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a b s t r a c t

Electroencephalography (EEG) analysis extracts critical information from brain signals, enabling brain
disease diagnosis and providing fundamental support for brain–computer interfaces. However, perform-
ing an artificial intelligence analysis of EEG signals with high energy efficiency poses significant chal-
lenges for electronic processors on edge computing devices, especially with large neural network
models. Herein, we propose an EEG opto-processor based on diffractive photonic computing units
(DPUs) to process extracranial and intracranial EEG signals effectively and to detect epileptic seizures.
The signals of the EEG channels within a second-time window are optically encoded as inputs to the con-
structed diffractive neural networks for classification, which monitors the brain state to identify symp-
toms of an epileptic seizure. We developed both free-space and integrated DPUs as edge computing
systems and demonstrated their applications for real-time epileptic seizure detection using benchmark
datasets, that is, the Children’s Hospital Boston (CHB)–Massachusetts Institute of Technology (MIT)
extracranial and Epilepsy-iEEG-Multicenter intracranial EEG datasets, with excellent computing perfor-
mance results. Along with the channel selection mechanism, both numerical evaluations and experimen-
tal results validated the sufficiently high classification accuracies of the proposed opto-processors for
supervising clinical diagnosis. Our study opens a new research direction for utilizing photonic computing
techniques to process large-scale EEG signals and promote broader applications.

� 2024 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Electroencephalography (EEG) monitors the neural activity of
the brain by measuring its electrical fields with electrodes; in
extracranial EEG, the electrodes are placed outside the skull,
whereas in intracranial EEG (iEEG), the electrodes are implanted
directly on the cerebral cortex. The complexity of EEG signals
necessitates advanced signal processing and analytical methods
for an accurate interpretation. Deep learning [1] offers consider-
able advantages in analyzing EEG signals by learning feature repre-
sentation and data abstraction to facilitate various applications, for
example, epilepsy diagnosis and brain–computer interface, sleep,
and cognitive monitoring [2–4]. Deep learning architectures based
on artificial neural networks (ANNs) are generally implemented on
electronic computing platforms using central processing units
(CPUs), graphics processing units (GPUs), field-programmable gate
arrays (FPGAs), and application-specific integrated circuits (ASICs)
[5]. With the continuously increasing number of EEG signal chan-
nels and data scales, processing EEG signals using deep learning
on electronic computing platforms is becoming more power inten-
sive and time consuming. Therefore, deploying these models on
edge devices for portable and wearable applications is challenging
owing to constraints on power supply and computing speed. In
addition, the growth of electronic computing is becoming increas-
ingly unsustainable as electronic transistors approach their physi-
cal limits [6].

Photonic computing is considered a promising solution for
future computing systems because it offers the advantages of a
high energy efficiency and light-speed parallel processing [7].
Using photonic computing, research on photonic neural networks
Units,

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.eng.2024.01.008
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:lin-x@tsinghua.edu.cn
mailto:daiqh@tsinghua.edu.cn
https://doi.org/10.1016/j.eng.2024.01.008
http://www.sciencedirect.com/science/journal/20958099
http://www.elsevier.com/locate/eng
https://doi.org/10.1016/j.eng.2024.01.008


T. Yan, M. Zhang, H. Chen et al. Engineering xxx (xxxx) xxx
(PNNs) and photonic integrated circuits has flourished in recent
years [8,9], enabling ultrafast and low-power artificial intelligence
(AI) inference and providing critical support for high-performance
computing in scenarios with strict limits on energy consumption.
Various effective architectures for PNNs have been demonstrated,
including spike neural networks [10], convolutional neural net-
works [11,12], reinforcement learning [13], and reservoir comput-
ing [14]. The linear weighted interconnection of PNNs can be
implemented using a mesh of Mach–Zehnder interferometers
(MZIs) [15], diffractive surfaces [16–22], and tunable attenuators
connected with waveguides [10,23], etc. The nonlinear activation
function of PNNs can be realized using methods such as laser-
cooled atoms with electromagnetically induced transparency
[24], cavity-loaded interferometers [25], and photodetector (PD)-
driven MZIs [26]. Currently, photonic accelerators enable massive
parallel computing at speeds of trillions of multiply-accumulate
operations per second [27,28]. However, most existing PNNs sup-
port only simple neural network architectures with a limited num-
ber of neurons and have a lower performance in complex tasks
than that of state-of-the-art electronic ANNs. Diffractive photonic
computing [16,19,21] supports millions of neurons and arbitrary
linear transformations, and it can be utilized to construct more
advanced architectures to perform complex AI tasks.

Epilepsy is a serious, repeated, and sudden chronic neurological
disorder. Approximately one-third of cases are intractable using
medication [29]. Epilepsy patients are at high risk of serious phys-
ical injury or even death from accidental seizures. Therefore, per-
forming EEG analysis to obtain automated and portable seizure
detection devices is critical for alerting caregivers and protecting
patients’ lives. Several seizure detection methods based on statisti-
cal features and machine learning classifiers have been proposed
[30,31], and ANN-based methods [32,33] have achieved state-of-
the-art detection performance. In contrast to the energy-
intensive ANNs, PNNs can overcome the limitations of traditional
electronic edge devices with respect to computing power [34]
and provide promising opportunities to design portable and
power-saving seizure detection devices. However, no such devices
been demonstrated to date.

Herein, we propose the first photonic architecture to process
EEG signals and to detect epileptic seizures with high accuracy.
The proposed EEG opto-processor, based on diffractive photonic
computing units (DPUs), implements a PNN architecture to detect
epileptic seizures using EEG and iEEG measurements (Fig. 1). We
developed a three-dimensional (3D) free-space DPU with a highly
compact optical system, in which a high-data-throughput spatial
light modulator (SLM) was used to implement input data encoding
and diffractive modulation simultaneously (Fig. 1(b)). Diffractive
deep neural networks (D2NNs) were constructed with a DPU by
implementing the computational operations of diffractive-
weighted interconnections optically, using photoelectric
conversion for nonlinearity activation, and controlling the data flow
electronically. Furthermore, we designed a two-dimensional (2D)
integrated DPU with a metaline-based multilayer structure
[22,35–37] on a silicon photonics platform to achieve higher inte-
gration density and lower power consumption for wearable devices
(Fig. 1(c)). We also introduced an optical bias block to the design
and validated its effectiveness in unbalanced classification tasks.
We demonstrated that the DPU-based D2NNs successfully pro-
cessed 23-channel EEG and 30-channel iEEG signals and detected
epileptic seizures with an accuracy of 98.96% on the Children’s
Hospital Boston (CHB)–Massachusetts Institute of Technology
(MIT) dataset [38,39] and 94.49% on the Epilepsy-iEEG-Multicen
ter-Dataset [40]. In addition, a channel selection scheme using ran-
dom forest was developed to select the most important channels,
and it was evaluated theoretically and experimentally. The system
proposed in this study may aid in achieving economical, efficient,
2

and comfortable personalized medicine for epileptic seizure
detection.
2. Materials and methods

2.1. Epileptic seizure detection with EEG or iEEG signals

In the proposed design, we use photonic computing to analyze
and detect epileptic seizures from recorded EEG signals (Fig. 1(a)).
EEG is one of the most used methods for monitoring brain activity
and is considered the best indicator for epilepsy diagnosis and
analysis [41]. Extracranial EEG measures the voltage difference
between scalp-mounted electrodes caused by ionic flow in brain
neurons, whereas iEEG is the neuroelectrophysiological signal
obtained from implanted electrodes. Different channels from the
electrodes at the corresponding positions reflect the spatial and
temporal information of the brain activity. Epileptiform EEG or
iEEG patterns, such as spikes and sharp waves, contribute to sei-
zure diagnosis. The effectiveness of the proposed EEG opto-
processor was validated using both the EEG and iEEG modalities.

2.2. Design of the 3D free-space DPU

We developed a 3D free-space DPU to execute the task by pre-
processing the EEG signals into 2D images for analysis using the
constructed large-scale D2NN architecture [21], as shown in
Fig. 1(b). The main components include a large-scale reconfig-
urable SLM and an optoelectronic detector that can be pro-
grammed to support millions of diffractive neurons. The input
data are encoded in the phase of the optical field to the input nodes
and modulated via the diffractive layer parameters that can be
trained according to specific AI tasks. The input nodes are con-
nected to the output neurons via optical diffraction, and trainable
synaptic weights are generated via the diffractive modulation. A
nonlinear activation function occurs during the photoelectronic
conversion of the diffractive computation results as the intensity
of the complex fields and intensity-to-phase conversion at the next
input layer are measured. The data flow is controlled electronically
to build a multilayer PNN architecture that performs video-rate
epileptic seizure detection. In contrast to the design described in
Ref. [21], both input data encoding and phase modulation are
implemented with an SLM, which eliminates the additional input
data encoding module and related relay optics, thereby signifi-
cantly reducing the system complexity.

The experimental setup is shown in Figs. 2(a) and (b). A com-
pact green laser diode (CPS532, Thorlabs, Inc., USA) coherent light
source with a wavelength of 532 nm was used to generate the
input optical field. The light beam was collimated and expanded
using two lenses (AC050-008 and AC254-100, Thorlabs), polarized
using a polarizer (LPVISA050, Thorlabs), and split using a beam
splitter (CCM1-BS013, Thorlabs). An SLM (P1920-400-800, Mead-
owlark Optics, Inc., USA) modulated the phase of the wavefront
according to the input information and trained parameters of the
D2NN. The optical field was captured and photoelectrically con-
verted using a complementary metal-oxide semiconductor (CMOS)
sensor (GS3-U3-41C6M-C, Teledyne FLIR, Inc., USA) after a diffrac-
tion propagation of 10 cm. This process was multiplexed and pro-
grammed to construct an N-layer D2NN.

The diffractive computing process can be represented as

yi ¼j Pd exp j xi þ Hið Þð Þf gj2, where xi, Hi, Pd �f g, and yi denote the
input, trainable modulation coefficient, free-space propagation
operator at distance d (Section S1 in Appendix A), and output of
the ith layer of the D2NN, respectively. xi þ Hi is fed to the SLM to
modulate the phase of the light wavefront, and yi is the light inten-
sity acquired by the CMOS sensor (i.e., the diffraction computing



Fig. 1. Architecture of an EEG opto-processor. (a) EEG and iEEG channel signals pre-processed to extract the two-dimensional (2D) or one-dimensional (1D) statistical
features using a short-time Fourier transform for epileptic seizure detection. (b) three-dimensional (3D) free-space DPU comprising a spatial light modulator (SLM) for input
data encoding and phase modulation, an optoelectronic detector for nonlinear activation and obtaining diffractive computation results, and an electronic controller to
configure the data flow. With the constructed diffractive deep neural networks (D2NNs) using a DPU, the seizure detection result is determined by the light intensity
distribution of two target regions on the output plane. (c) Schematic of the integrated DPU on a silicon-on-insulator (SOI) platform. Input data are encoded in the amplitude of
the light in optical waveguides with modulators, weight-interconnected via the diffractive modulation of metalines, and biased via incoherent energy coupling and
photoelectric conversion. C: the number of the channel; Ch: channel; PD: photodetector; u1–un: the elements of the input vector; u: the input vector of the DPU; n: the
dimension of the input vector; O1, O2: the elements of the output vector; O: the output vector of the DPU; A: the matrix of the diffractive computing block; bias1, bias2: the
elements of the bias vector; bias: the bias vector; k1, k2: the wavelengths of the lasers.
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results). x1 is the 2D feature map scaled to [0, 2p] of the EEG or iEEG
signals, and xi is obtained from yi�1 for i > 1 by a nonlinear activa-
tion function, given as xi ¼ 2p � sigmoidðai � yi�1 þ biÞ, where ai and
3

bi are two trainable parameters. The incident light, which was col-
limated and expanded by the lenses, was circular in the experimen-
tal setup. To ensure consistency between the experimental and



Fig. 2. Experimental setup and operation of the free-space DPU. (a) In the experimental setup, the output of a green light emitting diode (LED) (532 nm) is collimated and
expanded by two relay lenses (lens 1 and lens 2) and polarized (Pol) to illuminate the SLM, which encodes the input xi and trainable modulation coefficient Hi of the ith layer
of an N-layer D2NN simultaneously and modulates the phase of the wavefront by xi þ Hi . The diffraction results yi are then acquired with a complementary metal-oxide
semiconductor (CMOS) sensor and fed to the next layer of the D2NN with an electronic controller. (b) The experimental system consisted of a green laser diode, two lenses, a
polarizer, and a beam splitter. The reconfigurable modulation of the wavefront was implemented with an SLM, and the photoelectric conversion was implemented with a
CMOS sensor. The distance between the SLM and CMOS was 10 cm. (c) Optical computation process of a two-layer D2NN. x1 is the 2D feature map scaled to [0, 2p] of the EEG
or iEEG signals and x2 ¼ 2p � sigmoidða2 � y1 þ b2Þ, where a2 and b2 are two trainable parameters. H1 and H2 are two phase modulation layers of the D2NN, and y2 represents
the result of the epileptic seizure detection with two regions, seizure and non-seizure, where the light intensities are concentrated. yi is the output of the ith layer of the D2NN.
y1 is the output of the first layer of the D2NN.
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simulation results, we loaded blazed grating patterns onto the SLM
to ensure that the incident light outside the region of interest (ROI)
of xi þ Hi propagated in four oblique directions. As shown in Fig. S1
in Appendix A, the light outside the ROI diffracts away from the
optical axis and does not interfere with the ROI diffraction. Finally,
yN represents the output plane of the N-layer D2NN, and the target
region with the highest optical intensity indicates the epileptic sei-
zure detection result. Fig. 2(c) shows the diffractive computing pro-
cess for a two-layer D2NN. The network diffractive modulation
coefficients were trained using pre-collected and labeled data.
The mean squared error (MSE) between yN and the ground truth,
that is, 1 for the target detection region and 0 for the other regions,
was defined as the loss function. The forward model of the D2NN
was simulated using angular spectrum propagation methods, and
the errors were backpropagated to minimize the loss function by
optimizing Hi, ai, and bi using stochastic gradient descent
algorithms.
4

We constructed a two-layer D2NN for epileptic seizure detec-
tion. For each input signal sequence, two target regions represent-
ing the seizure and non-seizure states were configured at the
network output plane, where the target region with a higher opti-
cal intensity indicated the epileptic seizure detection result. Fur-
thermore, we developed an adaptive training approach to deal
with systematic errors, such as the instability of the laser power,
optical aberration of the collimating lenses, phase modulation
error of the SLM, device misalignment between the SLM and sen-
sor, shot noise, and readout noise of the sensor. In the two-layer
D2NN experiments, we deployed the network parameters of the
first layer with the pretrained model and captured the experimen-
tal outputs. Subsequently, the modulation coefficients of the sec-
ond layer were retrained with the experimental outputs of the
first layer to correct the systematic errors of the first layer. To
address the systematic errors in the second layer, for the two
intensities of the detection regions obtained from the output plane
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of the D2NN after the experiments on the second layer, the inten-
sity of the first detector region was multiplied by a factor c within
[0.9, 1.1]. The factor c was optimized to maximize classification
performance on the training dataset, which was fixed in the infer-
ence process. This factor contributes to the errors caused by
uneven light illumination. After training to learn the diffractive
modulation coefficients, the D2NN performed light-speed infer-
ence, offering video-rate and energy-efficient epileptic seizure
detection for patients.
2.3. Design of the 2D integrated DPU

We propose the design of a 2D integrated DPU based on meta-
materials [22,35] and on-chip optical devices to further reduce the
system size and improve the computational efficiency of wearable
EEG analysis, as shown in Fig. 1(c). Specifically, coherent light from
an on-chip laser [42] is split into different single-mode waveguides
using an array of multimode interferometers (MMIs) or Y-couplers.
The one-dimensional (1D) features of EEG signals are encoded on
the light amplitude in waveguides with on-chip modulators, such
as MZIs. The weighted interconnections between the complex opti-
cal fields of the input and output waveguides are achieved with a
diffractive computing block comprising multilayer metalines,
which are passive optical structures for high-energy-efficiency
computations. Each metaline is a 1D etched rectangular silica slot
(meta-atom) array in the silicon membrane of a silicon-on-
insulator (SOI) substrate. Both the amplitude and phase modula-
tion coefficients of a meta-atom are learnable and can be
programmed by adjusting the width and length of the slot. We
trained only the width in this study (Fig. S2 in Appendix A). The
diffractive computing block can be expanded vertically to receive
higher-dimensional input features and horizontally to increase
the diffractive parameters and learning capacities.

The integrated DPU was operated at a wavelength of 1550 nm.
Because the modulation coefficients of each meta-atom were
calculated with the periodic boundary condition using finite-
difference time-domain (FDTD) simulations, we used binary
modulation and combined three identical meta-atoms as one
diffractive modulation neuron to facilitate fabrication and improve
model accuracy. The height of the meta-atom was fixed at 400 nm,
and the slot period was 300 nm. The slot width was chosen from 0
or 100 nm to implement binary modulation, and the corresponding
phase modulation coefficients were 0 or �1.55 rad (Figs. S2 and S3
in Appendix A).

In addition to the weighted interconnection block, we intro-
duced an optical bias block to enhance model capability. The bias
coefficients were modulated at different wavelengths and coupled
to the two output waveguides of the diffractive computing block.
The incoherent summation of optical energy was collected using
PDs to indicate the epileptic seizure detection results. The bias
modules enable the adjustment of output thresholds, which is
especially effective for imbalanced data [43], that is, when the
presence of the majority class is more prominent than that of the
minority class in the dataset. For example, in an epileptic seizure
detection task, the seizures of patients constitute a minority class,
whereas the non-seizures are the majority.
3. Results

3.1. Epileptic seizure detection with the free-space DPU

We validated the effectiveness of the proposed optical epileptic
seizure detection approach using EEG signals from the CHB–MIT
dataset [38,39] of Children’s Hospital Boston, Massachusetts Insti-
5

tute of Technology. It contains hours of seizure and non-seizure
EEG recordings of 23 patients obtained using the 10–20 interna-
tional system of EEG electrode placement. The CHB-–MIT dataset
is widely used as a benchmark for epileptic seizure detection
[31–33,44]. As in Ref. [33], we selected the EEG recordings of eight
patients with a sufficient seizure duration (more than 400 s) over
23 channels to generate the training and testing sets for the
D2NN. Signals from seizures and randomly selected two-hour
non-seizures were used for evaluation. All EEG signals were seg-
mented into one-second windows and randomly arranged. Half
of the seizures and non-seizures of the same duration were used
for training, whereas the remaining data were used for testing.
The 1D vectors of the time-series EEG voltage signals were prepro-
cessed to extract and generate effective 2D features as the D2NN
input. Because epileptic EEG signals are nonstationary and multi-
component, extracting meaningful statistical features from raw
1D time series signals is critical for their detection. We adopted
the short-time Fourier transform (STFT) to preprocess the raw sig-
nals and extract effective 2D features containing both time and fre-
quency characteristics [45,46]. STFT can be easily implemented in
wearable devices using digital electronics, and optical solutions
have also been demonstrated to achieve high speeds and band-
widths [47,48]. Epileptic seizures cause changes in certain
frequency bands, such as the d (0.4–4.0 Hz), h(4.0–8.0 Hz), a
(8.0–12.0 Hz), b (12.0–30.0 Hz), and c (30.0–70.0 Hz) bands
[45,49]. The energy of the EEG signals is mainly concentrated in
the low-frequency bands; therefore, we set the frequency range
of the STFT to 0–50 Hz and the sliding windowwidth to 25 samples
to evaluate the free-space DPU. For each time window of the EEG
signals, signals from different channels were transformed into STFT
spectra, stitched together into one image, and fed to a D2NN to
detect epileptic seizures. The spectral energy was normalized and
the 2D features were resized to 400� 400 pixels as the D2NN
input.

Selecting informative EEG channels is critical for building wear-
able healthcare devices and for achieving personalized medicine
for epileptic seizure detection. Generalized epileptic seizures
involving the entire brain can be seen in every channel of the
EEG recordings, whereas partial seizures can be seen only in a
few channels whose corresponding electrodes are near the lesion.
Full-channel EEG monitoring in wearable devices is associated
with considerable challenges because it is expensive, time consum-
ing, computationally intensive, and uncomfortable. Moreover,
invalid channels add noise to the signals and make detection more
difficult. Channel selection can be achieved by medically diagnos-
ing the location of the lesion or using statistical methods [44,50].
This process should be completed only in the preliminary analysis,
and it is not repeated in subsequent epilepsy monitoring.

We applied a random forest channel selection method [44] to
analyze the D2NN performance for EEG analysis on the CHB–MIT
dataset with different channel numbers (Fig. 3). Feature selection
with a random forest combines the qualities of the filter and wrap-
per methods and offers advantages such as higher accuracy, less
overfitting, better generalization performance, and easy inter-
pretability [50,51]. The channel selection pipeline is shown in
Fig. 3(a), where the EEG signals were first divided into subse-
quences with a one-second time window. Next, the power spectral
density of each EEG channel in each time window was calculated,
representing various bands (i.e., d; h; a; b; and cÞ. The signals of
each time window were utilized as samples with 115 attributes
(23 channels and five bands). A random forest [52] containing
1000 decision trees was used to learn the features of each sample,
that is, a vector with 115 attributes, and to detect epileptic sei-
zures, which has been proven to be robust to learning irrelevant
features [53]. During the process of updating the random forest,



Fig. 3. Numerical evaluation of the free-space DPU on the CHB–MIT dataset for various EEG channel numbers. (a) The pipeline of channel selection using random forest (RF).
(i) The EEG signals are segmented into sub-sequences given the time intervals. (ii) The power spectral density of each channel is calculated as five features, representing the
d; h; a; b; andc bands. A vector containing 115 features (23 channels and five bands) of each time window is termed as a sample. (iii) A random forest containing 1000
decision trees is used to learn the features of each sample. The feature contribution percentage is the normalized total reduction of the impurities in the random forest
brought by that feature (i.e., the Gini importance). (iv) The channel contribution percentage is the sum of five feature contribution percentages. The channels with the highest
contribution percentage are selected for limited-channel seizure detection. (b, c) Box diagrams of the classification accuracies and F2 scores obtained by blindly testing on the
CHB–MIT dataset for various channel numbers. Rand–D2NN, RF–D2NN, and RF–RF denote random channel selection and classification with the D2NN, channel selection with a
random forest and classification with D2NN, and simultaneous channel and classification with the random forest, respectively.
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that is, minimizing the sum of the impurities, redundant features
are not selected for node splitting, and informative features appear
more frequently in those trees. Therefore, the feature contribution
percentage can be obtained by investigating the normalized total
reduction of the impurities in the random forest caused by that
feature, which is also known as the Gini importance. The channel
contribution percentage is the sum of the five feature contribution
percentages. For example, subgraph iv of Fig. 3(a) illustrates the
contribution percentages of the 23 channels for patient chb01
(Table S1 in Appendix A); the most important channel is 17. The
channels with the highest contribution percentage were selected
for seizure detection using the D2NN. In addition, the random for-
est is also an effective machine learning classifier for epileptic sei-
zure detection [31] and serves as a performance reference for the
D2NN-based approach.

Using channel selection, we evaluated the performance of D2NN
on the CHB–MIT dataset. The statistical evaluations, including accu-
racy, sensitivity, specificity, and Fb score, are used for evaluating the
binary classification performance (Section S2 in Appendix A). In the
medical domain, the Fb score (typically b ¼ 0:5; 1:0; 2:0) is a
weighted harmonic mean of the precision and recall that is more
useful than accuracy, especially when the dataset is imbalanced
[54]. We adopted the F2 score (i.e., b ¼ 2Þ, to enable the recall to
have a larger weight, considering the identification of disease epi-
sodes constituting only a minority of cases [55]. We investigated
the performance of the D2NN under different layer numbers with
one-channel signals selected using the random forest (Fig. S4 in
6

Appendix A). All simulationmodels were numerically implemented
using Python (v3.6.13) and TensorFlow (v1.11.0) running on a desk-
top computer (Nvidia TITAN XP GPU, AMD Ryzen Threadripper
2990WX CPU with 32 cores, 128 GB of random access memory
(RAM), and Microsoft Windows 10 operating system). The modula-
tion coefficients of the diffractive layers were optimized using
stochastic gradient descent and error backpropagation. The Adam
optimizer and a learning rate of 0.01 were used with the loss func-
tions of MSE or cross-entropy. Each D2NN was trained for 1000
epochs. The training time of the free-space D2NN was approxi-
mately 4 h. With 0.16 million diffractive neurons in each layer,
the average accuracy, sensitivity, specificity, and F2 score were
97.89%, 91.92%, 98.13%, and 0.8553, respectively, for the two-
layer D2NN, which are comparable to those of the three-layer
model. A further increase in the number of layers exhibited mini-
mal performance improvement. In addition, the one-layer D2NN
did not converge during training and was not suitable for this task.
The same conclusion was drawn for larger channel numbers. There-
fore, the two-layer D2NN model was adopted for the numerical
evaluations and experiments.

The accuracy and F2 score of the D2NN numerical model for var-
ious channel numbers are visualized as box diagrams in Figs. 3(b)
and (c), respectively. We compare the performance of three meth-
ods, Rand–D2NN, RF–D2NN, and RF–RF, which denote random
channel selection and classification with the D2NN, channel selec-
tion with a random forest and classification with D2NN, and simul-
taneous channel and classification with the random forest,
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respectively. Both the accuracy and F2 score of RF–D2NN outper-
formed those of Rand–D2NN and RF–RF when a few channels were
used, demonstrating the effectiveness of the channel selection
method using the random forest. The performance of all models
improved with an increase in the channel number, particularly
for the Rand–D2NN and RF–RF models. The RF–D2NN model
achieved a sufficiently high performance using one-channel EEG
signals with an average accuracy of 97.89% and an F2 score of
0.8553, which are close to those of the full-channel RF–D2NN
model with an average accuracy of 98.96% and an F2 score of
0.9161. The full-channel RF–RF achieved an average accuracy of
98.88% and an F2 score of 0.9335. In addition, the one-channel
RF–D2NN performed relatively stably in different patients, that is,
the accuracy varied from 95.43% to 99.31% and the F2 score varied
from 0.7351 to 0.9261. The same conclusion was drawn for the
sensitivity and specificity metrics (Fig. S5 in Appendix A). The sim-
ulation results verify that the D2NN with random forest for channel
selection can fully use the information of one-channel signals to
perform high-quality epileptic seizure detection.

We conducted experiments using a two-layer model and single-
channel EEG signals to facilitate efficient computation and conve-
nient signal acquisition. The results are shown in Fig. 4. To elimi-
nate systematic errors, the modulation coefficients of the second
layer were fine-tuned via adaptive training using the experimental
results of the first layer. Additionally, the intensities of the two tar-
get detection regions were multiplied by two factors, one for each
region, to reduce the impact of uneven illumination and improve
the detection accuracy. Fig. 4(a) illustrates the experimental results
of the D2NN on patient chb01 using one-channel EEG signals. As
Fig. 4. Experimental results of the free-space DPU on the CHB–MIT dataset. (a) Simulation
channel EEG signals with the top channel contribution percentage. (b) Phase modulation
modulation coefficients after adaptive training (AT). (c) Experimental measured averag
seizures. (d) Accuracy, sensitivity, specificity, and F2 score of simulations and experime
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expected, the D2NNs successfully distinguished between the sei-
zure and non-seizure samples and concentrated the light into pre-
defined regions. The image characteristics of the experimental
results aligned closely with those of the simulation results. Fig. 4
(b) illustrates the pretrained parameters of the two-layer D2NN
and the fine-tuned parameters of the second layer. Fig. 4(c) shows
the normalized intensity of the two detector regions for 200
seizures and 200 non-seizures. This distinct difference rendered
the system robust to small noise disturbances. Furthermore, we
evaluated the numerical and experimental performance of the
one-channel model for all patients. As shown in Fig. 4(d), the
experimental accuracy, sensitivity, specificity, and F2 score were
96.84% ± 1.79%, 92.81% ± 6.74%, 96.98% ± 1.87%, and 0.8174 ±
0.0868, respectively, which are comparable with the respective
values 97.89% ± 1.22%, 91.92% ± 7.62%, 98.13% ± 1.27%, and
0.8553 ± 0.0753 in the simulation. The accuracy, specificity, and
F2 score were reduced by approximately 1%, 1%, and 0.04, respec-
tively, whereas the sensitivity did not decrease in the experiments.
Detailed results for each patient are shown in Table S2 in Appendix
A, verifying the accuracy and effectiveness of the one-channel
approach and experimental setup.

In addition to the EEG modality, we utilized a DPU-constructed
D2NN to detect epileptic seizures using iEEG signals. The perfor-
mance was evaluated using electrocorticography (ECoG) record-
ings from six patients selected from the Epilepsy-iEEG-
Multicenter-Dataset [40] with a sufficient seizure duration and
clear onset and offset labels (Tables S1 and S2). They were seg-
mented using five-second sliding windows with an overlap of 4 s
and were randomly arranged. The training and testing sets were
and experiment outputs of two-layer D2NNs on patient chb01 (Table S1) using one-
coefficients of the pre-trained D2NNs model and the fine-tuned second-layer phase
e intensity of two detector regions with instances of 200 seizures and 200 non-
nts on all patients. ID: identity document.
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divided in the same manner as that for the EEG recordings. For the
evaluation of the free-space DPU, the frequency range of the STFT
was set to 0–50 Hz because of the higher sampling frequency of
the iEEG signals, and the sliding window width was set to half of
the sampling frequency. For the evaluation of the integrated DPU,
each time window of 1-second signals was divided into four parts,
and the energy of the four spectral bands (0–6, 6–14, 14–22, and
22–30 Hz) in each part was calculated to form a 1D feature with
16 attributes. Each iEEG signal sequence of these patients has a
time duration of a few minutes near an epileptic seizure with large
numbers of seizure signals, resulting in a more difficult detection
than that with the CHB–MIT dataset, which contains long-
duration non-seizure periods. We adopted the same feature extrac-
tion, channel selection method, and D2NNmodel as for the EEG sig-
nals; the performance corresponding to various channel numbers
is shown in Fig. 5(a). With channel number settings of 1, 5, 10,
and 30, the average accuracies were 90.93%, 94.35%, 94.31%, and
94.49%, respectively; average sensitivities were 92.50%, 93.32%,
93.51%, and 94.03%, respectively; average specificities were
90.38%, 96.06%, 96.53%, and 95.68%, respectively; and average F2
scores were 0.9132, 0.9341, 0.9351, and 0.9395, respectively. The
performance improved slowly with an increase in channel number.
In addition, the one-channel performance was sufficiently high and
close to the 30-channel performance. Therefore, as with the detec-
tion of epileptic seizures using EEG signals, we adopted single-
channel iEEG signals to facilitate signal acquisition and system
simplification. As shown in Fig. 5(b), the experimental accuracy,
sensitivity, specificity, and F2 score were 87.51% ± 4.65%, 89.00% ±
5.86%, 87.35% ± 7.91%, and 0.8755 ± 0.0483, respectively, which
are also comparable with 90.93% ± 3.58%, 92.50% ± 4.51%, 90.38% ±
7.07%, and 0.9132 ± 0.0340, respectively in the simulation. The accu-
racy, sensitivity, specificity, and F2 score were reduced by approxi-
mately 3%, 3%, 5%, and 0.04, respectively in the experiments.
Detailed results for each patient are presented in Table S2. The gen-
eralization ability of the model for different patients is further
demonstrated in Fig. S6 in Appendix A. Furthermore, the
performance of the DPU-constructed D2NN is compatible with the
state-of-the-art convolutional neural network AlexNet [56] (Table 1
and Fig. S7 in Appendix A).
3.2. Epileptic seizure detection with the integrated DPU

The integrated DPU comprises a one-layer metaline for the on-
chip epileptic seizure detection. There are 1800 meta-atoms (i.e.,
600 diffractive neurons), for processing EEG or iEEG signals, and
the DPU width is 540 lm. The distance between the input plane
and output plane is 200 lm, and the metaline is placed at the cen-
ter. The input waveguides are placed with an interval of 15 lm,
and the interval of two output waveguides is 270 lm.
Fig. 5. Performance of epileptic seizure detection with iEEG signals on the Epilepsy-iEEG
(b) Performance comparison between numerical evaluations and experimental results u
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We applied the integrated DPU for epileptic seizure detection
toon EEG signals from the CHB–MIT dataset. To reduce the input
port numbers of the DPU, the time and frequency resolution of
the STFT is reduced during the pre-processing, and only one chan-
nel selected by the random forest is utilized to generate a 16-
dimensional feature for each time window. We trained the inte-
grated DPU with 16 input waveguides. Fig. 6(a) illustrates the
details of the optical field propagation simulated using FDTD. Suf-
ficiently matched modulation profiles between the analytical
model and FDTD are shown in Fig. S3. We numerically evaluated
the integrated DPU with an optical bias block, as shown in Fig. 6
(b) and Table S3 in Appendix A. When the same training platform
as the free-space D2NN was used, the training time of the inte-
grated D2NN model was approximately 1 h. The average accuracy,
sensitivity, specificity, and F2 score were 97.68%, 88.92%, 98.01%,
and 0.8385, respectively, but they decreased to 89.11%, 76.61%,
89.61%, and 0.5173, respectively, without the optical bias block.
In addition, the performance fluctuated significantly in different
patients without the optical bias block. We compared the perfor-
mance with a three-layer electronic fully connected neural net-
work (3-layer FC), which contained 64 and 16 neurons in the
first and second hidden layers, respectively, two output neurons,
and a rectified linear unit (ReLU) activation function. The average
accuracy, sensitivity, specificity, and F2 score of the 3-layer FC
were 98.24%, 89.32%, 98.61%, and 0.8547, respectively. The results
demonstrate the effectiveness of the optical bias block for inte-
grated DPU and the success of its application for epileptic seizure
detection.

Similarly, the results of the iEEG signals from the Epilepsy-iEEG-
Multicenter-Dataset are presented in Fig. 6(c) and Table S3. The
average accuracy, sensitivity, specificity, and F2 score were
86.07%, 82.82%, 86.90%, and 0.8328, respectively, but they
decreased to 80.60%, 76.45%, 84.70%, and 0.7665, respectively,
without the optical bias block. Compared with the CHB–MIT data-
set, less performance degradation was observed because the dura-
tions of the seizure and non-seizure periods were similar in this
dataset. The 3-layer FC achieved an average accuracy, sensitivity,
specificity, and F2 score of 84.50%, 81.88%, 86.48%, and 0.8196,
respectively, which were also close to those of the integrated
DPU with an optical bias block. Performance comparisons with
state-of-the-art (SOTA) electronic neural networks are summa-
rized in Table 1.
4. Discussion

4.1. Computing speed and energy efficiency

We evaluated the computational performance of a 3D free-
space DPU using the constructed two-layer D2NN. Each layer of
-Multicenter-Dataset. (a) Numerical evaluation results for various channel numbers.
sing the single-channel iEEG signals.



Table 1
Performance of the proposed DPU and state-of-the-art (SOTA) electronic neural networks for epileptic seizure detection, including average accuracy, sensitivity, specificity, and F2
score.

Method Feature Param Performance on single-channel EEG signals Performance on single-channel iEEG signals

Accuracy Sensitivity Specificity F2 score Accuracy Sensitivity Specificity F2 score

3D DPU 2D 0.32 M 0.9789 0.9192 0.9813 0.8553 0.9093 0.9250 0.9038 0.9132
AlexNet 2D 60.97 M 0.9780 0.9393 0.9794 0.8628 0.9462 0.9411 0.9571 0.9390
2D DPU 1D 600 0.9768 0.8892 0.9801 0.8385 0.8607 0.8282 0.8690 0.8328
3-layer FC 1D 2.2 K 0.9824 0.8932 0.9861 0.8547 0.8450 0.8188 0.8648 0.8196
5-layer FC 1D 18.6 K 0.9805 0.8924 0.9842 0.8456 0.8610 0.8785 0.8456 0.8658

Fig. 6. Epileptic seizure detection with the integrated DPU. (a) Diffractive optical field propagation of the integrated DPU simulated with FDTD. The right subgraph shows the
enlarged view of the red box at the position of metaline in the left subgraph. (b, c) Results of the EEG and iEEG signals from the CHB–MIT dataset and Epilepsy-iEEG-
Multicenter-Dataset, respectively. The performance of the integrated DPU with the optical bias block is comparable with that of a three-layer electronic fully connected
neural network (3-layer FC), which contains 64 and 16 neurons in the first and second hidden layers, two output neurons, and a rectified linear unit (ReLU) activation
function, but degraded obviously without the optical bias block. w/: with; w/o: without.
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the D2NN generates a feature map with element numbers of
400� 400 from an input image of the same size, which performs
a 4002 � 4002 matrix multiplication, that is, the 5:12� 1010 oper-
ations of pixel-by-pixel multiplication and summation in the opti-
cal domain. Because diffractive optical computations are
performed at the speed of light, the computing speed is deter-
mined by the refresh rate of the SLM and acquisition frame rate
of the camera. The SLM frame rate was 30 Hz and the camera expo-
sure time was 1 ms in the experiments. The STFT pre-processing
and data-flow controlling time was 2.78 ms. Therefore, the total
system latency of each working cycle was 37.11 ms, corresponding
to the system frame rate of 27 Hz. The computing speed of the free-
space DPU was 1:38� 1012 operations per second (1.38 TOPS). The
powers of the laser, SLM, camera, and controller were 1.65, 12.00,
4.50, and 65.00 W, respectively;that is, the total system power was
83.15 W and the energy efficiency was 0.02 TOPS/W. Furthermore,
9

the SLM in the free-space DPU system supported 1920� 1152
diffractive neurons (i.e., 9:78� 1012 operations in each cycle of
diffractive computing). Consequently, the maximum diffractive
computation speed was 264.06 TOPS and the maximum energy
efficiency was 3.17 TOPS/W. With a high-speed SLM (e.g.,
HSP1920-600-1300-HSP8, Meadowlark, 422.4 Hz), the energy effi-
ciency could be further enhanced more than ten-fold.

The 2D integrated DPU in Fig. 1(c) executes a 16� 2 weight
matrix with passive metalines, that is, 64 operations in each cycle.
Considering the modulation and photodetection rate of 30 GHz
based on the existing silicon photonic foundry, the computing
speed was 1.92 TOPS. Typical powers of the on-chip laser source
and modulators were 10 and 15 mW, respectively [57]. The inte-
grated DPU required two lasers and 18 modulators. Therefore,
the total power was 290 mW and energy efficiency was 6.62
TOPS/W. The energy efficiency of the state-of-the-art GPU Tesla
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V100 is 0.4 TOPS/W (Table S4 in Appendix A). The integrated DPU
therefore achieves more than 15-fold improvement in energy
efficiency.

4.2. Limitations and future works

We demonstrated a DPU-based opto-processor for effectively
processing large-scale EEG signals, which can facilitate its applica-
tion in different areas. For example, in brain–computer interfaces
[58], the iEEG signal channel counts are increasing from thousands
to hundreds of thousands, placing a high demand for high-
performance computing processors. Furthermore, we demon-
strated that the one-channel EEG signal with the channel selection
method exhibited sufficiently high performance for epileptic sei-
zure detection, that is, only one electrode attached to the scalp is
required for the acquisition system, facilitating its applications in
wearable healthcare and personalized medicine. The volume of a
free-space DPU can be reduced by designing ASICs for EEG signal
acquisition and data-flow control. Time-frequency-based methods
are more efficient than spiking-based engines because of feature
extraction in both the time and frequency domains and more com-
prehensive mining of EEG signals [45]. In addition, different time
resolutions can be achieved by adjusting the time window length
of the STFT to achieve a local or global understanding of EEG
signals.

The reconfigurable free-space DPU includes millions of diffrac-
tive neurons, which can construct more complex neural network
architectures, such as diffractive recurrent neural networks [21],
for better performance in processing time-series signals and vari-
ous health monitoring tasks. The integrated implementation can
be fabricated using deep-ultraviolet lithography, which is highly
compatible with electronic integrated circuits. Reconfigurable
non-volatile materials such as phase change materials (PCM)
[27,59] can be used to design metalines with programmable
network parameters and increased flexibility. Although the one-
channel model was primarily considered in this study, more chan-
nels may be necessary for tasks that are more complex. The data
throughput of the proposed EEG opto-processor can be further
expanded based on wavelength-division multiplexing (WDM)
[27,28], and optical processing of various channels can be accom-
plished at individual wavelengths.
5. Conclusions

In summary, we demonstrated the successful use of a DPU to
construct PNNs for EEG analysis and applied it for epileptic seizure
detection of EEG and iEEG signals with high performance. This
study is anticipated to facilitate advances in the use of photonic
computing for the development of various healthcare devices.
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