
Engineering xxx (xxxx) xxx
Contents lists available at ScienceDirect

Engineering

journal homepage: www.elsevier .com/ locate/eng
Research
Control Engineering–Article
The Immense Impact of Reverse Edges on Large Hierarchical Networks
https://doi.org/10.1016/j.eng.2023.06.011
2095-8099/� 2023 The Authors. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding authors.
E-mail addresses: xhguan@mail.xjtu.edu.cn (X. Guan), zht@mail.hust.edu.cn (H.-

T. Zhang).
# These authors equally contributed to this work.

Please cite this article as: H. Cao, B.-B. Hu, X. Mo et al., The Immense Impact of Reverse Edges on Large Hierarchical Networks, Engineering, https://d
10.1016/j.eng.2023.06.011
Haosen Cao a,#, Bin-Bin Hu a,#, Xiaoyu Mo b, Duxin Chen c, Jianxi Gao d, Ye Yuan e, Guanrong Chen f,
Tamás Vicsek g, Xiaohong Guan h,⇑, Hai-Tao Zhang a,⇑
aKey Laboratory of Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
b School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
c Jiangsu Key Laboratory of Networked Collective Intelligence, School of Mathematics, Southeast University, Nanjing 210096, China
dDepartment of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
e State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
fDepartment of Electronic Engineering, City University of Hong Kong, Hong Kong 999077, China
gDepartment of Biological Physics, Eötvös University, Budapest 1117, Hungary
hMOE Key Laboratory for Intelligent Networks and Network Security, Xi’an Jiaotong University, Xi’an 710049, China

a r t i c l e i n f o
Article history:
Available online xxxx

Keywords:
Synchronizability
Large hierarchical networks
Reverse edges
Information flows
Complex networks
a b s t r a c t

Hierarchical networks are frequently encountered in animal groups, gene networks, and artificial engi-
neering systems such as multiple robots, unmanned vehicle systems, smart grids, wind farm networks,
and so forth. The structure of a large directed hierarchical network is often strongly influenced by reverse
edges from lower- to higher- level nodes, such as lagging birds’ howl in a flock or the opinions of lower-
level individuals feeding back to higher-level ones in a social group. This study reveals that, for most
large-scale real hierarchical networks, the majority of the reverse edges do not affect the synchronization
process of the entire network; the synchronization process is influenced only by a small part of these
reverse edges along specific paths. More surprisingly, a single effective reverse edge can slow down
the synchronization of a huge hierarchical network by over 60%. The effect of such edges depends not
on the network size but only on the average in-degree of the involved subnetwork. The overwhelming
majority of active reverse edges turn out to have some kind of ‘‘bunching” effect on the information flows
of hierarchical networks, which slows down synchronization processes. This finding refines the current
understanding of the role of reverse edges in many natural, social, and engineering hierarchical networks,
which might be beneficial for precisely tuning the synchronization rhythms of these networks. Our study
also proposes an effective way to attack a hierarchical network by adding a malicious reverse edge to it
and provides some guidance for protecting a network by screening out the specific small proportion of
vulnerable nodes.
� 2023 The Authors. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher
Education Press Limited Company. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Synchronization is an essential coordinated behavior of com-
plex networks that is often encountered in fields such as physics,
biology, ecology, and climatology [1–4]. That is, all network nodes
agree upon certain features of interest, such as positions, velocities,
tendencies, and so forth, or periodically move with the same
rhythms, phases, and amplitudes. Synchronization phenomena
are evolutionarily advantageous, and members gain benefits in
the form of group protection and survival, mate choice, and forag-
ing [5]. Typical examples include organized fish schools avoiding
predator attacks [6,7] and formatted bird flocks saving kinetic
energy [8]. A typical synchronization process often encountered
in smart electrical power grids is matching different generators
to obtain a uniform frequency and angle. In fact, efficient grid syn-
chronization remains a challenging issue for distributed power-
generation systems. Abundant manifestations of spontaneous syn-
chronization can be observed in self-coordinated wireless sensors,
bursting neurons, pace-matching chemical oscillators, and
frequency-locked power generators as well.

By analogy to other forms of collective phenomena, synchro-
nization strongly depends on the topological properties of the
underlying interaction network [9]. Due to the appealing nature
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of networked synchronization, significant efforts [10–13] have
been invested lately in exploring the relationship between inter-
agent connection and network synchronizability with the assis-
tance of biological experiments, real network data, statistical phy-
sics theories, and mathematical/system science analytical tools. So
far, due to the widespread presence of hierarchical networks in the
natural world, it is common wisdom that the synchronization of
hierarchical networks is substantially decelerated or inhibited by
extra reverse edges from lower-level nodes to higher-level ones
(the hierarchical levels of a network are depicted in Fig. S1 in
Appendix A). For example, circadian clocks synchronize biological
processes with the day/night clock using molecular mechanisms
that include interlocked, transcriptional feedback loops (or reverse
edges). A negative reverse edge (i.e., autoregulation) of the evening
complex genes constitutes the clock’s evening loop, which
represses the morning genes [14]. Our study proves this expecta-
tion to be invalid by demonstrating that the overwhelming major-
ity of extra reverse edges cannot touch the synchronization
rhythms at all. More intriguingly, once made possible, the synchro-
nization of a huge network can be sharply decelerated by over 60%
with no more than a single reverse edge overpassing just two
nodes. In modern power systems, for example, a disruption in syn-
chronization may cause the malfunction of generators and the
outages of power grids with cascading catastrophic failures of
power plants, as have been observed in the Western American net-
work in 1996 [15], the Italy-Switzerland network in 2003 [16], and
the North America in 2003 [17]. During these large-scale outages,
huge reverse power flows and excessive phase angle desynchro-
nization were respectively observed and believed to be the key fac-
tors in the aforementioned system collapses [17]. The aim of the
current study is to explore the role of reverse edges on abundant
natural, social, and engineering hierarchical networks. Our investi-
gation provides some insights into analyzing the mechanism by
which the synchronization rhythms can be quantitatively tuned
and, reversely, into protecting hierarchical networks from being
attacked via the addition of bottom-up links.

To reveal the role of reverse edges, we ignored the loops of hier-
archical networks, focusing instead on directed acyclic networks.
Hierarchical networks are usually used to describe causal or hier-
archical relationships between different systems interacting with
each other; correspondingly, there are many kinds of definitions
of hierarchy [18,19]. For example, the leader-follower structures
of migrating bird flocks [20–22] form hierarchical communication
networks when flying in V-formation [23]. The generating stations,
substations, loads, and so forth of smart grids in different hierar-
chies form a network in which directed power or information flows
connect the network components. Moreover, in military multivehi-
cle formations, only a few vehicles are manned agents that act as
leaders, while the rest are unmanned followers. Each unmanned
vehicle follows its front neighbors by means of onboard sensors
(e.g., cameras); thus, the communication network forms a hierar-
chical network [24].

Typical topologies of hierarchical networks include chains,
trees, grids, and more general single-rooted hierarchical graphs.
Widely existing biological hierarchical network examples include
migrating bird flocks [20–23], mammal groups [25], and even
microbiological yeast regulation networks and gene ontology
(GO) [26,27]. Moreover, there are abundant industrial and engi-
neering hierarchical networks, such as water-supply networks
[28], wind farms [29], smart grids [30], instruction scheduling in
low-level program optimization [31], unmanned vehicle forma-
tions [32], combinational circuits [33], compiler design [34],
data-flow programming languages [35], and efficient search algo-
rithms [36]. The literature even contains examples of huge-scale
hierarchical networks in fields ranging from biology [37–39], neu-
roscience [40], and genetics [41] to economics [42].
2

It is inevitable that the performance and features of hierarchi-
cal networks are often affected by additional reverse edges, which
sometimes significantly influence the dynamics of the entire net-
work. In social networks, feedback opinions from lower-level
individuals to leaders favor the optimization of a group decision
or democracy. In power networks, redundant cycles produced
by link addition are practical for protecting fragile nodes and
strengthening network connectivity and robustness. On the other
hand, in what is known as Braess’s paradox, adding new links
may not promote but rather destroy the synchrony of specific
networks, incurring power outages or traffic congestion [43,44].
In many natural hierarchical networks, such as pigeon flocks
[22] and horse herds [45], the followers may detect food
resources, new habitats, or clues indicating predators. Thus,
bottom-up emergent information flows, that is, reverse edges
help the leaders make better decisions for the benefit of the
whole network. In supply chains, feedback from retailers and cus-
tomers is indispensable for producers and suppliers in order to
enhance circulation efficiency. Therefore, such real-life situations
motivate investigations into the role of reverse edges in the huge
volume of hierarchical networks.

To this end, we conduct an extensive investigation on several
typical medium- or large-scale real hierarchical networks. For
some of these cases, counterintuitively, our extensive analytical
and numerical investigation revealed that the majority of the mas-
sive possible reverse edges do not affect the entire hierarchical net-
work at all, so we denote them as silent reverse edges. As an
example, for a 2373-node/20 812-edge/89-level hierarchical Bit-
coin network slim [46], the proportion of silent reverse edges is
more than 64.48%; in another denser giant 29 383-node/56 377-
edge/17-level hierarchical network, (i.e., a GO [26,27]), the propor-
tion is as high as 99.92%. In contrast, the reverse edges are denoted
as active if they have an influence on the synchronization process.
We have identified some specific classes of network structures
along which the active reverse edges can be promptly extracted
without difficulty.

Next, we focus on the quantitative role of reverse edges on
real natural/social/engineering hierarchical networks. Again,
counterintuitively, the effect of reverse edges turns out to be
independent of their locations or the network size. Instead, their
effect is solely determined by the local subnetwork containing the
additional reverse edges, especially the in-degrees of the landing
nodes (i.e., the ending nodes of the reverse edges). More precisely,
a larger in-degree landing node (i.e., the ending nodes of the
reverse edges) implies a slower synchronization. The underlying
reason is that merging more information flows from other
branches into the landing nodes contributes to diluting the effect
of reverse edges.

From a scientific point of view, this study refines our knowl-
edge, making it possible to accurately screen out the very few
active reverse edges with significant influence within abundant
large-scale hierarchical networks. With respect to engineering
applications, the present investigation might shed some light onto
protecting, attacking, or regulating large-scale natural/social/engi-
neering hierarchical networks, by means of precisely located addi-
tional reverse edges. More specifically, this work reveals an
effective way to attack a network (in terms of slowing down its
synchronization process) by precisely positioning a few specific
malicious reverse edges in a huge network. Conversely, our work
also provides guidance for protecting a network by screening out
specific paths that are vulnerable to reverse edge attacks but usu-
ally constitute a minuscule proportion of the network paths. In
brief, our paper contributes to paving the way for the newly
revealed principle of hierarchical networks toward a large variety
of promising applications in real natural, social, and engineering
hierarchical networked systems.
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2. Materials and methods

2.1. Experiment

Using a group of 17 unmanned surface vehicles (USVs) to mimic
a horse-herd network, we were able to experimentally check the
quantitative role of reverse edges on hierarchical networks.
Therein, for simplicity, the USV dynamic was regarded as a first-
order dynamic system by accurately regulating the kinematic
model [47]. In this way, the USV group synchronization perfor-
mance of moving directions could be quantified and the revealed
role of additional reverse edges could accordingly be verified.

As shown in Figs. S2-S5 in Appendix A, the multi-USV system
consists of 17 40 cm-long USVs, a motion-capture module, a mon-
itoring and control module, and an indoor pool. The motion-
capture module consists of eight Optitrack Flex 3 infrared cameras
(NaturalPoint Corporation, USA) and Motive 2.2 data-collecting
software (NaturalPoint Corporation) which are used to detect,
trace, and analyze the moving trajectories of the USVs with an
accuracy of ±0.3 mm. Main components and hardware in this
experiment are listed in Table S1 in Appendix A. With the commu-
nication topology of the horse herd shown in Fig. 1 [45], each USV
receives the velocities and positions of its neighboring USVs sent
by an embedded monitoring module via a wireless module with
a sampling frequency of 100 Hz. Furthermore, the module calcu-
lates the directional synchronization control signal.

Mathematically, we denote ui 2 ½0;2pÞ; i ¼ 1;2; :::;17 as the
direction of the ith USV, where i is the index of a specific USV.
Using the kinematic model, the directions of all USVs will converge
Fig. 1. The inter-communication network of a horse herd [45]. The proximity of a
node’s level to the root node is indicated by its size. Here, the necessary condition
for active reverse edges—that is, the formation of loops—is illustrated. For example,
the reverse edge 16?13 (the green dashed arrow) could not form any new loop, so
the Laplacian spectrum remains unchanged, and it is a silent edge. Both edge 14?
13 (the red dashed arrow) and edge 13?10 (the blue dashed arrow) form loops.
However, 14?13 is active, whereas 13?10 is not. Therefore, forming loops is not a
sufficient condition for the activity of a reverse edge.
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to the initial direction u0 of the leading USV, representing the root
node in the horse-herd network. We consider the USV group to
have achieved synchronization when the difference in direction
between any USV and the leading USV is less than a certain thresh-
old 0.05 rad—that is, 8i; ui �u1j j 6 0:05 rad and u1 denotes the
direction of leading USV.

As is shown in Figs. 2(a) and (b) and Fig. S6 in Appendix A, dur-
ing the experiments, the USVs were initially randomly distributed
on a rectangle section of [�3000, 1000] mm � [�1000, 1000] mm
of the pool with velocities of zero. The moving directions of all the
USVs were then synchronized. To exhibit the influence of reverse
edges more vividly, we conducted experiments under three scenar-
ios—namely, ① no reverse edges, ② a silent reverse edge (17?11),
and ③ an active reverse edge (17?12), as represented in Figs. 2
(c)–(e). In order to calculate the convergence times of the synchro-
nization processes, each was taken as an average over three inde-
pendent runs. It was observed that an active reverse edge (Fig. 2(e)
with red trajectory ends) effectively slowed down the synchroniza-
tion speed, whereas others did not influence it (Figs. 2(c) and (d)
with green trajectory ends). In other scenarios, the synchronization
processes are compared in Fig. S7 in Appendix A.
2.2. Algorithm

We formally consider an N-node single-rooted hierarchical net-
work G in topological ordering, with a lower triangular Laplacian
Lo 2 RN�N , where R is the set of real numbers. We assume that
all networks mentioned here are unweighted. Let V be the node
set of G and HðmÞ 2 Rþ; m 2V be the hierarchical level of node
m; moreover, in this work, we define HðmÞ as the function that
maps node v to the longest distance from the root node to it
(Fig. S1 and Section S1 in Appendix A). We add a reverse edge from
node ‘ to node �hwith r ¼Hð‘Þ �Hð�hÞ > 0; �h; ‘ 2V; �h–root, where
r denotes the surpassing range, and ‘‘root” denotes the root node of
G. For this reverse edge, denoted as ð�h; ‘Þ, a subnetwork G1 is
uniquely determined whose node set contains �h; ‘, and the nodes
of all paths from �h to ‘. Let X be the node set of G1 and n :¼ Xj j
the cardinality of set X. Mathematically, once the reverse edge

ð�h; ‘Þ is added, the Laplacian matrix Lo of network G becomes L
�
o,

and subnetwork G1 corresponds to a block matrix L ¼ ½li;j� 2 Rn�n

on the diagonal of L
�
o, with l being some entry of L. That is:

L
�
o ¼

L1 0 0
� L 0
� � L2

2
64

3
75 ð1Þ
L ¼

l1;1 0 � � � � � � �1
�1 l2;2 0 � � � 0

..

. . .
. . .

. . .
.

0
� � � � � � � � � ln�1;n�1 0
� � � � � � � � � �1 ln;n

2
66666664

3
77777775

ð2Þ

where the square matrix L contains all path nodes from �h to ‘. It
thus becomes an interesting problem to screen out active reverse
edges merely according to the in-degrees of the nodes in the
involved subnetwork G1, in order to avoid the time-consuming
spectrum calculation of huge Laplacian matrices. To this end, we
have designed the active reverse edge searching Algorithm 1, which
is composed of two steps: path searching and node searching.

Step 1: path searching. Search the path(s) from node �h to node
‘ in subgraph G1. Denote Ci as the ith such path and c as the num-
ber of such paths. Then c � 1 is a necessary condition for determin-
ing the active reverse edge.
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Step 2: node searching. Search the node(s) with waist bunch-
ing and funnel bunching in subgraph G1, corresponding to three
conditions in Algorithm 1. As is discussed in Section 3.2, these
nodes indicate the information flow within G1 and determines
the activity of a reverse edge.

With Algorithm 1 (more details are provided in Section S2 in
Appendix A), more than 99.4% of the active reverse edges in the
real networks (Section 3.3) can be screened out without calculating
the eigenvalues of the massive matrix Lo. In essence, the computa-
tional complexity of computing and evaluating a discriminant
matrix has been sharply decreased from OðN3Þ to OðNÞ with the
assistance of a typical classical QR algorithm [48]. Still, the remain-
ing few active edges (� 0.6%) create a dilemma, due to the sophis-
ticated counterbalance between the exterior and interior
information flows endowed by the in-degrees in G1. Fortunately,
in most application scenarios, it is sufficient to screen out an over-
whelming majority of active reverse edges, as is done in the pre-
sent study.

Algorithm 1. Active reverse edge searching algorithm.

Require: Graph Laplacian L
�
o ¼ ½ l

�o
i;j� 2 RN�N

Initialize H vð Þ that maps node v to the longest distance
from root to it
for ð‘; �hÞ 2 f1; . . . ;Ng � f1; . . . ;Ng; �h – root that satisfies
H ‘ð Þ > H �hð Þ do
Search paths from node �h to node ‘ and construct the path

set H‘;�h as H‘;�h ¼ fCi ¼ f�h; . . . ; ‘gji ¼ 1; . . . ; cg
X ¼ [ci¼1Ci ¼ fv1;v2; . . . ;vng, initialize L ¼ ½li;j� 2 Rn�n as

zero matrix
for ði; jÞ 2 f1; . . . ;ng � f1; . . . ;ng do
li;j ¼ l

�o
i;j

end for
l1;n¼�1:l1;1 l1;1þ1:8i2f1; . . . ;ng;zi¼ li;i�

Pn
j¼1;j–i li;j

�� ��
if H‘;�h – / and (Condition 1, Condition 2, or Condition 3

holds) then
The reverse edge ‘! �h is active

else The reverse edge ‘! �h is silent
end if

end for
Here, H‘;�h: path set in the subnetwork G1. X: node set in the

subnetwork G1. zi: exterior information flow of the ith
node. /: the empty set; the three conditions are given
below

Condition 1 (strict waist bunching): 9i 2 f1; . . . ;ng, such that
li;i ¼ 1.

Condition 2 (generalized waist bunching):
8i 2 f1; . . . ;ng; zi � 1 and 9p 2 f1; . . . ;ng, such that zp ¼ 0.

Condition 3 (funnel bunching): 9i 2 f1; . . . ;ng; zi � 2 and
8p 2 f1; � � � ; i� 1g; zp � 1 and 8q 2 fiþ 1; :::;ng, such that
zq ¼ 0.
3. Results

3.1. Only a small portion of reverse edges in large-scale hierarchical
networks are active

Hierarchical networks widely exist in natural biological groups,
gene networks, and engineering systems. It is natural to consider
that adding a reverse edge inserts cycles in the original network
in such a way that it impedes the synchronization process. Coun-
terflow scenarios sometimes bring valuable applications or serious
4

and even disasters, such as liquid counterflow in a casing heat
exchanger or pedestrian counterflow inducing a transition from a
free to congested state in traffic. Thus, it is crucial to investigate
the counterflow effect from a network viewpoint. Intuitively, it
might be common sense that most of the reverse edges from a
lower level to a higher one influence the synchronization of the
hierarchical network. Surprisingly, however, we found out via
exhausting all possible reverse edges that just a few of them are
actually capable of changing the synchronization rhythm for a
large volume of hierarchical networks.

First, for arbitrary hierarchical networks with no loops, reverse
edges are defined as connections from lower levels to higher ones.
Here, the level sequence number of each node is defined as the fur-
thest distance to the root. Without loss of generality, we take a rep-
resentative hierarchical graph—that is, an inter-communication
network of a horse herd, given in Fig. 1—as an example. Evidently,
it is imperative to investigate the quantitative role of reverse com-
munication edges on real horse herds. For this study, we used 17
mini-USVs to mimic the synchronization of a horse herd, where
each vessel imitates a horse cluster to align to its front cluster(s)
(i.e., the immediate leader(s)).

As shown in Fig. 2(a), during each experiment, the USVs are ini-
tially randomly distributed on a pool. With the inter-USV commu-
nication topology in Fig. 1, the final moving directions of the USVs
are synchronized, as shown in Fig. 2(b). Significantly, we record
different time intervals taken to reach synchronization with differ-
ent reverse edges. In this way, the role of different reverse edges
becomes quantitatively comparable. For more details of the exper-
iments, refer to Section S3 in Appendix A.

Counterintuitively, it can be observed in Fig. 2 that, for such a
small horse-herd topology, only 63% of all the possible reverse
edges were able to affect the synchronization process (18.0 s in
Fig. 2(e) for a reverse edge 17?12 vs 7.5 s in Fig. 2(c)), so we
denoted them as active reverse edges. The remaining 37% of the
reverse edges are silent, as they did not influence the synchroniza-
tion speed at all (7.5 s, like a silence reverse edge 17?11 vs 7.5 s;
see Figs. 2(c) and (d)).

A possible concern is that the active reverse edges seem to build
the majority of all possible reverse edges. According to extensive
investigations on real hierarchical networks, however, it appears
that the proportion of active edges decreases sharply with increas-
ing network size. Take a typical huge hierarchical network—that is,
a GO consisting of 29 323 nodes and 56 377 edges—for discussion
[26,27]. According to a detailed analysis of the synchronization
processes with all possible reverse edges (over 380 million), only
less than 0.08% are active. In order to obtain insight into this phe-
nomenon, a thorough understanding of the types of reverse edges
that can tune the corresponding network dynamics and the syn-
chronization rhythms is necessary. At this point, we conclude that
three essential concerns need to be addressed in this section:
① How many active reverse edges are there in each hierarchical
network? ② How can one accurately locate them with high
efficiency? ③ To what extent is an active reverse edge able to slow
down the synchronization process?

However, due to the water environment, it is difficult to ensure
that all the initial states are identical for the 17 USVs in each inde-
pendent run of experiments. Once the direction and position of any
vehicle are adjusted, the emanating wave will disturb the others.
Therefore, we only try to set the initial states of the USVs to be
as arbitrary as possible in each independent run. In addition, a sim-
ulation is presented in Fig. 3 to depict the slowing down effect of
an active reverse edge in an ideal environment. Consider the
dynamics of a first-order integrator _x ¼ �Lox, where x denotes
the state of system. The synchronization process is apparently dif-
ferent with silent and active reverse edges for identical initial
states.



Fig. 2. Snapshots and moving trajectories, as well as the corresponding synchronization periods of the 17-USV system. The horizontal and vertical axes form the Cartesian
coordinate system of the water surface plane. The color of the points on the trajectory represents the elapsed time from the beginning of the experiment, referring to the
legend on the right. (a, b) Snapshots of the initial direction stage and synchronized direction stage. Adding certain active reverse edges to the network could extend the period
of the synchronization process. For the full experimental record, see Videos S1 and S2 in Appendix A. (c) Trajectories with no reverse edge case; synchronization period is 7.5
s. (d) Trajectories with a silent reverse edge (17?11); synchronization period is 7.5 s. (e) Trajectories with an active reverse edge (17?12); synchronization period is 18 s.
Only 63% of the reverse edges slowed down the synchronization process; the others were silent. Here, the moving direction synchronization threshold is 0.05 rad.
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3.2. Where are the rare active reverse edges?

To exhaustively and precisely locate the active reverse edges for
a huge variety of hierarchical networks, an index is needed to
quantify the synchronization speed. It is well accepted in the liter-
ature that the Fiedler value k2ðLoÞ (abbreviated as k2; i.e., the sec-
ond smallest eigenvalue of the graph’s Laplacian Lo) is an option,
as it quantifies the connection strength of graphs. Importantly, it
can be observed in Fig. 4 that the correlation coefficient
R ¼ 0:8368 and the significant p-value p < 10�3 in the Pearson cor-
relation test [49], which implies that the synchronization speed is
strongly correlated with the algebraic connectivity k2ðLoÞ of the
real 17-USV platform with the horse-herd topology backbone.
Accordingly, we adopt k2 as the index to quantify the graph syn-
chronization speed, in the sense that the smaller the index k2 is,
the more slowly the network is able to attain synchronization.
5

This situation raises a point regarding what kind of additional
reverse edges can possibly change k2. To address this question,
technical details were taken into account, and it was observed
that, if no new loop was formed by the additional edge, this edge
would be silent. As shown in Fig. 1, the green additional edge
16?13 (the green dashed arrow) was unable to form any new
loop. Furthermore, the Laplacian spectrum k remained unchanged
in most cases, as the original Laplacian of the entire network can
still be rewritten into a lower triangular one simply by changing
the sequence of nodes. In other words, forming a new loop
becomes a necessary condition (but not a sufficient one) for
active reverse edges. To illustrate this issue, take the two reverse
edges 14?13 (the red dashed arrow) and 13?10 (the blue
dashed arrow) in Fig. 1 as an example. Both have formed loops,
but the former is active whereas the latter is not. Therefore, the
formation of new loops was not an assurance that the reverse



Fig. 3. Simulated state trajectories of the horse-herd network synchronizing with identical initial states. Under the dynamics of a first-order integrator, the states of all nodes
in the system converge to the state of the root node. With identical initial states, the synchronization process is merely affected by the addition of a silent reverse edge but is
clearly slowed down by the addition of an active one. The dashed line represents the time required for the state to converge to the same level. (a) State trajectory without
additional edge; (b) state trajectory with a silent reverse edge (17?11); (c) state trajectory with an active reverse edge (17?12).

Fig. 4. Experimental validation of the correlation between the Fiedler value k2ðLoÞ
and the convergence speed 1=T of the real 17-USV platform with the horse-herd
topology backbone shown in Fig. 1. k2ðLoÞ is the minimal real part of the nonzero
eigenvalues of Laplacian matrix Lo. T denotes the convergence time of the network
synchronization process. It is observed that the correlation coefficient is R ¼ 0:8368
and the significant p-value is p < 10�3 in the Pearson correlation test, which
verifies that k2 is qualified as a quantitative index of network synchronizability.
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edges were active, and it remains a challenging issue to precisely
locate active reverse edges.

To this end, consider an N-node single-rooted hierarchical net-
work G in topological ordering, with a lower triangular Laplacian
Lo. Assume that there exists at least one path from node �h to node
‘, which forms a subnetwork G1 consisting of r þ 1 nodes. Our
investigation revealed that the in-degrees of the nodes in subnet-
work G1 substantially influence the effectiveness of an additional
reverse edge (see Section 2 for details). In particular, in G1, the
node in-degree could be divided into interior and exterior in-
degrees according to the starting nodes in subnetwork G1 and
the complementary set of G1, respectively. Thus, if all the nodes
in G1 have at least one exterior in-degree, the reverse edge is
surely not able to influence the synchronization process of the net-
work, as the algebraic connectivity k2 is equal to or greater than 1
by the Gershgorin circle theorem. It is therefore necessary to iden-
tify an active reverse edge on a prior basis if there exists at least
one node in subnetwork G1 without an exterior in-degree.
6

To explain the effect of an active reverse edge, the in-degree of a
node is denoted as the width of the information channel at this
point, as the width varies along the information flow. Such a phe-
nomenon is reminiscent of a bunching effect, as shown in Fig. 5(a),
which means that there exist some nodes that tighten up the infor-
mation channel and thereby activate the counterflow effect of the
reverse edge. Our investigation reveals that there are generally two
kinds of bunching effects: more precisely, waist bunching and fun-
nel bunching. As shown in Fig. 5(b), waist bunching denotes the
scenario where the information channel is tightened up by at least
one node with an interior-only in-degree equal to 1 (namely, a
streaming node). Therefore, the counterflow influence of the
reverse edge has not been diluted, due to the existence of the nar-
rowest channel width of 1. However, further analysis of waist
bunching shows that there exists at least one node with an
interior-only in-degree and all the other nodes in G1 with no more
than 1 exterior in-degree. Despite the existence of exterior in-
degree(s), the counterflow influence of the reverse edge is not com-
pletely neutralized by the limited exterior nodes.

As shown in Fig. 5(c), funnel bunching denotes the case where
the information channel is first stretched out and then suddenly
narrowed down in the subnetwork G1. Therein, the upper nodes
bear nonnegligible exterior in-degrees and the bottom nodes bear
interior-only in-degrees. In such a situation, the counterflow influ-
ence of the reverse edge would not be completely neutralized
either. For more details on an active reverse edge detection algo-
rithm via the aforementioned bunching effect analysis, we refer
to Algorithm 1.

To verify the proposed Algorithm 1, we examined the men-
tioned huge GO, which is separated into 17 hierarchical levels
according to their distances from the single root. It can be observed
that more than 99.5% of the effective reverse edges among the 379
260 333 possible ones can be promptly screened out without any
exhaustive process. The remaining 0.5% of the reverse edges can
be evaluated directly by calculating their Fiedler value—that is,
the smallest real part of the corresponding discriminant matrices’
eigenvalues (see Section S1 for the definition of a discriminant
matrix).



Fig. 5. (a) Illustration of the effect of information channel bunching on hierarchical networks. Here, a reverse edge is added from node ‘ to node —h. The nodes in the red region
only transfer internal information, as they contain interior-only in-degrees. In contrast, the nodes in the blue region contain exterior in-degrees and act as external
information channels. The role of bunching tightens the information channel so as to activate the involved reverse edges. (b, c) There are two typical bunching nodes: (b)
waist bunching, where the information channel is bunched as a waist at the subnetworkG1; and (c) funnel bunching, where the information channel is stretched out and then
suddenly narrowed down at the subnetwork G1. Here, lij refers to the elements in the i th row and j th column of the corresponding block matrix L of the subnetwork G1.
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3.3. The level where the synchronization process can be slowed down
by an active reverse edge

Knowing the locations of the active reverse edges, it could be
expected that it would be possible to finely tune the network syn-
chronizability by delicately adjusting the tiny proportion of active
reverse edges; or, conversely, by deliberately defending the few
active reverse edges from external attacks. However, the degree
to which the synchronization process can be slowed by active
reverse edges is not known. For simplicity, let us start from a chain
network. Although an active reverse edge surpassing only one node
can reduce the synchronization speed by a surprisingly high rate of
61.8%, this is obviously not the maximal slowing-down effect. Sur-
passing more chain nodes contributes to further slowing down the
synchronization speed.

Next, we further quantitatively investigate the impact of the
active reverse edge for 16 representative kinds of real hierarchical
networks ranging from tens of nodes to tens of thousands of nodes.
The quantitative effects of active reverse edges on the synchroniza-
tion process of these networks are shown in Fig. 6 and summarized
in Table 1. We use percentage of reduction (PR) and average PR
(APR) to measure the extent to which the convergence speed is

affected by a reverse edge; that is, PR ¼ k2 � k
	
2

� �
=k2, where k2

and k
	
2 denote the Fiedler value of a network before and after this

reverse edge is added, respectively. APR is the average of the PR

of reverse edges that have the same average in-degree d
�
in and sur-

passing range r.
It can be observed that the ratio of effective reverse links (ERLs)

in all the networks is not larger than 36%, except for the Horse net-
work Fig. 6(b). Interestingly, the effect of active reverse edges on
the synchronization process has nothing to do with the network
size or its specific position. Instead, the effect is merely determined
by the subnetwork containing additional active reverse edges. In
other words, the transmitting capability or synchronization pro-
cess of any other edges or nodes outside the subnetwork G1 is
not influenced at all. This is due to the fact that the Laplacian Lo

of a hierarchical network G is a lower triangular matrix; hence,
the active reverse edge only affects the involved sub-triangular
entries of Lo (Section S1).

It should be noted that, as shown in Fig. 6, only a single active
reverse edge can abruptly slow down the convergence speed by
more than 60%, thus negatively affecting the synchronization pro-
cess of the network regardless of how large the network is (e.g., the
huge GO). Moreover, the slowing-down effect is merely influenced
by the average in-degree in the subnetwork G1, in the sense that
the smaller the average in-degree is, the more slowly the synchro-
7

nization is achieved. This phenomenon can be explained by the fact
that the impact of the active reverse edge is diluted by other
branches merging into an identical subgraph. It is similar to a sce-
nario in which, when several streams merge in confluence with the
mainstream, the influence of each confluent is diluted. This obser-
vation is useful for finetuning the synchronization process of a net-
work by modulating the in-degree of the nodes.

Accordingly, using Algorithm 1, it is possible to precisely screen
out the few active reverse edges and quantify the intensity of the
reverse edge impact by focusing on a much smaller subnetwork.
These findings refine our knowledge of hierarchical networks,
which can be mathematically analyzed for some regular networks.

Here, an appealing fact is noticeable: namely, that the golden
ratio of the synchronization reduction rate

k� ¼ 1� ð
ffiffiffi
5
p
� 1Þ=2 
 0:382 is the minimal k

	
2 with respect to din

if the in-degree of the landing node of the active reverse edge is

1 and the maximal k
	
2 with respect to r if the surpassing range of

the active reverse edge is also 1. This is due to the fact that the
changed r þ 1 eigenvalues are determined by an explicit eigen-
polynomial, which can be decomposed with a quadratic polyno-
mial k2 � k� 1 ¼ 0 with a golden ratio solution. From the perspec-
tive of applications, the revealed golden ratio for the algebraic
connectivity k2 is a kind of optimal spectrum value of the networks
under investigation. It may give a balanced point between the
energy cost and the optimal moving trajectory for networked sys-
tems [50] as well.
4. Discussion

Reverse edges representing feedbacks from lower-level nodes
to higher-level ones usually play crucial roles in natural, social,
power, and engineering hierarchical networked systems. The col-
lective entities in a network cooperatively interact with each other,
driving the system to a stationary state [6]. Such reverse edges may
be messages about food, predators, or habitats sent by followers in
animal groups; opinion feedback in social networks; power flows
in distributed power-generation systems; artificially added tuning
connections in microcosmic cell tissues; or macrocosmic coopera-
tive robotic systems. The significant influence of a single reverse
edge has been identified in such universal natural, social, and engi-
neering hierarchical networked systems. More precisely, through
both extensive statistical investigation and strict mathematical
analysis, it can be concluded that the role of reverse edges depends
solely on the subnetwork containing them. Only the reverse edges
located at positions with in-degrees satisfying some specific
‘‘bunching” conditions concerning the involved subnetworks actu-



Fig. 6. The effect of reverse edges on six typical hierarchical networkswith different scales. The proximity of a node’s level to the root node is indicated by its size. d
�
in represents

the average in-degree of the subnetworkG1, and r represents the surpassing range—that is, the difference in the hierarchical levels of nodes—h and ‘. APR: the average percentage
of reduction. The percentage of reduction (PR) of a reverse edge refers to the ratio of the decrease in convergence speed to its original value. The label on the vertical axis for one
point represents the average PR for all reverse edges satisfying the given d

�
in and r. The effective reverse link (ERL) ratio denotes the ratio of effective reverse links, and kmin denotes

theminimumvalueof the k2ðLoÞof the entire networkwithdifferent additional reverse edges. The second columndepicts the correlativity of average in-degrees corresponding to
an active reverse edge and its impact on the synchronization process. To measure the precision of the proposed Algorithm 1, ACC represents the accuracy ratio of correctly
identified reverse edges to all reverse edges. Recall represents the ratio of correctly identified active reverse edges to all active reverse edges.
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Table 1
Effect of reverse edges on an additional seven typical hierarchical networks with
different scales.

Network (node, link, level) ERL ratio kmin ACC (%) Recall (%)

Aspergillus (38, 37, 3) 0.0345 0.3820 100.00 100.00
Candida (39, 38, 4) 0.0381 0.2451 100.00 100.00
Generic-GO-slim (72, 73, 4) 0.0189 0.2451 100.00 100.00
Meta-Gene (43, 46, 5) 0.0521 0.2451 100.00 100.00
Plant-slim (45, 51, 4) 0.0454 0.2451 100.00 100.00
Yeast (101, 101, 3) 0.0095 0.3820 100.00 100.00
GO (29, 323, 56, 377, 17) 0.0008 0.0643 99.99 99.55
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ally influence the network synchronizability. Such a small subnet-
work can finely tune the Fiedler value k2ðLoÞ in order to influence
the synchronization rhythms of entire large-scaled networks sim-
ply by tweaking the parameters of the involved subnetwork, such
as its average in-degree. Furthermore, it has been revealed that
specific parameter combinations of reverse edges—such as sur-
passing ranges and the in-degree of the landing node—can produce
the golden ratio for the algebraic connectivity of a hierarchical net-
work. This optimal spectrum of network synchronization and coor-
dination is beneficial for optimizing network performance and
balancing the energy cost and optimal orbit of networked systems,
such as atom nuclei [50].

We have demonstrated that two nesting reverse edgeswith joint
surpassing nodes bring in a stronger slowdown effect than a single
reverse edge if they passmorewaist bunching.Moreover, the reduc-
tion of the synchronization speed is strongly consistent with the
summation of the surpassing range of the added reverse edges in a
chain network. Such a case can be extended to the stem-based
[51] nature of tuning the synchronizability in any hierarchical net-
work. It is still an open challenge to quantitatively understand the
effect of adding two or more reverse edges to a general network. If
the added reverse edges have no joint nodes, the one with the most
significant effect plays the key role. However, research is still under-
way on situations in which the reverse edges have joint bunching
effects, since the surpassing range, in-degree, and position have a
complicated coupling influence on the effect of the reverse edge;
hence, no niche analysis tools in this regard exist. For nonlinear
dynamical networked systems, we suggest that a linearization
design is a viable approach to make the system compatible with
the present analytical method. However, the influence mechanisms
of the network structure, initial states, and nonlinearity formats on
the synchronizability are far from clear at present.

From a scientific point of view, this study refines and enhances
the existing knowledge about the role of reverse edges. For exam-
ple, our investigation reveals that most of the reverse edges of
abundant large hierarchical networks are inactive, as they do not
influence the synchronization process and cooperation capability
of the network at all. Moreover, our approach contributes by locat-
ing rare active reverse edges and quantitatively revealing their
effect on the cooperation performance. From the aspect of engi-
neering applications, the present investigation sheds some light
on attacking or defending large-scaled hierarchical networks by
identifying their precious subnetworks with bunching effects
(e.g., stems).
5. Conclusions

In this work, we focused on the effect of the addition of a
reverse edge on the synchronization process of a hierarchical net-
work. It was revealed that, regardless of network scale, there exist
few active reverse edges that can influence the synchronization
process of the network due to their bunching effect on the involved
information flow. These active reverse edges can individually slow
down the synchronization of a huge hierarchical network by over
9

60%, and the magnitude of this slow-down effect was found to be
highly dependent on the average in-degree of the surpassing sub-
network. According to the theoretical model of the bunching effect,
a searching algorithm of precious reverse edges was also proposed
and validated with high accuracy and efficiency. Moreover, a USV-
group direction alignment experiment and extensive simulations
on real hierarchical networks were conducted to support these
findings and analyses. The present work may provide some
insights into protecting, attacking, or regulating the synchroniza-
tion process of entire hierarchical networks, such as multi-robot
systems, power grids, or wireless sensor networks, merely by
tweaking the reverse edges surpassing a few upwards nodes.
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