fied into process and discrete industries [25]. The production
behaviors of the process industries are either continuous, such as
chemical processes, power generation, and ironmaking, or occur
on a batch of indistinguishable materials, such as food processing,
paper making, and injection molding. The production behaviors of
discrete industries are either physical or mechanical processes for
materials, such as engine assembly, semiconductor manufacturing
[26], and household appliance manufacturing, in which the mate-
rials used are usually the products of other industrial processes
[27,28]. Such processes usually have a larger scale, stronger
dynamic, and less clear mechanism than those of process indus-
tries. The data collection depends almost entirely on the experi-
ence of industrial practitioners, so the raw industrial data is
more nonlinear, insufficient, and uncertain. In this situation,
ensemble ML with fewer parameters, good robustness, and inter-
pretability is more suitable for complex industrial processes with
weak mechanisms [29].

Therefore, this study focuses on the following two scientific
questions: ① How can the causal effect between each feature
and the KPIs in a raw industrial dataset be quantified? ② How
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can a subset of features for data-driven soft sensor modeling be
automatically selected? Causal models such as the Granger causal-
ity, the conditional independence test, and structural equations
[30–32] have been widely employed for research on finance [33],
climate [34], and industry [35–37]. However, there is no research
on integrating causal effect and feature selection for data-driven
soft sensors. The main challenges are as follows. The conditional
independence test will lead to information loss for the soft sensing
of KPIs because of the data adequacy assumption. In addition, the
Granger causality and structure equation models depend on the
hypothesis of the data-generation mechanism. In summary, the
main works of this study are listed below.

(1) Inspired by the post-nonlinear causal model, we integrate it
with information theory to quantify the causal effect between each
feature and the KPIs in a raw industrial dataset. This can avoid the
hypothesis of the data-generation mechanism and provide helpful
insight for understanding complex industrial processes.

(2) A novel feature-selection method is proposed to automati-
cally select the feature with a non-zero causal effect to construct
the subset of features, which can reduce information loss, promote
the interpretability of soft sensor models, and help to improve
accuracy and robustness.

(3) The constructed subset is used to develop soft sensors for
the KPIs by means of an AdaBoost ensemble strategy. We also
introduce two actual complex industrial processes: an injection
molding process from Foxconn Technology Group in China and a
diesel engine assembly process from Guangxi Yuchai Machinery
Group Co., Ltd. in China. Experiments on these two industrial appli-
cations confirm the effectiveness of the proposed method.

The rest of this paper is structured as follows. Section 2
describes related works. Sections 3 and 4 then provide detailed
descriptions of the proposed method. Subsequently, in Section 5,
experimental studies are carried out on two actual complex indus-
trial processes. Finally, Section 6 summarizes the conclusions.
2. Related works

This section reviews feature-selection and causal discovery
methods, which will motivate the problem formulation and basic
idea of this study.

2.1. Feature-selection method

As circulated in the industry, data and features determine the
upper limit of ML, while models and algorithms just approach this
upper limit. Feature selection involves selecting a subset of fea-
tures as the input of ML from a given candidate feature set [38]
and is motivated by two reasons. First, even if there is no a priori
or domain knowledge, feature selection helps us to fully under-
stand the data and provides perceptual insights [39]. Second, it
directly realizes feature dimensionality reduction, which effec-
tively reduces the complexity of ML models [40]. In general, two
key aspects are involved in feature selection: the subset search
strategy and subset evaluation criteria.

2.1.1. Subset search strategy
Take a candidate input feature set F with M input features,

where F = {X1, X2, . . ., XM}, and Xi (i is the number of X and i = 1,
2, . . ., M) denotes the candidate input feature. There are 2M candi-
date subsets S, where S # F. The objective of the subset search
strategy is to select an optimal feature subset S from F [41].
Eq. (1) shows that the forward search strategy first initializes
S with an empty set. After that, based on the subset evaluation
criterion, one feature is selected from F and added to S in each
iteration until the stopping threshold is reached.



ig. 1. Causality between ternary variables. (a) Markov equivalent class; (b) V-
tructure.
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S ¼ S [ EC S [ Xi;Yð Þ > ST; Xi 2 FnSf g ð1Þ

where EC(�) denotes the evaluation criterion; ST denotes the stop-
ping threshold; and Y denotes the output feature.

Another strategy is called backward search, as illustrated in Eq.
(2); this first initializes S = F. Then, one feature is removed from S in
each iteration until the stopping threshold is reached.

S ¼ Sn EC SnXi; Yð Þ < ST; Xi 2 Sf g ð2Þ
These two strategies are greedy because only the local optimal-

ity is implemented. Moreover, it is difficult to determine the opti-
mal evaluation criteria and stopping threshold with good
interpretability and theoretical basis.
2.1.2. Subset evaluation criteria
Many evaluation criteria have been used to judge whether to

retain the candidate feature in each iteration, such as the degree
of association and divergence, and the performance of ML models.
The variance r2 measures the degree of feature divergence, and
does not consider the association between input and output fea-
tures [42]. The Pearson correlation coefficient (PCC) selects the
input features most relevant to the target, and only focuses on
the linear association [43]. The maximal information coefficient
(MIC) detects the nonlinear association between two variables
[44], but more samples are needed, and the total association is easy
to underestimate. Feature selection based on the above criteria
does not depend on ML models and is also known as a kind of fil-
tering method.

The parameters of ML models, such as the information gain of a
decision tree and regression coefficients [45], can also be used as
subset evaluation criteria, which measure the importance or
weight of features. This kind of method, which is known as embed-
ding, relies on an ML training process with expensive computing
costs and is essentially based on associations. Aside from taking
the performance maximization as the evaluation criteria, wrapper
methods combine ML with optimization algorithms, such as
genetic [38], evolutionary [19], and particle swarm algorithms
[39], to automatically select optimal feature combinations. Wrap-
per methods also bring expensive computing costs, and it is easy
to cause over-fitting, especially in industrial applications.
2.2. Causal discovery method

Discovering causal relations is a fundamental task of scientific
research and technological progress; it strictly distinguishes cause
and effect variables, revealing the mechanism and guiding
decision-making more effectively than an understand of associa-
tions can do. Without considering the lagged effect, causal discov-
ery approaches mainly rely on conditional independence tests and
structural equation models to learn causal effects from observed
data [46].
Fig. 2. Post-nonlinear causal model. f1, f2: nonlinear functions; e: the noise or
disturbance.
2.2.1. Conditional independence tests
Given a set of ternary variables {X, Y, Z}, the specific causal

structure can be tested by the conditional independence between
variables. As illustrated in Fig. 1, if the relation between ternary
variables is that Y, X, and Z are independent, then the causal struc-
ture must be Markov equivalent class (Fig. 1(a)). If the relation is
that X and Z are independent on their own, but are not indepen-
dent once Y is introduced, the causal structure must be a V-
structure (Fig. 1(b)). On this basis, Peter–Clark (PC) and inductive
causation (IC) algorithms, which are suitable for a wide range,
learn causal structure through a two-stage process of the causal
skeleton and causal direction [47,48].
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2.2.2. Structural equation models
The hypothesis of the data-generating mechanism describes

how the effect variables are determined by causal variables and
causal mechanisms, including the linear non-Gaussian acyclic
model (LiNGAM) [49], the additive noise model (ANM) [50], infor-
mation geometric causal inference (IGCI) [32], and the post-
nonlinear model (PNM) [51]. As the most general model, illustrated
in Fig. 2, PNM includes the nonlinear influence f1 of the cause X, the
noise or disturbance e, and the measurement distortion f2 in the
observed effect Y. The formula is shown below.

Y ¼ f 2 f 1 Xð Þ þ eð Þ ð3Þ
where e \ X; f1 and f2 are nonlinear functions, and f2 should be
invertible.

Due to the limitations of data sufficiency and conditional inde-
pendence tests, the causal structure obtained from the PC and IC
algorithms is not equivalent to the actual physical object. Feature
selection based on this causal structure will cause significant infor-
mation loss, so that the best feature combinations for ML are not
attained. In contrast, the PNM in structural equation models can
more effectively bridge causal discovery and feature selection.

As for the feature-selection issue, embedding and wrapper
methods rely on an ML training process with expensive computing
costs. Their performance is directly affected by the selected ML
models. Filtering methods, such as variance-based, PCC-based,
and MIC-based methods, do not depend on ML models and select
a subset of features by manually setting a stopping threshold in
advance. A typical stopping threshold includes a specific number
of selected features, such as a specific variance value, PCC value,
or MIC value. Obviously, it is difficult to determine a stopping
threshold with good interpretability and a theoretical basis. Causal
discovery brings new light to solve this problem by quantifying the
causal effect between each feature and the KPIs in a raw industrial
dataset to automatically select a subset of features for data-driven
soft sensor modeling. The proposed method is introduced in detail
in the next section.

3. Causal model-inspired feature selection

3.1. PNM with information theory

Given a set of cause variables {X1, X2, . . ., Xk} (where k is the
number of variables) and effect variable Y, the PNM in Eq. (3) can
be extended to Eq. (4).



Fig. 3. Venn diagram of the improved causal effect, where the first red shadow
indicates the residual uncertainty in Ywhen a set of cause variables {X1, X2, . . ., Xk} is
given, the second red shadow indicates the residual uncertainty in Y when Xk+1 is
further given, and the blue shadow indicates the causal effect of Xk+1 on Y.
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Y ¼ f 2 f 1 X1;X2; :::;Xkð Þ þ ekð Þ ð4Þ
To discover the causal relations between another variable Xk+1

and Y, Eq. (4) is further extended to Eq. (5).

Y ¼ f 2 f 1 X1;X2; :::;Xk;Xkþ1ð Þ þ ekþ1ð Þ ð5Þ
If Xk+1 reduces the noise term, it contains the causal information

of Y. Thus, the causal effect of Xk+1 on Y can be quantified by Eq. (6).

CEXkþ1!Y ¼ 1
2
log

r2 ekð Þ
r2 ekþ1ð Þ ð6Þ

where CE is causal effect.
The problem is that it is necessary to establish and depend on

the two regression models, which have high computational com-
plexity and affect accuracy. In addition, the hypothesis of the
data-generating mechanism in PNM should be improved.

This study defines the causal effect by means of information
theory to solve these problems. In information theory, the Shannon
entropy is adopted to measure uncertainty and average informa-
tion in a discrete random variable X as follows:

H Xð Þ ¼ �
X
x

P xð Þ log P xð Þ ð7Þ

where H(�) denotes the Shannon entropy; P(x) denotes the probabil-
ity mass function; and x is the observed value of X.

The total uncertainty in the two discrete random variables X
and Y can be calculated by joint entropy as follows:

H X;Yð Þ ¼ �
X
x;y

P x; yð Þ log P x; yð Þ ð8Þ

where y is the observed value of Y.
If X is given, the uncertainty in Y can be reduced by considering

the information in X. Then, the residual uncertainty in Y can be cal-
culated by conditional entropy as follows:

H Y jXð Þ ¼ H X;Yð Þ � H Xð Þ ð9Þ
By substituting Eqs. (7) and (8) into Eq. (9), the conditional

entropy can be presented by the probability of X and Y. Information
theory extends PNM by considering uncertainty instead of variance
[30]. In other words, the causal effect can be quantified by measur-
ing the extent to which Xk+1 reduces the uncertainty of Y. As illus-
trated in Fig. 3, given a set of cause variables {X1, X2, . . ., Xk}, the
residual uncertainty in Y can be calculated by

H Y jX1;X2; :::;Xkð Þ ¼ H X1;X2; :::;Xk;Yð Þ � H X1;X2; :::;Xkð Þ ð10Þ
When Xk+1 is further given, the residual uncertainty in Y can be

represented as follows:

H Y jX1;X2; :::;Xk;Xkþ1ð Þ ¼ H X1;X2; :::;Xk;Xkþ1;Yð Þ �
H X1;X2; :::;Xk;Xkþ1ð Þ ð11Þ

Thus, the causal effect of Xk+1 on Y is obtained as follows:

CEXkþ1!Y ¼ H YjX0;X1; :::;Xkð Þ � H Y jX0;X1; :::;Xk;Xkþ1ð Þ ð12Þ
Eq. (12) only relies on the information theory to realize regres-

sion model-free causal effect quantification. Furthermore, data dis-
cretization is a vital data preprocessing technique to calculate the
entropy of continuous random variables. In this study, we apply a
histogram-based method to discrete data, and the optimal number
of bins nh is estimated by

nh ¼ max
R

2 � IQR � n1
3
; log2 nþ 1ð Þ

� �
ð13Þ

where R is the range of data; IQR is the interquartile range; and n is
the number of samples.
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3.2. Causal effect-based automatic feature selection

We present a novel feature-selection idea that takes the for-
ward search strategy as the subset search strategy and the causal
effect in Eq. (12) as the subset evaluation criteria. Its formal
expression is as follows:

S ¼ S [ CEXi!Y – 0;Xi 2 F=S
� � ð14Þ

Compared with Eqs. (1) and (2), the feature-selection method
shown in Eq. (14) only needs to traverse all candidate input fea-
tures Xi in a specific order, does not need to set a stop threshold,
and automatically selects the input feature combination with a
non-zero causal effect. In the actual execution process, we deter-
mine the traversal order according to the mutual information
between each candidate input feature Xi and output feature Y.
Algorithm 1 gives the pseudo-code of the causal effect-based auto-
matic feature-selection algorithm. The detailed implementation
process of this method is also shown in Fig. 4.

Algorithm 1. Causal effect-based automatic feature-selection
algorithm.
Input:
 Dataset D = {(x1, y1), (x2, y2), . . ., (xN, yN)} (where N is
the number of dataset) with candidate input feature
set F = {X1, X2, . . ., XM} and output feature Y
Output:
 Causal feature set S

1:
 Initialize: S = £; dataset discretization processing

using Eq. (13)

2:
 for i = 1 to M do

3:
 Calculate the causal effect CEX!Y of Xi on Y using

Eq. (12)

4:
 if CEXi!Y – 0, then S ¼ S [ Xif g

5:
 end for

6:
 return S



Fig. 4. Flow chart of the proposed method.
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4. AdaBoost decision tree-based soft sensor modeling

In this study, taking the decision tree as the basic learner, an
AdaBoost ensemble ML algorithm is employed for the soft sensor
modeling of industrial KPIs. It should be pointed out that this
model is not designed to outperform all existing models. Instead,
we believe that, once the causal information is extracted, data-
driven soft sensors can achieve satisfactory accuracy and inter-
pretability. In the future, we will study more advanced ML or DL
models for data-driven soft sensors.

4.1. Decision tree regressor

A decision tree regressor ismainly a classification and regression
tree (CART) algorithm, which can solve classification or regression
problems. Take training dataset D = {(x1, y1), (x2, y2), . . ., (xN, yN)}
(whereN is the number of samples).When applying a CART to solve
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the regression problems, based on the idea of bisection recursive
segmentation, the optimal segmentation variable j and segmenta-
tion point s are selected by using the square error minimization cri-
terion, that is, the following equation is solved:

min
j;s

min
c1

X
xi2R1 j;sð Þ

yi � c1ð Þ2 þmin
c2

X
xi2R2 j;sð Þ

yi � c2ð Þ2
" #

ð15Þ

where c1 and c2 are output values; R1 and R2 are two regions in the
input space.

Then, the input space is divided into two regions R1 and R2 by
the variable j and point s. Two sub-nodes are generated from this
node, containing N1 and N2 samples, respectively.

R1 j; sð Þ ¼ xjx jð Þ � s
� �

; R2 j; sð Þ ¼ xjx jð Þ > s
� � ð16Þ

The optimal output values bc1 and bc2 in these two regions are
further determined as follows:
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ĉ1 ¼ 1
N1

X
xi2R1 j;sð Þ

yi; ĉ2 ¼ 1
N2

X
xi2R2 j;sð Þ

yi ð17Þ

Let the process to recur in turn until the end conditions are met;
finally, divide the input space into W regions R1, R2, . . ., RW to gen-
erate a decision tree:

f xð Þ ¼
XW
w¼1

ĉwI; x 2 Rw ð18Þ

where I(�) is the indicating function and w is the number of regions.
If x 2 Rw, then I = 1; otherwise, I = 0.

After the regression tree is generated, it is pruned from the bot-
tom to the root node. For each pruning case, a subtree is generated,
thus forming a subtree sequence f1(x), f2(x), . . ., fn(x). Next, use the
cross-validation method on the independent verification data set
to compare the square error of each subtree with respect to the
verification set, and select the optimal decision tree fa(x) (a is the
number of sequence and a = 1, 2, . . ., n).

4.2. AdaBoost ensemble learning for soft sensing

As illustrated in Algorithm 2, given D = {(x1, y1), (x2, y2), . . ., (xN,
yN)} as the training set, Wt = {wt(1), wt(2), . . ., wt(N)} (t is the num-
ber of iteration and t = 1, 2, . . ., T, where T is the total number of
iterations) denotes the weight distribution over D at the tth boost-
ing iteration. At later iterations, the weight distribution will be
updated by increasing the weight of samples with poor perfor-
mance and decreasing the weight of those with good performance.
The average loss function to measure the performance is given by

L
�
t ¼

XN
i¼1

Lt ið Þwt ið Þ ð19Þ

where Lt is a loss function with a range of 0–1. Three candidate Lt
are presented by Ref. [52]; this study uses the exponential one, as
follows:

Lt ið Þ ¼ 1� exp lt ið Þ=max lt ið Þð Þf g; i ¼ 1;2; � � � ;N ð20Þ
where lt(i) = |ft(xi) – yi| is the loss for each training example. The
reweighting procedure is formulated as follows:

wtþ1 ið Þ ¼ wt ið Þa1�Lt ið Þ
t =Zt ð21Þ

where at ¼ L
�
t= 1� L

�
t

� �
is the weight updating parameter; Zt is the

normalization factor that makes Wt+1 a probability distribution.
The final AdaBoost regression result can be obtained by

f xð Þ ¼ �
XT
t¼1

f t xð Þlogat ð22Þ
Algorithm 2. AdaBoost ensemble ML for soft sensor modeling.
Input:
 Training set with N datasets D = {(x1, y1), (x2, y2), . . .,
(xN, yN)}, the basic learning algorithm, and the total
number of iterations T
Output:
 The soft sensor model f(x)

1:
 Initialize:W1 = {w1(1), w1(2), . . ., w1(N)}, w1(i) = 1/N,

i = 1, 2, . . ., N

2:
 for t = 1 to T do

3:
 Take a sample set Rt from D using distribution Wt

= {wt(1), wt(2), . . ., wt(N)}

4:
 Calculate the loss function Lt(i) for each training

sample

5:
 Calculate the average loss L

�
t

6:
 Set at to update distribution Wt as Wt+1 = {wt+1(1),
wt+1(2), . . ., wt+1(N)}
7
 end for

8
 return f(x)
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5. Experimental studies
In this section, the proposed method is validated by experi-
ments on two actual complex industrial processes.

5.1. Experimental setup

According to the theoretical derivation, it can be seen that the
proposed feature-selection method is a kind of filtering method.
In this method, the causal effect is used as the subset evaluation
criteria, and the forward search strategy is used to automatically
select the subset of features for training the soft sensor model.
The proposed method does not need to set a stop threshold. Each
feature Xi in this subset has a unique causal effect on Y. It can be
concluded without verification that other filtering methods lack
this advantage.

The performance evaluation of feature selection usually consid-
ers two aspects: the number of selected features and the perfor-
mance of the soft sensors. We hope to use the least number of
input features to achieve the best performance of the soft sensors.
It is well-known that variance-, PCC-, and MIC-based methods are
the simplest and most effective filtering feature-selection methods
with good generalization. Therefore, these three methods are taken
as benchmarks for comparison purposes. We first use the proposed
method to determine the number of selected features (marked as
K). Then, the stop threshold of three benchmarks is also set to K.
Finally, the feature subsets obtained by the above four methods
are used to train the AdaBoost decision tree-based soft sensor
model, and the performance of the soft sensors is compared. Dur-
ing this process, the experimental data of two complex industrial
processes are randomly divided into two groups according to a
60:40 proportion; that is, 60% is taken as the training set and
40% is taken as the testing set. The root-mean-square error (RMSE)
and the coefficient of determination R2, which are two widely used
performance evaluation metrics, are defined by Eqs. (23) and (24),
respectively, and are adopted in this study. Eventually, if the RMSE
and R2 of our method are better than those of the three bench-
marks, the effectiveness of the proposed method can be verified.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNT

i¼1

yi � byi

	 
2
=NT

vuut ð23Þ

R2 ¼ 1�
XNT

i¼1

yi � byi

	 
2
=
XNT

i¼1

yi � y
�
i

� �2
ð24Þ

where NT is the number of samples in the testing set; yi is the real
value of the ith sample; byi is the estimated value of the soft sensor

model; and y
�
i is the mean of all estimated values.

All the codes of this study are written in Python 3.7. The four
most important hyperparameters of the AdaBoost decision tree-
based soft sensor model are the maximum depth and minimum
samples split of each decision tree regressor, as well as the number
of estimators and learning rate of AdaBoost ensemble learning. In
two experiments, by fine-tuning up and down near the default
value, they are set to 10.0, 5.0, 20.0, and 1.3, respectively. All other
hyperparameters use default values. The hardware environment is
Intel (R) Core (TM) i7-8700 central processing unit (CPU)
@3.20 GHz 32.00G random access memory (RAM).

5.2. Experimental study on the injection molding process

The first complex industrial process is the injection molding
process from Foxconn Technology Group in China. This process
uses an injection molding machine (Fig. 5) to melt the plastic
raw materials at a high temperature. It then injects the plastic melt



Fig. 5. Diagram of the injection molding machine.

Fig. 6. The causal effect of different candidate input features on product size in the
injection molding process.

Table 1
RMSE and R2 of the soft sensing model under different feature-selection methods in
the injection molding process.

Methods RMSE (mm) R2 (%)

Variance-based 0.031 65.1
PCC-based 0.031 65.2
MIC-based 0.027 73.2
Cause effect-based 0.023 80.4
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into the mold at high speed and high pressure; the melt undergoes
complex physicochemical changes at a constant pressure to yield
plastic products. Through the repeated operation of this process,
a large number of the same products can be produced. During this
process, the final product quality is measured with a high delay,
which seriously affects timely decision-making for ensuring qual-
ity stability. Therefore, the injection molding process is used to
verify and apply the proposed method. The data of 16 600 produc-
tion batches were collected, including 86 candidate input features,
and the product sizes were used as the KPIs [53].

Based on Section 3, we quantify the causal effects of 86 candi-
date input features on the product size (mm) of the injection mold-
ing process. As shown in Fig. 6, it is found that only nine candidate
input features contain causal information about product size;
given these nine features, the remaining features have no causal
effect on it. Thus, these nine features are utilized as the input fea-
tures of the soft sensor model to estimate the value of the product
size. The nine features are: instantaneous flow (m3�s�1), cycle time
(s), jacking time (s), post-cooling time (s), mold temperature (�C),
clamping time (s), ejection time (s), clamping pressure (Pa), and
opening time (s).

Table 1 shows the RMSE and R2 of the soft sensor model under
different feature-selection methods. We can see that the causal
effect-based feature-selection method provides the lowest RMSE
and the largest R2. It outperforms the three benchmarks, because
the causal information of product size is accurately extracted; in
addition, redundant non-causal information is effectively removed.
Moreover, compared with the benchmarks, the proposed method
does not need to set a stopping threshold and can naturally avoid
information loss.

Fig. 7 shows the soft sensor results for product size under differ-
ent feature-selection methods. It can be seen that the causal effect-
based method can more effectively estimate the slight fluctuation
of quality than the methods based on three benchmarks. Fig. 8
shows the scatter diagrams and probability density curves of the
soft sensor results under different feature-selection methods. It
can be seen that the estimated values of the causal effect-based
method are closer to the real value. Furthermore, the probability
density curve from the causal effect-based method is ‘‘thinner”
and ‘‘taller” than those from the benchmarks, which also proves
that the proposed method has better accuracy.

5.3. Experimental study on the diesel engine assembly process

The second complex industrial process is the diesel engine
assembly process from Guangxi Yuchai Machinery Group Co., Ltd.
(China). As shown in Fig. 9, mechanical parts are assembled into
diesel engine products through eight sub-assembly lines, including
the main assembly line, five sub-assembly lines, the performance
test line, and the package line. The consistency of the rated power
under the same work conditions is one of the most important KPIs,
but its inspection requires time-consuming and high-cost bench
testing. We implemented the test on 1763 samples; for each sam-
ple, the data of 39 process variables were collected along the
assembly process [36,37] and were utilized as the candidate input
features to verify and apply the proposed method.

Further verification and application of the proposed method is
performed on the diesel engine assembly process. Similarly, the
causal effects of 39 candidate input features on the rated power
(kW) of the diesel engine products are quantified. As shown in
Fig. 10, it is found that only six candidate input features contain
causal information about the rated power, while, given these six
features, the remaining ones have no causal effect on it. Thus, these
six features are utilized as the input features of the soft sensor
model to estimate the value of the rated power. This six features
are: fuel consumption per 100 kilometers (L), running time
88
(min), fuel consumption rate (%), intercooler inlet pressure (Pa),
intercooler inlet temperature (�C), and axial clearance (mm).

Table 2 shows the RMSE and R2 of the soft sensor model under
different feature-selection methods. Again, we can see that the
causal effect-based feature-selection method provides the lowest
RMSE and the largest R2. It is worth noting that the three bench-
marks have very low R2, indicating that it is difficult to explain
the output features using the selected variables. Fig. 11 shows
the soft sensor results for the rated power under different
feature-selection methods. It can be seen that the causal
effect-based method can more accurately estimate the value of
the rated power than the three benchmarks. Fig. 12 shows the scat-
ter diagrams and probability density curves of the soft sensor
results under different feature-selection methods. The estimated
values of the causal effect-based method are closer to the real rated
power than those of the other methods. In addition, the probability
density curve from the causal effect-based method is ‘‘thinner” and
‘‘taller,” which once again proves that the proposed model has bet-
ter accuracy than the three benchmarks.

According to the results of these two experiments, the following
insights can be obtained. The proposed method is effective and
universal, and can help us to understand complex industrial pro-
cesses. In practical industrial applications, this method can select
a subset of features from the raw industrial dataset that is compact
and informative. For example, among the 86 candidate input fea-
tures in the injection molding process, only nine candidate input
features contain causal information about the product size. Com-
pared with these nine features, other features are irrelevant or
redundant for soft sensor modeling. The performance of the soft
sensors can be further improved in two ways. One is to develop



Fig. 8. Scatter diagrams and probability density curves of the soft sensor results under different feature-selection methods in the injection molding process.

Fig. 7. Soft sensor results of product size under different feature-selection methods in the injection molding process. (a) Variance; (b) PCC; (c) MIC; (d) causal effect.
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Fig. 10. The causal effect of different features on the rated power in the diesel
engine assembly process.

Table 2
RMSE and R2 of the soft sensor model under different feature-selection methods in
the diesel engine assembly process.

Methods RMSE (kW) R2 (%)

Variance-based 3.207 18.5
PCC-based 3.078 24.9
MIC-based 3.066 25.5
Cause effect-based 2.215 61.1

Fig. 9. Diagram of the diesel engine assembly process. WS: work station; PLC: programmable logic controller.
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a more advanced data-driven model, which can fit the data distri-
bution of the selected features more fully. Based on our experience,
the performance of the existing data-driven models is similar
when selecting the same input features. Thus, this paper only
introduces an AdaBoost ensemble learning model for soft sensor
modeling, while a comparison of different models lies beyond
our scope. The other way is obtaining a deeper understanding of
90
the industrial processes by means of first principles, so as to obtain
more comprehensive and sufficient data to help train better data-
driven models. In other words, although we are developing data-
driven methods, research on the first principles of complex indus-
trial processes should not be ignored.
6. Conclusions

This study proposes a causal effect-based feature-selection
method for developing soft sensors for KPIs in complex industrial
processes. Integrating the PNM with information theory, a causal
effect quantification method is presented to extract the causal
information of KPIs. The proposed method can provide helpful
insights into the soft sensing of KPIs and helps to improve the accu-
racy and interpretability of ML. In addition, decision tree regression
with the AdaBoost ensemble is employed for soft sensor modeling
and requires almost no fine-tuning of parameters to achieve excel-
lent performance. Our experimental studies on actual industrial
processes confirm the effectiveness and promising applications of
this method.

However, the PNM is a non-temporal causal model, so this
paper does not consider the lagged effect of causality. If the pro-
posed method is applied to time series data, it is necessary to first
estimate the causal delay. This is another topic that may be
addressed in our future work. In addition, this study focuses on
the causal effect-based feature-selection method, while the
research on downstreamMLmodels is weak. As wementioned ear-
lier, under the same input features containing causal information,
the improvement of soft sensor results by cutting-edge ML models
is limited. Therefore, especially for complex industrial scenarios,
our future work will focus on the interval estimation and risk



Fig. 12. Scatter diagrams and probability density curves of the soft sensor results under different feature-selection methods in the diesel engine assembly process.

Fig. 11. Soft sensor results for product size under different feature-selection methods in the diesel engine assembly process. (a) Variance; (b) PCC; (c) MIC; (d) causal effect.
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assessment of KPI models based on the theory of uncertainty
quantification.
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