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ABSTRACT

This work presents an optimal design method of antenna aperture illumination for microwave power
transmission with an annular collection area. The objective is to maximize the ratio of the power radiated
on the annular collection area to the total transmitted power. By formulating the aperture amplitude dis-
tribution through a summation of a special set of series, the optimal design problem can be reduced to
finding the maximum ratio of two real quadratic forms. Based on the theory of matrices, the solution
to the formulated optimization problem is to determine the largest characteristic value and its associated
characteristic vector. To meet security requirements, the peak radiation levels outside the receiving area
are considered to be extra constraints. A hybrid grey wolf optimizer and Nelder-Mead simplex method is
developed to deal with this constrained optimization problem. In order to demonstrate the effectiveness
of the proposed method, numerical experiments on continuous apertures are conducted; then, discrete
arrays of isotropic elements are employed to validate the correctness of the optimized results. Finally,
patch arrays are adopted to further verify the validity of the proposed method.

© 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Microwave power transmission (MPT) is a method to wirelessly
deliver energy at microwave frequencies from a generation point
to at least one receiver point. MPT has gained widespread attention
since it was first proposed, because it eliminates the infrastructure
needed to transmit power. Potential applications of MPT include
powering unmanned aerial vehicles [1], charging electric vehicles
[2], providing energy from one satellite to another [3], supplying
energy to Internet of Things devices [4], and delivering power to
forward operating bases [5]. In fact, most MPT developments have
been driven by the progress of space solar power satellites (SSPSs).
An SSPS [6] is a huge MPT system that collects solar power and
converts it to direct current (DC) power in outer space, then trans-
mits the DC power to earth via MPT technology. An MPT system
mainly consists of a transmitting antenna and a rectenna. The
transmitting antenna functions as a convex lens to focus the micro-
wave beam on the rectenna, while the rectenna intercepts the inci-
dent microwave power and converts it back to DC power.
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In an MPT system, the efficient transmission of microwave
power to the target receiver is key. To evaluate this performance,
beam collection efficiency (BCE), which is defined as the ratio of
the power that impinges on the rectenna aperture to the total
transmitted power, is usually adopted [7]. A great deal of work
has been done to improve the BCE in both array antennas and con-
tinuous apertures [8-19]. To be specific, the optimal array synthe-
sis problem for maximizing the BCE of linear or planar arrays can
be addressed by exploiting discrete prolate spheroidal sequences
[8] or by solving a generalized eigenvalue problem [9,10]. Numer-
ical optimization methods such as linear programming [11], con-
vex programming and compressive sensing [12], k-means
clustering [13], contiguous partitioning [14], genetic algorithms
[15], and particle swarm optimization (PSO) algorithms [16] have
also been adopted to design arrays with high BCEs. For continuous
apertures, stepped amplitude distribution [17] and isosceles trape-
zoidal distribution [18] have been proposed to reduce the trans-
mitting antenna complexity while simultaneously ensuring a
high BCE. Apart from BCE, other performance indexes such as the
aperture power coefficient of the transmitting antenna [19] and
the radiated power density variation on the rectenna [20] can be
well addressed with multi-objective optimization techniques.
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It is notable that the available antenna design approaches for
MPT generally focus on the optimization design of spot beams with
either circular or square shapes. However, special scenarios exist
for which ring-shaped beams are required. For example, in some
applications, it is necessary to direct the energy beam to the
perimeter of an area rather than to its center. As a typical example,
a radio telescope may be constructed in a lunar crater, with the
power for the monitoring and control system around its rim being
supplied by an MPT system [21]. As another example, it may be
necessary to supply energy to a settlement surrounding a moun-
tain. In addition, the use of an MPT system to charge wireless sen-
sor networks around an active volcano holds great value for
monitoring volcanic eruptions [22,23], since a real-time monitor-
ing and prediction system for detecting volcanoes is essential to
save lives. Apart from MPT, ring-shaped beam antennas are consid-
ered to be good candidates for satellite communications and wire-
less local-area networks (WLANs) [24,25]. Moreover, laser beams
with a ring-shaped intensity distribution have many important
applications in life science and technology [26-29].

In this article, an optimal design method for antenna aperture
illumination that generates a ring-shaped beam for MPT is pro-
posed. The design goal is to achieve the maximum BCE. To address
security concerns, constraints on peak radiation levels (PRLs) out-
side the annular collection area are considered. This paper is orga-
nized as follows. In Section 2, optimization designs of antenna
illuminations for MPT with annular collection areas are formu-
lated, first without (Section 2.1) and then with security concerns
(Section 2.2). Next, a hybrid grey wolf optimizer (GWO) and
Nelder-Mead (NM) simplex method is proposed in Section 2.3 to
deal with the constrained optimization problem formulated in Sec-
tion 2.2. To demonstrate the effectiveness of the proposed method,
representative numerical experiments on continuous apertures are
conducted in Section 3.1. Subsequently, to further confirm the
validity of the optimized results, array antennas of isotropic ele-
ments and patch elements are analyzed in Sections 3.2 and 3.3.
Finally, Section 4 concludes the paper.

2. Problem formulation and solution methods

2.1. Optimal aperture illumination design for MPT with an annular
collection area

Fig. 1 shows an MPT system in which the transmitting antenna
has a circular aperture with a radius of R.. The rectenna has an
annular shape with inner and outer radii of R;; and R, respec-
tively. The transmitting antenna and rectenna are assumed to be
aligned and separated by a distance of L in the Fresnel region.
For simplicity, a circularly symmetric aperture distribution is con-
sidered for the transmitting antenna. Let E(p, ) be the normalized
aperture distribution, which can be written as follows:

Ei(p,¥) = g(p)expliv(p)] (1)

where g(p) and y(p) denote the aperture amplitude and phase dis-
tribution, respectively. The imaginary unit j isv/—1. p = /R, indi-
cates the normalized radial distance, and r is the distance from
the transmitting antenna center to another point on the transmit-
ting aperture. To focus the transmitted beam at a distance of L in
the Fresnel region (radiative near field), the transmitting antenna
should be equipped with a phase distribution in the following form
[30]:

p’R:
2L

where 8 =2m/4 is the wavenumber and 2 is the wavelength. This
phase taper compensates for the phase difference due to the differ-

v(p)=p

(2)
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Fig. 1. Illustration of an MPT system with an annular collection area. R,;: the inner
radius of the annular receiving area; R;,: the outer radius of the annular receiving
area; Ry the radius of the transmitting antenna; L: the distance between the
transmitting antenna and rectenna; 0;, 0,: the angles of the annular receiving area.

ence in the distances between each source point on the aperture
and the focal point. Then, field contributions are added in phase
at the focal point. In fact, it has been theoretically proven that, in
the focal plane (i.e., the rectenna plane) near the axis, the electric
field of the transmitting antenna has all the properties of the far
field [30]. This conclusion is verified in Refs. [10,31,32]. Based on
this fact, the radiation pattern of the circular transmitting antenna
(E) is given by the following:

il

E(9) = JpRE S —F(0) 3)

where

(4)

and Jy(-) is the Oth-order Bessel function of the first kind,
¥ = BR¢sin0, sin0 =1'/L, 0 is the elevation angle, and ' denotes
the radial distance from the center of the beam at the rectenna site.
Suppose the transmitting antenna radiates a peak microwave beam
intensity of I;,; then, the radiated beam intensity (I) on the rectenna
plane can be calculated as follows:

1
F() = /0 g(p)o@p)pdp

R
2
Referring to Fig. 1, the power confined in the annular collection
area (P;) is calculated by

1(9) = 1(r') = I = F* (9) ()

2T Ry L)
P, = / I(ryrdr'de = 27l,R? / F2(9)0dy (6)
0 JRy Jiq

where
W = ﬁRt Sinf)i, i= 1,2 (7)

and 0; and 0, are the two angles of the annular area shown in Fig. 1.
The total transmitted power (P;) can be calculated as follows:

1
Po=2nof? [ & (p)pdp (8)
0

Based on Egs. (6) and (8), the BCE of an MPT system with an
annular collection area can be represented by
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P, [P (W)vdo
BCE=5="F—"—
P [og2(p)pdp
From Egs. (4) and (9), it can be seen that, for a focused aperture,
the antenna aperture amplitude g(p) plays a key role in determin-
ing the achievable BCE. To find the optimal g(p) that focuses the
microwave beam on the annular collection area, it is helpful to
express g(p) as a series [20]; that is,

N
gp) = xa(1-p»)""
n=1

9)

(10)

where the nth basis function has the form (1 — pz)"fl, which is gen-
erally used to approximate aperture amplitudes that taper toward
the edges of the apertures [33], and x, is the associated weight fac-
tor. It can be seen from Eq. (10) that various g(p)s can be formed by
choosing a different truncation parameter N and weight factor x;,.
When N = 1, Eq. (10) can be reduced to a uniform aperture ampli-
T
tude. If we let X = [x;,...,xy]' and A = [1, (1= pZ)Nfl] , then Eq.
(10) can be rewritten as follows:

g(p) =x'A (I

Accordingly, the denominator of Eq. (9) can be rewritten by

o1
/0 g*(p)pdp = x'Bx (12)
where
1
B— / AA"pdp (13)
0

is an N x N matrix, and the (m, n)th element of B has a closed-form
solution; that is,

1

Bm":2(m+n—l)

(14)

A detailed derivation of Eq. (14) is given in Appendix A. In addi-
tion, by substituting Eq. (10) into Eq. (4), F(9) can be rewritten as
follows:

N

1
> x /0 (1-p2)" JoWp)pdp

n=1

F(9) (15)

It is worth noting that the nth component of the integral in Eq.
(15) also has a closed-form solution [33]; that is,

2" (n - )Y, (9)

1
/0 (1-p%)" JoWp)pdp = 5 (16)

where J,(-) denotes the nth-order Bessel function of the first kind,
and the symbol “!” represents the factorial function. If we let

. _ T
C= [#7 WJ . then Eq. (15) can be rewritten as follows:

F(9) = x'C (17)
Accordingly, the numerator of Eq. (9) becomes
~ Uy

F?(9)9dy = x"Dx (18)
Jiy
where

0y

D= | CC"vdv (19)

W

is an N x N matrix and the (m,n)th element of D is calculated by
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9™ Y (20)

)

Based on Eqs. (12) and (18), the BCE formulated in Eq. (9) can be
reduced to the ratio of two real quadratic forms:

BCE =

21
Xx"Bx 1)

To maximize the achievable BCE, the optimal design variable
vector (x°P'), is given by

max x"Dx
x \X"Bx

From Eqs. (14) and (20), it is clear that, for every m and n,
Bimn = Bum and Dy, = Dy Hence, B and D are two symmetric matri-
ces. Also, for an arbitrary real vector x # 0, we have x'Dx > 0 and
x"Bx > 0, since they represent, respectively, the power radiated
on the annular collection area and the total transmitted power.
Thus, x'Dx and x"Bx are two positive definite quadratic forms.
Based on the theory of matrices [34], the solution to Eq. (22) is
to determine the largest characteristic value (wmax) and its associ-
ated characteristic vector; that is,

X°P = arg

(22)

DX = (0, BXP" (23)

The maximum BCE is equal to my,., with the associated aper-

ture amplitude distribution being g(p) = (x°")"A. In this work,
Eq. (23) is solved using the “eig” function in Matlab (MATLAB,
USA), employing the Lapack package [35].

2.2. Optimal aperture illumination design for MPT with an annular
collection area and with security constraints

The optimal design of aperture distribution for MPT in terms of
maximizing the BCE is given in Section 2.1. It should be noted,
however, that this design fails to deal with the PRLs outside the
receiving area. In practice, in many MPT applications, a large
amount of power is transferred. Thus, microwave radiation safety
must be taken into account. To address this issue, extra constraints
on the PRLs outside the receiving area must be considered. In this
case, the optimization design of the aperture distribution can be
transformed into a constrained optimization problem:

mxin. f(x) = —BCE(x) (24)
max |F(9)|
s.t. PRL; = 2010g107m’ax F)] <G (25)
2, F)
— *\2+ /
PRL, = 20log;, max o)~ G, (26)
-1<x, <1(n=1,..,N) (27)

where f is the objective function, x = [xy, ..., xy]" is the design vari-
able vector used to define the shape of g(p). The objective is to max-
imize the BCE. To change the maximization problem to a standard
minimization problem, the objective function is multiplied by —1,
as shown in Eq. (24). Eq. (25) is a constraint used to ensure that
the PRL at the edge of or inside region 1 (shown in Fig. 1), denoted
by PRL;, is below C; dB. Similarly, Eq. (26) is a constraint used to
ensure that the PRL at the edge of or outside the exclusion zone
[36], denoted by PRL,, is below C, dB.
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2.3. Solution strategy to the optimization problem formulated in
Section 2.2

It is clear that Egs. (24)-(26) represent a constrained nonlinear
optimization problem. To handle this problem, we first convert the
constrained optimization problem to an unconstrained one using a
penalty method:

f(x) = —BCE(x) + K

« (max{0,PRL; + C; }, max{0,PRL, + C,})

(28)

where K is a penalty factor and is set to 10°. It can be seen that,
when PRL; or PRL, is larger than the desired value C; or C5, Eq.
(28) yields a very large value. When the constraints in Egs. (25)
and (26) are met, the optimization will go on to search for the max-
imum BCE. In order to solve Eq. (28), a hybrid GWO and NM opti-
mization method (GWO-NM) is proposed that combines the
advantages of GWO [37] and NM |[38]. Details of the GWO-NM
algorithm are provided below.

2.3.1. Grey wolf optimizer

GWO [37] is a swarm intelligence optimization technique that
imitates the social hierarchy and group hunting behavior of grey
wolves in nature. In GWO, all “wolves” (i.e., solutions) are divided
into four kinds based on their fitness, simulating the social struc-
ture of wild wolves. The best solution is defined as the alpha; the
second and third best solutions are named the beta and delta,
respectively; and the remaining solutions are called the omega.
In a hunt, three group hunting strategies are employed—namely,
searching for prey, encircling prey, and attacking prey. To simulate
the encircling behavior of grey wolves, the following two equations
are used:

X(t+1)=Xp(t)—E-G (29)

G = |F x Xp(t) — X(¢)] (30)

where X(t + 1) and X(t) are vectors of dimension N; that are used to
indicate the positions of a wolf (candidate solutions) at the (t + 1)th
and tth iterations, respectively, and N, is the number of design vari-
ables. Xp(t) is an N;-dimensional vector denoting the position of the
prey (potential optimal solution). E and F are two N;-dimensional
vectors, defined as follows:

E=2r, xa—a (31)

F=2r, (32)

where r; and r, are random vectors of dimension N; whose compo-
nents are within the interval [0, 1]. a is an N;-dimensional vector
whose elements decrease linearly from 2 to 0 throughout the
iteration:

t
a:2X<1_T>

where t and T are the current iteration and the maximum number
of iterations, respectively. By adjusting E and F, a solution, X(t), can
adjust its position with respect to Xp(t) in an N;-dimensional search
space to mimic the encircling behavior of grey wolves.

In a wolf pack, the hunt is led by the pack leaders, who are
assumed to have better knowledge of the position of the prey.
Other wolves then follow the pack leaders to approach the prey.
This group hunting mechanism can be represented by the
following:

G, = |F1xX, — X|,Gp = |[FoxX; — X|, G5 = |F3 x X; — X|

(33)

(34)

66

Engineering 30 (2023) 63-74

X1 :Xi—El XG:;”XZ :X/;—Ez XG,th :X(s—E3><G(5 (35)

X(t+1)= X + X5 +X3)/3 (36)

where X, X;, X;, and X are the positions of alpha, beta, delta, and
omega in the tth iteration, respectively. X(t+ 1) is the updated
position of a wolf in the (t + 1)th iteration. For a better understand-
ing of GWO, interested readers are directed to Ref. [37].

GWO has been shown to have good global search ability [37]
but poor local search capability. In addition, similar to other
population-based optimization techniques, GWO has a low conver-
gence speed compared with gradient-based optimization methods.
To address this issue, the NM simplex algorithm is incorporated
into GWO.

2.3.2. NM simplex algorithm

The NM simplex algorithm [38] is a derivative-free optimization
method with a powerful local search ability. It has a very fast con-
vergence speed and has been widely used in unconstrained opti-
mization problems. For an optimization problem with N; design
variables, the NM simplex algorithm starts by forming a simplex
A with N; + 1 initial vertices, %, (I=1,...,N; + 1), each of which
represents a candidate solution. A simplex is a geometrical objec-
tive generated by N; + 1 points in an N;-dimensional space. For
example, a triangle is a simplex in two-dimensional (2D) space,
and a tetrahedron is a simplex in three-dimensional (3D) space.

In the NM algorithm, all the N; + 1 verticesx, (I=1,...,N; + 1)
are sorted in ascending order based on their objective function val-
ues; that is,

f®) <f(x2) < ... <f(%n,11)

The vertex yielding the minimum objective function value, X1, is
named the best vertex. Similarly, Xy, is referred to as the worst
vertex. At each iteration, a new simplex is formed by replacing
the worst vertex with a newly generated vertex or by shrinking
the old simplex while keeping its best vertex unchanged. Four
operations (reflection, expansion, contraction, and shrinking) are
employed to shape the simplex, each of which is associated with
a parameter: 7y (reflection), 6 (expansion), ¢ (contraction), and ¢
(shrinking). These parameters are selected to satisfy y >0, 6 > 1,
6>7,0<ée<1,and 0 < g <1 [38]. The kth iteration of the NM
algorithm is given below [38].

(1) Evaluate the objective function. Evaluate the objective
function f at the N; + 1 vertices xf‘ (I=1,..,N; + 1) of the simplex
Ay, and sort them so that Eq. (37) holds.

(2) Perform the reflection operation. Obtain the reflection
point x¥:

(37)

X=X (X - ) (38)
where x* is the centroid of the first N; best vertices
—_ Ni
X = "xf /Ny (39)
=1
Evaluate f(x¥). If f(xX) <f(xf), go to step 3; if

F(x) < f(x5) <f<x’,‘vl>, replace xy ., with xf and go to step 7; if

f(x}‘vl) <f(x5) <f(x’;,1+1>, go to step 4; otherwise, go to step 5.
(3) Perform an extension operation. Obtain the extension
point xk:

X :;F+5(x§—:?) (40)

Evaluate f(x%). If f(xf) < f(f), replace xf, ,, with x{ and go to
step 7; otherwise, replace &}, , with xf and go to step 7.
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(4) Perform an outside contraction. Obtain the outside con-
traction point x¥_:
Xi = X+ (%6 - ) (41)

Evaluate f(x£ ). If f (x%) < f(xF), replace &}, ., with x£_and go to
step 7; otherwise, go to step 6.

(5) Perform an inside contraction. Obtain the inside contrac-
tion point x¥:

X =Ffs<?fx’,‘vﬁl>

ic

(42)

Evaluate f(xk). If f (xX) <f(x’,§1+1>, replace &}, , with x% and go
to step 7; otherwise, go to step 6.

(6) Perform a shrinking operation. All the vertices of the sim-
plex except the best one, that is, 8 (I = 2,...,N; + 1), are replaced
by new vertices:

X =&+ o(xf — &) (43)

(7) Determine whether the stopping condition has been met.
Sort the vertices of the new simplex, (I = 1,...,N; + 1), such that
Eq. (37) holds. If the maximum number of function evaluations

(MNFE) is reached, or if ‘f(x’l‘) —f(x’,i,ﬁl)‘ < €, where € is a user-

defined small predetermined tolerance, then stop the algorithm;
otherwise, k = k + 1, in which case, go to step 2.

For clarity, Fig. 2 shows the effects of reflection, expansion, con-
traction, and shrinking for a simplex in 2D space, with the coeffi-
cients y=1.0, 6=2.0, ¢e=0.5, and o =0.5. With successive
iterations, the simplex gradually converges to the optimal point.
As suggested in Ref. [38], the coefficients of reflection, expansion,
contraction, and shrinking are set to the following:

2 2 1
y=1,0=1 +N—1,£70.75 —2—N1,0'7 1 N

NM is a very efficient local search method. However, the
obtained result is extremely sensitive to the initial points. Thus,
the initial points should be carefully selected.

(44)

2.3.3. The GWO-NM algorithm

As described above, GWO has good exploration ability but pos-
sesses the drawbacks of poor local search ability and slow conver-
gence speed. While the NM simplex method has a good

Fig. 2. Illustration on (a) an initial simplex in 2D space and operations of (b)
reflection, (c) expansion, (d) outside contraction, (e) inside contraction, and (f)
shrinking.
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exploitation capability and a fast convergence speed, the result
obtained is highly dependent on the initial solutions. To make full
use of the advantages of these two algorithms, a hybrid GWO-NM
algorithm is proposed. There are two stages in our GWO-NM: a
coarse global search stage and an intensive local search stage. In
the first stage (the coarse global search stage), GWO is adopted
to explore the search space globally and quickly find a promising
search space. In the second stage (the intensive local search stage),
the NM simplex method is utilized to find a high-quality solution
by performing an intensive local search based on the promising
solutions found by GWO.

In the GWO-NM, the initial vertices x; (I =1,...,N; + 1) of the
simplex are generated in two ways. First, we execute GWO N;
times, and the best solutions are stored as the N; initial vertices
X (I=1,..,N;7). In order to speed up the convergence speed of
the GWO-NM, the (N; + 1)th initial vertex of the simplex is
obtained by solving Eq. (23)—that is, Xy,,1 = x°'. With these
N; + 1 initial solutions, an N;-dimensional simplex is formed,
and the process of NM is triggered. A diagram of the GWO-NM
algorithm is provided in Fig. 3.

3. Numerical analysis and discussion

In this section, the optimal design of antenna aperture distribu-
tions for MPT with annular collection areas with or without secu-
rity constraints in the Fresnel region will be conducted and
discussed. First, optimization designs of continuous apertures with
different receiving areas will be presented. With a quadratic phase
taper, the radiation pattern in the Fresnel region can be approxi-
mated to the far-field pattern [10,30]. Based on this fact, for sim-

Stage 1: global search by GWO

1. Set the parameters of GWO, such as the population
size and the maximum number of iterations

2. Independently execute GWO N, times to get the initial
solutions

for /I=1:N,

Execute the GWO algorithm for coarse exploration
Save the best solution found by GWO as x,

end

x,(I=1, ..., N,) and Xy =)

Stage 1: local search by NM simplex method

1. Set the scalar coefficients of the NM simplex method
and the termination condition ( € or MNFE )

2. Take the N, +1 initial solutions x, (/ =1, ..., N, + 1)
to form an N,-dimensional simplex, and execute the
NM simplex method for an intensive local search

3. Output the final solution

Fig. 3. Diagram of the GWO-NM method.
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plicity, array antennas of isotropic elements working in the far-
field region are employed to verify the validity of the optimized
results. The excitation coefficients are obtained by sampling the
optimized continuous distributions. Finally, the proposed method
is further validated with patch arrays working in the far-field
region, while considering the mutual coupling effect. For all the
numerical experiments, the working frequency is set to 5.8 GHz,
which lies within the atmospheric window.

3.1. Continuous aperture illumination designs for MPT with annular
collection areas

Recall the antenna amplitude distribution g(p) in Eq. (10),
which is formed by a summation of a series of the form

(1- pz)"’1 and order of N. To find the optimal g(p) that maximizes
the achievable BCE, the truncation parameter N should be deter-
mined. For this purpose, a design of g(p) for maximizing the BCE
without constraint is considered. Here, ¥; and 9, in Eq. (9) are
respectively set to 3 and 9, and N is first set to 4. By solving Eq.
(23), the maximum BCE is found to be 96.047%. The optimal design
variable vector, ¥°P, is given in Table 1. Then, we increase N from 4
to {5, 6, 7, 8,9, 10}, respectively. For each N, Eq. (23) is solved; the
optimized BCEs and the associated optimal design variable vectors
are summarized in Table 1. It is found that, when N is larger than 7,
the optimized BCE tends to be stable. Therefore, in this article, N is
chosen as 8.

Table 1
The optimized BCEs and associated optimal design variable vectors for different N
(¥1 =3 and ¥, = 9).

N BCE(%)  xopt

4 96.04754 [-0.0102, 0.1288, —0.7036, 0.6988]"

5 9751947 [0.0028, —0.0640, 0.2531, —0.7346, 0.6262]"

6 97.58848 [0.0013, —0.0083, —0.1747, 0.3941, —0.6904, 0.5809]"

7 97.58970 [0.0027, —0.0369, —0.0594, —0.2704, 0.5879, —0.5620,
0.5104]"

§ 97.58971 [0.0103, -0.1351, —0.3482, —0.4010, 0.4965, 0.3931, 0.1219,
0.5326]"

9  97.58971 [-0.0102, 0.1347, 0.3476, 0.3984, —0.4898, —0.4022,
~0.1112, —0.5369, 0.0013]"

10 97.58971 [-0.0055, 0.0713, 0.2168, 0.0646, 0.1478, —0.8042, 0.3454,

—0.3948, —0.0045, —0.0008]"
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Fig. 4(a) plots the optimized g(p) (solid blue curve), which has a
peak value in the antenna center, then drops to below zero, and
finally increases to above zero. It should be noted that there is an
area in which g(p) < 0, which means that the antenna should be
fed 180° out of phase. With this unusual amplitude distribution,
the power radiated by the transmitting antenna can be mainly
focused on the annular collection area, since a very high BCE of
about 97.59% is obtained. Fig. 4(b) shows the associated normal-
ized radiation pattern (solid blue curve). Although a very high
BCE is achieved, the PRL in region 1 (¥ <) is rather high
(PRL; = —6.44 dB), which appears at the edge of region 1. Such a
high PRL may cause interference to the electronic equipment or
pose a hazard to people nearby.

For security concerns, constraints on the PRL outside the annu-
lar receiving area must be considered. In the first set of design
cases, suppose that the PRL outside the exclusion region is required
to be below —20 dB; that is, C; in Eq. (26) is set to —20 dB, and the
exclusion zone A9 is set to 1. Different PRLs in region 1 will be con-
sidered, with the goal of maximizing the BCE. To deal with this
constrained optimization problem, the proposed GWO-NM is
adopted. For the GWO algorithm in the first stage of the GWO-
NM, the population size (nPop) is set to nPop = 20 and the maxi-
mum number of iterations is set to T = 200, which are both very
small for a population-based optimization algorithm. For the NM
simplex algorithm in the second stage of the GWO-NM, MNFE is
set to MNFE = nPop x T, and € is set to 1x107°.

As the first design case, the PRL in region 1 is required to be
below —18 dB (C; = —18 dB). With the GWO-NM, the optimized
BCE is 93.09%, and the optimal design variable vector, x°Pt, is given
in Table 2. We then gradually decrease C; and solve the con-
strained optimization problem in sequence. This process is stopped
when no feasible solution can be found. The optimized BCEs and
the corresponding design variable vectors are presented in Table 2.
For clarity, the relationship between C; and the associated opti-
mized BCE is plotted in Fig. 5. Clearly, there is a linear relationship
between the achievable BCE and C;. The suppression limit of C; is
about —29 dB, and the associated BCE is reduced to 89.25%. For the
purposes of comparison and clarity, only the optimized g(p)s
obtained for C; =—20, —25, and —29 dB are plotted in Fig. 4(a).
The associated radiation patterns are depicted in Fig. 4(b), where
the left vertical black dotted line denotes the inner edge of the
receiving area (v = 1), while the right vertical black dotted line
indicates the outer edge of the exclusion area (¥ = 9, + AY). From
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/8N
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20| || \ ]
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| ‘l' i \ 1 % Lr
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Fig. 4. (a) Optimized g(p)s with/without security constraints for MPT with an annular collection area (¢¥; =3 and 9, = 9); (b) the associated radiation patterns. The left
vertical black dotted line denotes the inner edge of the receiving area, while the right vertical black dotted line indicates the outer edge of the exclusion area.

Uncons: unconstrained; Cons: constrained.
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xOPt

[0.1239, —0.2541, —0.4720, 0.2647, —0.2193, —0.8101, 0.6828, 1.3570]"
[-0.0745, 0.1825, 0.1146, 0.1785, —0.2767, 0.5538, —0.0944, —0.9608]"
[-0.7996, 2.3102, 0.0133, 1.3298, 0.7102, 3.6784, —2.6146, —8.3775]"
[-0.3316, 1.0203, —0.2062, 0.5220, 0.4126, 1.7741, —1.4352, —3.2333]"
[-0.2673, 0.8666, —0.3174, 0.3863, 0.5035, 1.4082, —1.2122, —2.5037]"
[-0.1439, 0.4836, —0.1564, —0.2337, 1.1638, 0.1619, —0.6674, —1.1926]"
[0.1865, —0.5729, —0.0255, 0.2814, —0.4094, —1.2854, 0.5110, 2.0685]
[0.0438, —0.1111, —0.1892, 0.5656, —0.6555, —0.0647, 0.0854, 0.5020]"
[0.1566, —0.4863, —0.0469, 0.4144, —0.3385, —1.2923, 0.3900, 1.8017]"
[0.1287, —0.5016, 0.4885, —0.3573, —0.2556, —0.6962, 0.5477, 1.0998]"
[0.5506, —2.2194, 2.3670, —1.5405, —1.5829, —2.5974, 2.4499, 4.4516]"
[0.0267, —0.1283, 0.2608, —0.4330, 0.2687, —0.0894, —0.1371, 0.3173]"

In the second set of design cases, ¥; and ¥, in Eq. (9) are set to 4
and 10, respectively. Solving Eq. (23) shows that the optimized BCE
is as high as 97.27%, and the optimal design variable vector is x°Pt=
[0.0051, 0.0135, —0.0363, 0.0057, —0.3694, 0.6381, —0.5634,
0.3707]". Fig. 6(a) plots the optimized g(p). Similar to the first
design case, the optimized g(p) has the maximum value in the
antenna center, then decreases to below zero, and finally increases
to above zero. Fig. 6(b) plots the associated radiation pattern, and a
relatively high PRL (PRL; = —10.67 dB) is observed at the edge of
region 1.

To reduce the PRL while simultaneously achieving a high BCE,
the GWO-NM algorithm is employed to handle the constrained
optimization problem formulated in Section 2.2. Here, C, in Eq.
(26) is fixed at —20 dB, and A9 is set to 1; in Eq. (25), different
C, values are considered. The parameters of the GWO-NM algo-
rithm are set to be the same as in the first set of design cases.
Table 3 summarizes the optimized BCEs and the associated optimal
design variable vectors concerning different C; values. To be speci-

Table 2
The optimized BCEs and optimal design variable vectors for MPT with ; = 3, ¥, =9, and with security constraints.
Cy (dB) BCE (%)
-18 93.09
-19 92.71
-20 92.34
-21 92.00
-22 91.65
-23 91.30
-24 91.03
-25 90.69
-26 90.39
-27 89.97
-28 89.64
-29 89.25
93.5
93.0 | b
925
92.0
S
w
910t
90.5
90.0 1
89.5
89.0 ) . A . .
-30 -28 -26 —24 -22 -20 -18
C, (dB)

Fig. 5. The relationship between C; and the achievable BCE for ¥; =3 and 9, =9.

Fig. 4(b), it can be seen that the PRL in region 1 is suppressed at the
expense of raising other sidelobes outside the exclusion zone. It
should be noted that the area outside the exclusion region is much
larger than that of region 1. Thus, as C; is suppressed, much more
power will be distributed outside the exclusion region. Hence, BCE
decreases as C; is reduced. In addition, it is found that the direc-
tions of the main beams are shifted. However, the radiated power
can be well confined in the annular collection area, which is con-
firmed by the high BCEs obtained, as shown in Table 2.
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fic, when C; is set to —18 dB, the BCE drop can be neglected (0.42%)
compared with the unconstrained optimal one (96.85% vs 97.27%).
The suppression limit of C; is about —22 dB. In this case, the opti-
mized BCE is still high enough (BCE = 95.28%). For comparison,
three constrained optimized g(p)s with C; = —18, —20, and
—22 dB are plotted in Fig. 6(a). It can be seen that all the optimized
g(p)s have similar shapes. Fig. 6(b) displays the associated radia-
tion patterns, clearly showing that the radiation patterns strictly
meet the design constraints.

To investigate the performance of the GWO-NM, a comparison
study was carried out on the GWO-NM versus GWO and PSO in
dealing with the constrained optimization problem. Due to space
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Fig. 6. (a) Optimized g(p)s with/without constraints for MPT with an annular collection area (¢; =4 and ¥, = 10); (b) the associated radiation patterns.
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Table 3

The optimized BCEs and optimal design variable vectors for MPT with ; = 4, ¥, = 10, and with security constraints.
C4(dB) BCE (%) Xx0Pt
-18 96.85 [0.0137, 0.0501, —0.1180, —0.0246, —0.3815, 0.2542, —0.1614, 0.5112]"
-19 96.78 [-0.0619, —0.1713, 0.0382, 1.8308, —1.1303, 0.7914, 0.5719, —2.4952]"
-20 96.72 [—0.2095, —0.9002, 2.7478, —2.6274, 9.0093, —2.1988, —2.4316, —5.5531]"
-21 96.64 [—0.0307, —0.1044, 0.1046, 0.7218, —0.6297, 1.2346, —0.7424, —0.8644]"
-22 95.28 [0.0117, —0.5707, 2.1741, —3.6918, 3.4273, 0.2399, —1.2313, —0.6321]"

limitations, only one design case is considered. For this problem, ¥
pand ¥ 5 in Eq. (9) are respectively set to 3 and 9, and C; and C; are
respectively set to —18 and —20. In the first stage of the GWO-NM
algorithm, the population size of GWO is set to nPop = 20, and the
maximum number of iterations is set to T = 200. For the NM sim-
plex algorithm in the second stage of the GWO-NM, the MNFE is
set to MNFE = nPop x T = 4000. For GWO and PSO, the population
size is set to nPop = 100, and the maximum number of iterations is
set to T = 1000. Other parameters for the two algorithms are set
the same as those shown in Table 1 in Ref. [39]. To obtain statistical
results, all three algorithms are independently run five times. The
optimized results and associated computation time are summa-
rized in Table 4. The central processing unit (CPU) adopted for
the numerical simulations was an Intel Xeon E-2224G at 3.5 GHz
with 32 GB random access memory (RAM). The numerical analysis
software was Matlab R2018a (MATLAB, USA) [35].

It is clear that both the GWO and PSO consume much more time
than the GWO-NM. Moreover, they have lower success rates, at
40% and 20%, respectively. Here, the success rate refers to the ratio
of the number of an algorithm to successfully find a feasible solu-
tion (PRL; < —18 dB and PRL; < —20 dB) to the total number of tri-
als. The proposed GWO-NM has the capacity to find a stable
optimal solution in each independent run. From this analysis, it
can be concluded that the GWO-NM has both a good exploitation
capability and a fast convergence speed compared with GWO and
PSO.

3.2. Array antennas of isotropic elements for MPT with annular
collection areas

Section 3.1 presented the optimization design of continuous
aperture distributions for MPT with annular collection areas with
and without constraints. From a practical standpoint, it is difficult
(or sometimes impossible) to design a continuous aperture
antenna with optimized aperture distribution. However, optimized
continuous distributions can serve as references when designing
array antennas of arbitrary sizes, since the array excitation coeffi-
cients can be easily determined by sampling the continuous distri-
butions. In order to illustrate this point and to demonstrate the
validity of the optimized results, numerical experiments on planar
arrays with different aperture sizes and receiving regions in the far
field were conducted and are described in this section. The antenna
elements are considered to be isotropic sources.

In the first set of numerical experiments, the optimized g(p)s
obtained for ¥, =3 and ¥, =9 without constraint and with the
constraints C; = —20 dB and C; = —20 dB are used. The diameter

Table 4

of the circular transmitting array, D, is assumed to vary from 54 to
{104,154,2024,252,304}. The receiving angles 0; (i = 1,2) shown in
Fig. 1 can be calculated as follows:

1 (204 .

0; = sin (ﬁDt>’l =1,2

The circular transmitting array is positioned to be positioned
along a rectangular grid in the xoy plane, and the inter-element
spacing is dy, = d, = 0.5/ in both directions. The method of forming
the circular array is as follows. First, construct a square array with
side length D;. For this square array, there are P (P = D;/d,) rows
and Q (Q = D./d,) columns of radiating elements. Then, calculate
the distance (r,) from the array center to the element located at
the pth (p € [1,P]) row and qth (q € [1,Q]) column; that is,

= (-5 (-5 e]

Finally, remove the elements whose r,; > D;/2 from the square
array, forming a circular array with a diameter of D;. For clarity, the
upper right quadrant of a circular array of D, = 10/ is plotted in
Fig. 7.

Once the circular array is available, the excitation coefficient of

(45)

(46)

the (p,q)th element can be obtained using I, :g(ppq>, where

A Boundary of the circular array

ofooefo|lo|o]o

A [e] o (o]
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o o o o o L.O

) Removed
7 elements

\

Fig. 7. Upper right quadrant of a circular array with a diameter of 104.

Performance comparison of the GWO-NM, GWO, and PSO when dealing with the constrained optimization problem.

Independent run number Optimized results

Computation time (s)

GWO PSO GWO-NM GWO PSO GWO-NM
1 2.3700 x 10° 1.0800 x 10° —-0.9307 31707 31302 7192
2 7.5000 x 10° —-0.9286 —0.9309 31974 31584 7271
3 -0.9293 1.6500 x 10° —0.9304 32068 31945 7183
4 3.4600 x 10° 8.1300 x 10° —0.9305 31716 30830 7198
5 -0.9284 6.6100 x 10° —0.9308 31884 31402 7217
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Ppq = 2I'pg/Dr denotes the normalized radial distance. After obtain-
ing the excitation coefficient of each radiating element, the associ-
ated BCE can be calculated as follows [9]:

21 0 2 .
AF(u, v)|* sinodod

BCE—Lr_J0_ 10;| ( )|2 inododep )
P 57 Jo |AF(u, )1 sinododg

where AF(u, ») is the array factor, u = sind cos¢, v = sin0sin¢ are
direction cosines, and ¢ is the azimuth angle.

Similar to the continuous apertures, for array antennas, we are
concerned with the achievable BCE and the associated PRL in
region 1 (PRL;) and outside the exclusion region (PRL;). The
detailed performance indexes for a transmitting array with differ-
ent diameters are calculated and presented in Table 5. Here, The
subscripts “U” and “C” indicate the results associated with the
optimized g(p) without constraint and with the constraints C1 =
—20 dB and C2= —20 dB. As expected, the achievable BCE increases
as the array diameter increases for both the unconstrained and
constrained cases. The optimized BCEs for the continuous aper-
tures are the theoretical limits of discrete arrays with the same
91 and v,. In addition, it is observed that, for the unconstrained
case, when the diameter of the array is larger than 104, the result-
ing BCE becomes very close to that of the continuous aperture.
Although a very high BCE can be obtained, the resulting PRL; is rel-
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atively high (about —7 dB), which is not desirable. For the con-
strained cases, the associated PRL; values are all reduced to
below —20 dB. These low PRL; values are achieved at the expense
of small BCE drops, which is consistent with the results obtained
for the continuous case. For the PRL, value, as the array size
increases, it becomes close to —20 dB. For clarity and due to space
limitations, only 3D radiation patterns for the array with D, = 104
are shown in Fig. 8. The two circles marked by dash-dotted lines
refer to the inner and outer boundaries of the annular collection
area. It can be clearly seen that, in both cases, the radiated power
can be mostly focused on the receiving region, which is numeri-
cally confirmed by the high BCEs obtained (BCEy = 97.574% and
BCEc = 90.206%). In addition, comparing Fig. 8(b) with Fig. 8(a)
shows that the PRL, is greatly reduced for the array with excitation
coefficients obtained by sampling the optimized g(p) with the con-
straints C; = —20 dB and C, = —20 dB.

In the second set of numerical experiments, the optimized g(p)s
obtained for ¥; =4 and ¥, = 10 without constraint and with the
constraints C; = —20 dB and C, = —20 dB are used to obtain
the array excitation coefficients. The diameter of the transmitting
array is also varied from 5/ to 30/. The performance indexes for
the BCE, PRL;, and PRL; are calculated and presented in Table 6.
It is notable that, in this set of test cases, as the array size increases,
the obtained BCE first increases and then fluctuates to approach

Table 5
Performance parameters of the array antennas of isotropic elements (¢; =3 and ¥, =9).
De(7) Num BCEy (%) BCEc (%) PRL;y (dB) PRL;¢ (dB) PRL,y (dB) PRL,¢ (dB)
5 80 97.492 88.599 —6.87 -21.42 —26.63 -12.18
10 316 97.574 90.206 -6.76 -21.21 -27.93 -17.99
15 716 97.585 91.125 -6.75 -21.78 -28.21 —19.46
20 1264 97.585 91.291 -6.91 -21.64 -28.31 -19.73
25 1976 97.587 91.534 -6.91 -21.75 -28.30 -19.82
30 2828 97.586 91.690 -6.73 —20.06 -28.30 -19.76

Num denotes the number of elements in the transmitting array. The subscripts “U’
with the constraints C; = —20 dB and C; = —20 dB.
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L L
o o
Normalized power pattern (dB)

|
W
o

-

(b)

Fig. 8. Normalized 3D power patterns for arrays (¥, = 3 and v, = 9) of isotropic elements with excitation coefficients obtained by sampling (a) the unconstrained optimized

g(p); (b) the optimized g(p) with the constraints C; = —20 dB and C; = —20 dB.

Table 6
Performance parameters of the array antennas of isotropic elements (v; =4 and v, = 10).
Dy(2) Num BCEy (%) BCEc (%) PRLyy (dB) PRL;c (dB) PRLyy (dB) PRL;c (dB)
5 80 96.644 95.803 -11.43 -19.91 -18.20 -16.68
10 316 96.889 96.117 -11.35 —-20.03 -21.39 —20.00
15 716 97.221 96.592 -11.40 -19.97 —22.16 -20.77
20 1264 97.158 96.531 -11.20 —20.00 —22.13 -20.73
25 1976 97.215 96.613 -12.30 —20.00 -22.26 -20.83
30 2828 97.156 96.548 -11.10 —-20.09 —22.18 —-20.80
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that of the continuous case. This phenomenon may be caused by
the discretization error of g(p). Furthermore, it is found that there
is little difference in the BCE for the same array with and without
the PRL constraints, which is consistent with the continuous case.
In addition, for those arrays (D; > 101) whose excitation coeffi-
cients are obtained by sampling the optimized g(p) with the con-
straints C; = —20 dB and C, = —20 dB, the associated PRL;s and
PRL;s are very close to —20 dB. Due to space limitations, only 3D
power patterns for the array with D, = 10/ are plotted and shown
in Fig. 9. It can be seen that most of the radiated power is confined
in the annular collection area for both cases. With the optimized
constrained g(p), the PRL; is reduced from —11.35 to —20.03 dB,
which is accompanied by a small reduced BCE (BCEc = 96.117%
vs BCEy = 96.889%).

3.3. Array antennas of patch elements for MPT with annular collection
regions

In this subsection, the validity of the proposed method is veri-
fied by using real antenna elements. For simplicity, a patch
antenna (shown in Fig. 10(a)) is used. The ground plane size of
the patch element is 25.86 mm x 25.86 mm, and a 1.00 mm thick
Rogers 5880 substrate is used. The square patch has a side length of
16.25 mm and is centered at the middle of the ground plane. The
feed position is shown in Fig. 10(a). This patch element is designed
to resonate at the center frequency of 5.8 GHz. It should be noted
that the radiation pattern of an isolated element is different from
the one embedded in an array, due to the mutual coupling effect.

|
N
o

Normalized power pattern (dB)

—40
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Indeed, the element patterns are all different in the array; thus, it
is often difficult to model the exact mutual coupling effect among
elements.

One possible way to model the mutual coupling effect is to use
an embedded element pattern (EEP) [40]. The EEP refers to the pat-
tern of a single antenna element embedded in a finite array. To
obtain the EEP of the patch element, a 5 x 5 patch array (shown
in Fig. 10(b)) is adopted; only the center element is excited, with
all other elements being terminated in 50 Q. A commercial full-
wave simulator, Ansys HFSS (ANSYS, USA), is adopted to extract
the radiation pattern of the embedded element. Fig. 10(c) plots
the 3D gain pattern of the embedded element, which incorporates
the effect of coupling with the neighboring elements. Under the
hypothesis that most element patterns are the same as the EEP
(ignoring the edge effects), the radiation pattern of the patch array
can be approximated as follows:

F(u,v) = AF(u, v) x EEP(u, v) (48)

Accordingly, the BCE for the patch arrays can be calculated by
replacing AF(u, v) in Eq. (47) by F(u, v) in Eq. (48). In this set of test
cases, the diameter of the circular patch array is fixed at 104, and
the elements are half-wavelength spaced in both the x and y direc-
tions. The array consists of 316 patch elements. Two sets of excita-
tion coefficients are used, which are obtained by sampling the
optimized g(p)s (¢1 = 4 and 9, = 10) without constraint and with
the constraints C; = —20 dB and C, = —20 dB. The associated
performance parameters for the BCE, PRL;, and PRL, are calculated
and listed in Table 7. For the unconstrained optimized solution, the

Normalized power pattern (dB)

Fig. 9. Normalized 3D power patterns for the arrays (¥, =4 and 9, = 10) of isotropic elements with excitation coefficients obtained by sampling (a) the unconstrained
optimized g(p); (b) the optimized g(p) with the constraints C; = —20 dB and C, = —20 dB.
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Fig. 10. (a) The geometry of the patch antenna; (b) half-wavelength spaced 5 x 5 patch array; (c) 3D plot of the EEP of the patch element resonating at the center frequency of

5.8 GHz and located at the center of the patch array.
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Table 7
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BCE and PRLof an array with 316 elements simulated by the EEP and full-wave simulation methods (¥; =4 and 9, = 10).

Method

Di (%) Num BCEy (%) BCEc (%) PRLyy (dB) PRL;¢ (dB) PRLyy (dB) PRLyc (dB)

EEP method 10 316 97.17 96.86 ~12.61 -20.34 -21.97 ~20.66

Full-wave simulation 10 316 97.43 96.90 -10.95 -19.77 -21.93 ~20.55
1.0 0 0

-40

Normalized power pattern (dB)

Normalized power pattern (dB)

-40

Fig. 11. Normalized 3D power patterns of patch arrays (¢J; =4 and v, = 10) with excitation coefficients obtained by sampling (a) the unconstrained optimized g(p); (b) the

optimized g(p) with the constraints C; = —20 dB and C; = —20 dB (EEP method).

Normalized power pattern (dB)

Normalized power pattern (dB)

Fig. 12. Normalized 3D power patterns of patch arrays (¢; =4 and 9, = 10) with excitation coefficients obtained by sampling (a) the unconstrained optimized g(p); (b) the

optimized g(p) with the constraints C;

PRL outside the exclusion region is about —22 dB; however, the PRL
in region 1 is relatively high (—12.61 dB). For the constrained opti-
mized solution, the PRLs outside the exclusion region and in region
1 are both below —20 dB. The corresponding normalized power
patterns are shown in Fig. 11.

In order to further study the validity of the proposed method,
the patch array was simulated by means of Ansys HFSS. Fig. 12
plots the normalized radiation patterns, with the associated BCE,
PRL;, and PRL, summarized in Table 7. A comparison of Fig. 12(a)
with Fig. 11(a) and Fig. 9(a), and of Fig. 12(b) with Fig. 11(b) and
Fig. 9(b), reveals that only small deviations between them are
noticeable. This is confirmed by the BCE and PRL values obtained.
In fact, the BCE and PRL values of the patch arrays are slightly
improved compared with the ideal arrays of isotropic elements.
Through this study, the validity of the proposed method is further
confirmed.

Although the effectiveness of the proposed method is verified
by arrays working in the far field, the obtained results can also

73

—20 dB and C; = —20 dB (full-wave simulation).

be applied to the radiative near field when a quadratic phase taper
is employed. Finally, it must be stressed that the proposed method
also applies to MPT applications in which circular collection areas
are of interest. This is because a circular collection area is only a
special case of an annular collection area where the inner radius
of the annular collection area is zero. Therefore, there is no doubt
that the proposed method will find various applications in practi-
cal engineering.

4. Conclusions

In this paper, an optimal design method of antenna aperture
illumination used for MPT with an annular collection area with
and without security concerns is proposed. The design goal is to
achieve the maximum BCE. After formulating the aperture illumi-
nation by means of a summation of a special set of series, the
unconstrained optimal design problem is revealed to be finding
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the maximum ratio of two real quadratic forms. The problem can
then be solved mathematically. To meet security requirements,
constraints on the PRLs outside the annular collection area are con-
sidered. A hybrid GWO-NM method is proposed to deal with the
constrained optimization problem and is demonstrated to quickly
find the optimal solutions. With the proposed method, continuous
aperture distributions yielding the maximum BCE with/without
extra constraints can be achieved. Then, array antennas with arbi-
trary sizes can be easily designed. Notably, the proposed method is
also applicable to MPT applications in which circular collection
areas are of interest, since a circular collection area is only a special
case of an annular collection area.

Acknowledgments

This work was supported in part by the National Key Research
and Development Program of China (2021YFB3900300), in part
by the National Natural Science Foundation of China (62201416),
in part by the Fundamental Research Funds for the Central Univer-
sities (QTZX23070), in part by the Qin Chuang Yuan High-Level
Innovative and Entrepreneurial Talents Project QCYRCXM-2022-
314, and in part by Singapore Ministry of Education Academic
Research Fund Tier 1.

Compliance with ethics guidelines

Xun Li, Baoyan Duan, Yiqun Zhang, and Yongxin Guo declare
that they have no conflict of interest or financial conflicts to
disclose.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.eng.2023.07.016.

References

[1] Satoru S, Nguyen DH, Nishioka Y, Shimamura K, Mori K, Yokota S. The logistics
system by rotary wing unmanned aerial vehicle with 28 GHz microwave
power transmission. In: Proceedings of IEEE Wireless Power Transfer
Conference (WPTC); 2019 Jun 18-21; London, UK; 2019.

[2] Shinohara N. Wireless power transmission progress for electric vehicle in
Japan. In: Proceedings of 2013 IEEE Radio and Wireless Symposium; 2013 Jan
20-23; Austin, TX, USA; 2013.

[3] Bergsrud C, Straub J. A space-to-space microwave wireless power transmission
experiential mission using small satellites. Acta Astronaut 2013;103:193-203.

[4] Sun L, Wan L, Liu K, Wang X. Cooperative-evolution-based WPT resource
allocation for large-scale cognitive industrial IoT. IEEE Trans Industr Inform
2020;16(8):5401-11.

[5] Rodenbeck CT, Jaffe PI, Strassner Il BH, Hausgen PE, McSpadden JO, Kazemi H,
et al. Microwave and millimeter wave power beaming. IEEE ] Microw 2021;1
(1):229-59.

[6] Li X, Duan B, Song L, Yang Y, Zhang Y, Wang D. A new concept of space solar
power satellite. Acta Astronaut 2017;136:182-9.

[7] Li X, Luk KM, Duan B. Aperture illumination designs for microwave wireless
power transmission with constraints on edge tapers using bezier curves. IEEE
Trans Antennas Propag 2019;67(2):1380-5.

[8] Prasad S. On an index for array optimization and the discrete prolate
spheroidal functions. IEEE Trans Antennas Propag 1982;AP-30(5):1021-3.

[9] Oliveri G, Poli L, Massa A. Maximum efficiency beam synthesis of radiating
planar arrays for wireless power transmission. IEEE Trans Antennas Propag
2013;61(5):2490-9.

[10] Kojima S, Mitani T, Shinohara N. Array optimization for maximum beam
collection efficiency to an arbitrary receiving plane in the near field. IEEE Open
J Antennas Propag 2021;2:95-103.

74

Engineering 30 (2023) 63-74

[11] Morabito AF, Lagana AR, Isernia T. Optimizing power transmission in given
target areas in the presence of protection requirements. IEEE Antennas Wirel
Propag Lett 2015;14:44-7.

[12] Morabito AF. Synthesis of maximum-efficiency beam arrays via convex
programming and compressive sensing. IEEE Antennas Wirel Propag Lett
2017;16:2404-7.

[13] Li X, Duan B, Song L. Design of clustered planar arrays for microwave wireless
power transmission. IEEE Trans Antennas Propag 2019;67(1):606-11.

[14] Rocca P, Oliveri G, Massa A. Innovative array designs for wireless power
transmission. In: Proceedings of IEEE MTT-S International Microwave
Workshop Series on Innovative Wireless Power Transmission: Technologies,
Systems, and Applications; 2011 May 12-13; Kyoto, Japan; 2011.

[15] Anselmi N, Polo A, Hannan MA, Salucci M, Rocca P. Maximum BCE synthesis of
domino-tiled planar arrays for far-field wireless power transmission. ]
Electromagnetic Wave 2020;34(17):2349-70.

[16] Li X, Duan B, Zhou ], Song L, Zhang Y. Planar array synthesis for optimal
microwave power transmission with multiple constraints. IEEE Antennas
Wirel Propag Lett 2017;16:70-3.

[17] Li X, Duan B, Song L, Zhang Y, Xu W. Study of stepped amplitude distribution
taper for microwave power transmission for SSPS. IEEE Trans Antennas Propag
2017;65(10):5396-405.

[18] Baki AKM, Shinohara N, Matsumoto H, Hashimoto K, Mitani T. Study of
isosceles trapezoidal edge tapered phased array antenna for solar power
station/satellite. IEICE Trans Commun 2007;E90-B(4):968-77.

[19] Li X, Guo Y. Multiobjective optimization design of aperture illuminations for
microwave power transmission via multiobjective grey wolf optimizer. [EEE
Trans Antennas Propag 2020;68(8):6265-76.

[20] Li X, Luk K, Duan B. Multiobjective optimal antenna synthesis for microwave
wireless power transmission. IEEE Trans Antennas Propag 2019;67
(4):2739-44.

[21] Potter SD. Specialized phased-array antenna patterns for wireless power and
information transmission. In: Proceedings of Space manufacturing 10
Pathways to the high frontier; Princeton, NJ, USA; 1995.

[22] Takabayashi N, Shinohara N, Mitani T, Furukawa M, Fujiwara T. Rectification
improvement with flat-topped beams on 2.45-GHz rectenna arrays. IEEE Trans
Microw Theory Tech 2020;68(3):1151-63.

[23] Prasad D, Hassan A, Verma DK, Sarangi P, Singh S. Disaster management
system using wireless sensor network: a review. In: Proceedings of 2021
International Conference on Computational Intelligence and Computing
Applications (ICCICA); Nagpur, India; 2021.

[24] Son S, Jeon S, Kim C, Hwang W. GA-based design of multi-ring arrays with
omnidirectional conical beam pattern. IEEE Trans Antennas Propag 2010;58
(5):1527-35.

[25] Hua D, Qi S, Wu W, Fang D. Synthesis of conical beam array antenna with
concentric loop configuration using element-level pattern diversity technique.
IEEE Trans Antennas Propag 2018;66(11):6397-402.

[26] Manek I, Ovchinnicov YB, Grimm R. Generation of a hollow laser beam for
atom trapping using an axicon. Opt Commun 1998;147(1):67-70.

[27] Roosen G, Imbert C. The TEM*01 mode laser beam-A powerful tool for optical
levitation of various types of spheres. Opt Commun 1978;26(3):432-6.

[28] Shao B, Esener SC, Nascimento JM, Botvinick EL, Berns MW. Dynamically
adjustable annular laser trapping based on axicons. Appl Opt 2006;45
(25):6421-8.

[29] GuanJF, Shen Z, Ni X, Lu J, Wang J, Xu B. Numerical simulation of the ultrasonic
waves generated by ring-shaped laser illumination patterns. Opt Laser Technol
2007;39(6):1281-7.

[30] Sherman JW. Properties of focused apertures in the Fresnel region. IEEE Trans
Antennas Propag 1962;10(4):399-408.

[31] Karimkashi S, Kishk AA. Focused microstrip array antenna using a Dolph-
Chebyshev near-field design. IEEE Trans Antennas Propag 2009;57
(12):3813-20.

[32] Buffi A, Serra AA, Nepa P, Chou HT, Manara G. A focused planar microstrip
array for 2.4 GHz RFID readers. IEEE Trans Antennas Propag 2010;58
(5):1536-44.

[33] Balanis CA. Antenna theory: analysis and design. 3rd ed. New York City: Wiley;
2005.

[34] Gantamacher FR. The theory of matrices. New York City: Chelsea; 1959.

[35] Version 9.4 (R2018a), MathWorks. Natick: MATLAB. 2018.

[36] Potter SD. Optimization of microwave power transmission from solar power
satellites [dissertation]. New York City: New York University; 1993.

[37] Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv Eng Softw
2014;69:46-61.

[38] Gao F, Han L. Implementing the Nelder-Mead simplex algorithm with
adaptive parameters. Comput Optim Appl 2012;51(1):259-77.

[39] Li X, Guo YX. Grey wolf optimizer for antenna optimization designs:
continuous, binary, single-objective, and multiobjective implementations.
IEEE Antennas Propag Mag 2022;64(6):29-40.

[40] Mailloux RJ. Phased array antenna handbook. 2nd ed. Norwood: Artech House;
2005.





