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In the present work, two new, (multi-)parametric programming (mp-P)-inspired algorithms for the solution 
of mixed-integer nonlinear programming (MINLP) problems are developed, with their main focus being on 
process synthesis problems. The algorithms are developed for the special case in which the nonlinearities 
arise because of logarithmic terms, with the first one being developed for the deterministic case, and the 
second for the parametric case (p-MINLP). The key idea is to formulate and solve the square system of the 
first-order Karush-Kuhn-Tucker (KKT) conditions in an analytical way, by treating the binary variables and/
or uncertain parameters as symbolic parameters. To this effect, symbolic manipulation and solution tech-
niques are employed. In order to demonstrate the applicability and validity of the proposed algorithms, two 
process synthesis case studies are examined. The corresponding solutions are then validated using state-
of-the-art numerical MINLP solvers. For p-MINLP, the solution is given by an optimal solution as an explicit 
function of the uncertain parameters.
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1. Introduction

The design and operation of process plants are subject to a num-
ber of uncertain parameters, such as fluctuating production outputs, 
ever-changing market prices and demands, and so on. A weakening 
product demand, catalyst deactivation, or financial woes for the 
corporation are but a few of the multitude of potential causes for 
optimizing the process. In order to ensure that the optimal process 
has been designed, it is imperative to certify that the proposed 
design operates both economically and safely, should physical or 
socioeconomic changes occur. Process synthesis [1] is a key aspect 
of plant design, having a significant financial impact on a firm. This 
has subsequently inspired substantial research in the field, in order 
to devise methods that will accurately design not only the opti-
mal route, but also the most robust route. Furthermore, due to the 
computational complexity of the problem, it is essential that the 
formulated algorithms are efficient in order to minimize the compu-

tational cost. In general, the process synthesis problem for a chem-
ical plant can be classified as an integrated system of the following 
major components: ① heat-exchanger network (HEN) synthesis,  
② reactor path synthesis, and ③ separation systems synthesis. Re-
actor path synthesis is conducted to determine the optimal reactor 
configuration for a desired product. Within this problem, a num-
ber of factors ranging from the thermodynamic boundaries of the 
system to the reaction path are considered. There are three main 
techniques used for the optimization of reactor networks: the su-
perstructure approach, the geometrical approach, and the combined 
targeting approach [2]. The superstructure approach requires a si-
multaneous synthesis of the entire process, which can be extremely 
effective, as all elements of the system can be determined with 
regards to the entire process. However, the validity of the solution 
is significantly dependent upon the detail of the model formulated 
to simulate the superstructure. The geometrical approach is found-
ed upon the attainable region (AR) theory, which was developed to 
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take into account the effect of having multiple interacting reactors 
and external heat exchangers [3]. The combined-targeting approach 
employs elements from both of the aforementioned techniques, as 
it stems from both the superstructure approach and the AR theory. 
Both the geometrical and the combined-targeting approaches in-
corporate the AR theory, limiting their utility. This is due to the fact 
that the AR theory integrates technical criteria, such as conversion 
and selectivity, as opposed to financial criteria; as a result, the solu-
tion may not be optimal from an economic standpoint. Bedenik et 
al. [2] have developed a novel technique to solve reactor network 
problems; this technique uses the superstructure approach and re-
formulates it to focus on the financial criteria of the model, includ-
ing the impact of economic uncertainty over time, an aspect that 
will be discussed further in this report. Their technique is therefore 
more likely to be able to successfully find the optimal configuration, 
although it requires a thoroughly detailed mathematical model.

The vast majority of problems related to the field of process sys-
tems engineering involve continuous as well as discrete decisions. 
Typically, discrete decisions account for the underlying logic of the 
process, such as selection of a reaction pathway or expansion of ca-
pacity for planning problems, while continuous decisions account for 
product flow rates, amount of sales, and so forth. In order to math-
ematically model these kinds of decisions, continuous as well as 
0–1 integer variables are employed, thus resulting in mixed-integer  
programming (MIP) problems. For a case in which the governing 
laws are expressed through nonlinear relations, the resulting prob-
lem is a mixed-integer nonlinear programming (MINLP) problem, 
which can generally be formulated as follows [1]:
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where f is a scalar function; x is the nx-dimensional vector of con-
tinuous variables that belongs to the bounded set X; y is the ny-
dimensional vector of binary variables that belongs to the discrete 
set Y; g is the vector of constraints that accounts for quality bounds, 
demand satisfaction, and so forth; and z* refers to the optimal  
solution of the optimization problem.

Because of their generic mathematical nature, MINLP problems 
have found application in a wide scope of problems such as process 
synthesis of reactor networks [4], HENs [5], process planning, and  
enterprise-wide optimization of manufacturing processes [6], to 
name just a few. Process synthesis forms a fundamental class of 
MINLP problems in the area of engineering, in which simultaneous 
decisions on the selection of processing units, interconnections, and 
design/operating variables need to be made [7]. Despite MINLPs’ abil-
ity to mimic the system under study more accurately than their linear 
counterparts (mixed-integer linear programming, MILP), these prob-
lems are difficult to solve because of the possible non-convexities 
that arise [8]. A number of numerical techniques have been proposed 
in the open literature to solve certain classes of MINLPs, such as the 
generalized Benders decomposition (GDB) [9], the outer approxima-
tion (OA) algorithm [10], and extended cutting plane (ECP) methods 
[11]. The aforementioned algorithms can be used in a rigorous man-
ner under specific assumptions about the convexity of the objective 
function and the form of nonlinearities involved, while an iterative 
procedure is generally followed to typically converge to a (locally) 
optimal solution. Another class of MINLP solution algorithms falls 
under the scope of global optimization [12,13], in which specialized 
numerical techniques and convex approximations are employed so as 
to solve the corresponding problem within a tolerance of ε-optimality.

In principle, the solution of MINLPs can be computationally de
manding, even for a case in which no uncertainty is considered. 

However, mathematical models are susceptible to a number of un-
certainties that can be broadly categorized as endogenous and ex-
ogenous [14]. Endogenous uncertainty is mostly encountered on the 
left-hand side of the constraints, such as reaction yields and stoichi-
ometric coefficients, while exogenous uncertainty is usually located 
on the right-hand side (RHS) of the constraints and in the objective 
function coefficients (OFCs). In order to handle uncertainty with-
in optimization problems, a number of solution techniques have 
been proposed in the literature; the main techniques are stochastic 
programming, robust optimization, and (multi-)parametric pro-
gramming (mp-P) [15]. While the first two techniques require the 
availability of some form of data that can be used to characterize the 
uncertainty, such as probability distributions or type of uncertainty 
set, mp-P makes direct use of the mathematical model and, with  
optimization-based methodologies, aims to explicitly characterize 
the effect of the uncertainty on the optimal solution. Through the 
solution of an mp-P problem, one generally aims to compute the 
optimization variables as explicit functions of the uncertain param-
eters, along with the corresponding regions—that is, critical regions 
(CRs)—of the parametric space where each function remains opti-
mal. Fig. 1 provides a conceptual graph of such a problem.

Having been studied for over 30 years [15,16], mp-P stands on 
solid theoretical foundations, with algorithms for every class of op-
timization problem. However, despite the constant developments 
in the field of mp-P, the class of (multi-)parametric (mp)-MINLPs 
remains among the least studied, even for a case in which only 
RHS uncertainty is considered. The reason for this lack of research 
is the non-convexity that is involved in the solution of the under-
lying parametric optimization problems. Early works focused on 
the approximate solution of single parametric MINLPs (p-MINLPs) 
[17–21], while Dua and Pistikopoulos [22] studied the mp-MINLP 
case with convex objective functions and proposed a decomposition 
approach in which successive iteration occurred between primal 
and master problems for the generation of valid upper and lower 
bounds, respectively. In their approach, the primal problem is an 
mp-nonlinear programming (mp-NLP) problem derived by fixing 
the related integer variables, while the master sub-problems aim to 
provide improved integer solutions. Dua et al. [23] studied the glob-
al optimization of mp-MINLPs. Polynomial parametric optimization 
techniques using algebraic geometry techniques were presented in 
Ref. [24], in which cylindrical algebraic decomposition and Gröbner  

Fig. 1. Conceptual graph of the mp-P scope.
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as shown in Eqs. (7–11).
mp-PP:
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min ,f
x y

x y  � (7)

	 ( )s.t.   h , 0=x y     � (8)

 	        ( ), 0≤g x y  �  (9)

	        xnX∈ ⊆ x �  (10)

	        [ ]0, 1 ynY∈ =y  � (11)

As observed, the mp-PP is now parametric in the relaxed integer 
variables y. Eqs. (12–14) give the corresponding first-order KKT con-
ditions.

KKT system:

	 ( ), , , 0L∇ =x x y μ λ � (12)

	 ( ), 0=h x y � (13)

	 ( ), 0, 1, ...,j j gg j nλ = =x y  � (14)

where ( ) ( ) ( ) ( )T T, , , , ,L f= + +x y μ λ x y λ g x μ h x y  is the Lagrange func- 
tion of the mp-PP and ng denotes the number of inequality con-
straints considered in problem mp-PP. Note that Eqs. (12–14) form 
a square system of polynomial equations that can be solved analyt-
ically with respect to the optimization variables and the Lagrange 
multipliers. Following the algorithm that Dua [26] proposed, the 
KKT system is solved analytically using symbolic manipulation 
software, thus computing all the possible solutions that satisfy Eqs. 
(12–14) as explicit functions of the y parameters. The explicit solu-
tions are then validated through the evaluation of primal and dual 
feasibility conditions along with some constraint qualification, for 
all the possible combinations of the y vector.

In principle, the proposed methodology has the potential to be ex-
tended to more generic classes of MINLP problems for both the deter-
ministic as well as the parametric case; this potential is examined next.

2.1. Parametric programming-based algorithm for MINLPs

As mentioned in the previous section, Dua [26] studied the case 
of MIPOPT problems. However, since the key component of the 
aforementioned algorithm is the analytical solution of a square 
system of equations through the use of Gröbner bases theory, the 
algorithm can be extended to classes of MINLP problems that in-
volve logarithmic functions. By closely following the developments 
described by Dua [26], we devised Algorithm 1 for the case of loga-
rithmic nonlinearities. 

Note that in the present work, Steps 3–5 are performed in Math-
ematica 10 [27]. The linear independence constraint qualification 
(LICQ) is then evaluated upon obtaining the optimal solution, in or-
der to confirm its optimality.

	
2.2. MINLPs under uncertainty using parametric programming 

Algorithm 1 can facilitate deterministic MINLP problems. Howev-
er, for a case in which uncertainty must be considered, the algorithm 

bases theory are employed to solve the system of polynomial equa-
tions that arise in the model predictive control (MPC) scheme. Re-
cently, Charitopoulos and Dua [25] presented a new algorithm for 
the exact solution of (multi-)parametric mixed-integer polynomial 
optimization (mp-MIPOPT) problems with emphasis on the explicit 
control of hybrid polynomial systems.

In the present work, we present two algorithms for the analytical 
solution of MINLPs for the case of logarithmic nonlinearities. The 
key idea is to analytically solve the square system of equations de-
rived by the first-order Karush-Kuhn-Tucker (KKT) conditions using 
Gröbner bases theory and symbolic manipulation principles. The 
first algorithm is devised for the solution of deterministic MINLPs, 
while the second is an extension for the case of single-parametric 
perturbations on the RHS of the constraints of the problem. Prob-
lems related to process synthesis are then examined, following the 
proposed algorithms.

The remainder of the paper is organized as follows: In Section 2, 
the theoretical framework of the present work is established; next, 
two algorithms for the solution of a specific class of deterministic 
and parametric MINLPs are proposed. The proposed algorithms are 
then tested on two case studies related to process synthesis prob-
lems; these are presented in Section 3. After introducing the prob-
lems under study and their numerical optimal solution using state-
of-the-art solvers, in Section 4.1, we validate the proposed algorithm 
for the deterministic case via a comparison with the solutions pre-
sented in Section 3. Next, in Section 4.2, we present the main com-
putational steps as well as the results from the application of the 
proposed algorithm for the non-deterministic case. Finally, Section 5 
contains concluding remarks.

2. Theory and algorithms

Recently, Dua [26] presented an mp-inspired algorithm for the 
solution of MIPOPT problems. The algorithm is based on the analytical 
solution of the square system of equation derived by the first-order  
KKT conditions of the general MIPOPT problem. In general, a MIPOPT  
problem can be described as shown in Eqs. (2–6).

MIPOPT:

	        ( )
,

min ,f
x y

x y   �  (2)

   	 ( )s.t.   h , 0=x y � (3)

	      ( ), 0≤g x y  �  (4)

	        xnX∈ ⊆ x �   (5)

	        { }0, 1 ynY∈ =y �   (6)

where x is the vector of continuous variables that belongs to the 
bounded set X; y represents the vector of integer variables that is 
ny-dimensional; h is the vector of equality constraints and is nh-
dimensional; g is the vector of inequality constraints and is ng- 
dimensional; and f  is a scalar objective function. The integer variables 
of the problem (MIPOPT) are relaxed as they are continuous and are 
treated as parameters that are restricted within their respective bounds. 
Thus, a (multi-)parametric polynomial problem (mp-PP) arises,  

Algorithm 1
Algorithm for the solution of MINLPs.

Step 1 Relax the binary variables, i.e., y  ∈ {0, 1}ny → [0, 1]ny, as continuous parameters restricted to their respective bounds.

Step 2 Formulate the first-order KKT equations, i.e., Eqs. (12–14).

Step 3 Solve the resulting square KKT system parametrically to compute the optimization variables and Lagrange multipliers as explicit functions of the relaxed binary 
variables, i.e., x(y),  λ(y), and μ(y), respectively.

Step 4 Fix the binary variables to all possible combinations, evaluating primal and dual feasibility conditions.

Step 5 Screen the computed candidate solutions to determine the optimal solution. This involves ensuring primal and dual feasibility, along with some constraint  
qualification.
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can be modified so as to handle parametric variabilities on the RHS of 
the constraints. The idea is to augment the vector of uncertain param-
eters; that is, in addition to the integer variables (y), a new vector of 
perturbations (θ) is considered. The resulting p-MINLP problem can 
be formulated as shown in Eqs. (15–20).

p-MINLP:

	         ( )
,

min ,f
x y

x y � (15)

	 ( )s.t.   h , , 0=x y θ � (16)

	        ( ), , 0≤g x y θ � (17)

	        xnX∈ ⊆ x � (18)

	       [ ]0, 1 ynY∈ =y  � (19)  
	       ∈Θ ⊆ θ  � (20)

Note that θ is a bounded scalar parameter that is allowed to ap-
pear on the RHS of the equality/inequality constraints. Formulating 
the corresponding first-order KKT conditions results in Eqs. (21–23), 
which are now parametric in both y and θ.

p-KKT system:

	 ( ), , , , 0L∇ =x x y θ μ λ � (21)

	 ( ), , 0=h x y θ  �  (22)

	 ( ), , 0, 1, ...,j j gg j nλ = =x y θ   � (23)

Since both the parametric perturbation (θ) and integer variables 
(y) are considered as symbolic expressions, the parametric KKT 
(p-KKT) system remains a square system of nonlinear equations. The 
solution of the p-KKT system returns the candidate solutions, that 
is, the parametric explicit expressions of the optimization variables 
(x(y, θ)) and the Lagrange multipliers (λ(y, θ), μ(y, θ)). Note that even 
though the candidate solutions satisfy the square system of equa-
tions, they may violate the primal/dual feasibility conditions.

After the candidate solutions have been computed, the binary 
variables are fixed to their possible values; thus, the expressions of 
the optimization variables and the Lagrange multipliers are now 
explicit only in θ, that is, x(θ), λ(θ), and μ(θ). Note that in this step, the 
explicit expressions of the optimization variables are substituted 
back into the original constraints, that is, Eqs. (16, 17), and the primal 
feasibility of the candidate solutions is evaluated. Regarding the case 
of dual feasibility, we next evaluate the non-negativity condition of 
the Lagrange multipliers associated with the inequality constraints.

The candidate solutions that satisfy the primal/dual feasibility 
conditions are referred to as feasible. Each feasible solution has a 
parametric range of variability within which it remains feasible, that 
is, a CR. The main computational steps for the solution of p-MINLPs 
are given in Algorithm 2.

Steps 1–3 are implemented in Mathematica 10, while Steps 4–5 
as proposed by Vyas and Dua [28] are implemented in Excel. The 
generated output from Mathematica 10 should create objective func-
tions in terms of the binary variables and the uncertain parameters. 
These can then be used to help determine the optimal configuration  

for the system, by clearly showing how varying parameters will im-
pact the objective function.

3. Case studies

This section presents two case studies related to process synthe-
sis to illustrate the proposed methodology. First, a short description 
of the case study is given, along with the related mathematical 
model, which results in a MINLP problem with logarithmic nonlin-
earities. Next, we report the numerical solution of each problem 
using a state-of-the-art numerical optimization solver. For the solu-
tion of the corresponding MINLPs, the SBB solver is employed, with 
CONOPT3 as the NLP sub-solver. The problems are implemented in 
GAMS 24.4.1 in a Dell workstation with a 3.7 GHz processor, 16 GB 
RAM, and a Windows 7 64-bit operating system.

	
3.1. Case Study 1

Case Study 1 is adapted from the book by Floudas [1]. This process  
synthesis problem relates to the production of component C from 
raw materials A and B via Processes 1, 2, and 3. Product C can only 
be produced through one of three routes: through Process 1 only, 
through Processes 1 and 2, or through Processes 1 and 3. Processes 
2 and 3 cannot take place simultaneously. Fig. 2 gives a conceptual 
representation of the related process flowsheet.

The objective is to minimize the cost minus the revenue. The cor-
responding optimization problem is formulated as a MINLP involv-
ing Eqs. (24–38).

	
1 2 3 2

3 1 2 3

min 11 7 1.2 1.8
1.8 3.5 1.5

f C B B B A
A y y y

= − + + + +
+ + + +  �

 (24)

                  s.t.	 ( )2 2ln 1 0B A− + = � (25)

	 ( )3 31.2 ln 1 0B A− + =  �  (26)

	 ( )1 2 30.9 0C B B B− + + =  � (27)

	 1 0C y− ≤   �  (28)

	 2 2
1 0

0.9
B y− ≤   � (29)

 
	 3 3

1 0
0.9

B y− ≤  � (30)

	 1 2 3 2 3, , , , , 0C B B B A A ≥   � (31–36)

	 2 3 1y y+ ≤ � （37)

	 { }3
1 2 3, , 0, 1y y y =  � (38)

Table 1 gives the optimal solution, as reported in Ref. [1].

Algorithm 2 
Algorithm for the solution of p-MINLPs.

Step 1 Select the uncertain variable to be considered within the augmented parametric set. Relax the binary variables, i.e., y  ∈ {0, 1}ny → [0, 1]ny, as continuous parame-
ters restricted to their respective bounds.

Step 2 Formulate the first-order p-KKT equations, i.e., Eqs. (21–23).

Step 3 Solve the resulting p-KKT system parametrically to compute the optimization variables and Lagrange multipliers as explicit functions of the relaxed binary vari-
ables and the uncertain parameter, i.e., x(y, θ), λ(y, θ), and μ(y, θ), respectively.

Step 4 Fix the binary variables to all possible combinations, evaluating primal and dual feasibility conditions.

Step 5 Screen the obtained solutions to determine viable configurations of binary variables. This involves ensuring that the first-order KKT conditions have been satis-
fied, and that the objective function has been either maximized or minimized.

Step 6 Select the integer solution, considering how the uncertain parameters affect the objective function.

Table 1
Optimal solution for the example from Ref. [1].

y1 y2 y3 C B1 B2 B3 A2 A3 f

1 0 1 1 0 0 1.1111 0 1.5242 –1.92
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3.2. Case Study 2

The second case study is adapted from Ref. [29], and is a mod-
ified version of Example 1 found in that paper. The formulation of 
the problem is as follows:

	
	

( )
( )

1 2 3 1 6 2

1 2

min 5 6 8 10 7 18ln 1
19.2 ln 1 10

f y y y x x x
x x

= + + + − − +

− − + +   �
(39)

                  s.t.	 ( ) ( )2 1 2 6s.t. 0.8ln 1 0.96ln 1 0.8 0.8x x x x+ + − + − ≥  � (40)

	 2 1 0x x− ≤ �  (41)

	 2 1 0x Uy− ≤   � (42)

	 1 2 2 0x x Uy− − ≤   � (43)

	 ( ) ( )2 1 2 6 3ln 1 1.2 ln 1 2x x x x Uy+ + − + − − ≥ −   � (44)

	 1 2 6, , 0x x x ≥  � (45–47)

	 1 2 62, 2, 1x x x≤ ≤ ≤  � (48–50)

	 1 2 1y y+ ≤  � (51)

where U = 2 is a “big-M” type of parameter. Table 2 gives the optimal  
solution, as reported in Ref. [29].

This formulation is modified by relaxing the upper bound to the 
variables, thereby ignoring Eqs. (48–50); the optimal solution is 
then computed using GAMS 24.4.1. The optimal solution for this ex-
ample is obtained using the SBB solver, as shown in Table 3.

4. Results

The previous section illustrated the process synthesis problems 
under study and reported their optimal numerical solutions. This 
section now illustrates the main computational steps of the pro-
posed algorithms. First, in Section 4.1, the deterministic case of each 
problem is solved and validated with the corresponding numerical 
solution, as computed in the previous section. Next, in Section 4.2, 
the parametric optimization problems are introduced and solved, 
employing the algorithm for p-MINLPs that is proposed in this 
study.

4.1. Parametric programming-based algorithm for MINLPs

4.1.1. Case Study 1
After the binary variables in the model have been considered as 

symbolic parameters, the first step of the algorithm is to formulate 
the Lagrange function and the first-order KKT equations. The La-
grange function is given by Eq. (52) and the corresponding first-order  
KKT conditions are given by Eqs. (53–70).

�
(52)
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d 11 0
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L
C
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	 ( )1 1 0C yλ − = � (59)
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B yλ  − = 
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	 4 5 1 6 2 7 3 8 2 9 30, 0, 0, 0, 0, 0C B B B A Aλ λ λ λ λ λ= = = = = = � (62–67)

	 ( )2 2ln 1 0B A− + = � (68)

	 ( )3 31.2 ln 1 0B A− + = � (69)

	 ( )1 2 30.9 0C B B B− + + = � (70)

Eqs. (53–70) are subsequently solved using Mathematica 10, with 
the binary variables being considered as parameters. The output of 
this step is a list of candidate solutions for which the optimization 
variables and the corresponding Lagrange multipliers are given 
as explicit functions of the binary variables. In total, 98 candidate 
solutions are computed. However, 40 of the solutions are ignored, as 
they involve contradicting requirements in terms of primal/dual fea-
sibility; the remaining 58 are investigated further. Table 4 presents a 
sample of the output generated by Mathematica 10. 

As shown in Table 4, the optimization variables and the Lagrange 
multipliers are, in general, explicit expressions of the binary var-
iables. Also note that, through a preliminary screening test with 
respect to the dual feasibility of the candidate solutions, Solutions 
1, 3, and 4 can be removed from further consideration, as they vio-
late the requirement for non-negative Lagrange multipliers. Next, 
following Algorithm 1, all the binary variables are fixed according 
to the possible combinations. There are three binary variables, re-
sulting in seven possible combinations for the process, as shown in 
Table 5.

Each solution is evaluated by fixing the binary variables to the 
combinations shown in Table 5. This step can be coded and imple-
mented in Mathematica 10 using the built-in command “Reduce.”

On examination of Table 6, the vast majority of the candidate 
solutions computed by Mathematica 10 are found to be infeasible, 
as only integer combinations of four candidate solutions remain, 

Fig. 2. A process flow diagram showing the flowsheet to be optimized.

Table 2
Optimal solution for Case Study 2.

y1 y2 y3 x1 x2 x6 f

0 1 0 1.30097 0 1 6

Table 3.
Optimal solution for modified Case Study 2.

y1 y2 y3 x1 x2 x6 f

0 1 0 1.76 0 1.218 5.58
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with ranging values of the objective function. It is important to note 
that even if a solution is feasible, it may not be a viable configura-
tion. This is due to the fact that in order for the process to be valid, 
it must be able to produce the desired product. Evidence of this fact 
can be seen when looking at Solution 12, which has the integer solu-
tion of y1 = 0, y2 = 1, and y3 = 1; there are no flow rates, and although 
y1 is the unit that is meant to generate the final product, it is not op-
erating in this instance.

Table 6 shows that the global minimum is –1.92. This value oc-
curs when [y1, y2, y3] = [1, 0, 1]; it is derived from two different sym-
metrical candidate solutions. As expected, the solution computed by 
the proposed algorithm is identical to the one reported in the book 
by Floudas [1], thus validating the solution. Finally, in order to eval-
uate with the LICQ, it is important to determine which constraints 
from the original model are active at the optimal point. At the op-
timal point, the flow rates of B2 and A2 are zero, meaning that Eqs. 
(25, 29) are not considered. Therefore, the constraints considered for 
the LICQ are Eqs. (26–28, 30). The nonlinear equation, Eq. (26), must 
be linearized at the optimal point. Using the Taylor approximation 
at the optimal point yields:

	 ( )
*

*3 3
3 3* *

3 3

1.2 1.2 1.2ln 1 0
1 1

A AB A
A A

− + − + =
+ +

� (71)
	

where * refers to the value of the variable at the point of lineariza-
tion. A matrix of the system of equations is then formulated:
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Whether the system adheres to the LICQ can now be ascertained 
by calculating the determinant of the square matrix. When the 
determinant of a matrix is zero, the equations in the system are 
dependent on each other, suggesting that there could be multiple 
solutions. However, if the determinant is non-zero, the lines are 
independent and will only intersect once, at a single solution. In 
this example, the determinant is 0.429. This means that the system 
is linearly independent, and the optimal solution has been deter-
mined.

4.1.2. Case Study 2
For the second case study, the Lagrange function and first-order 

KKT conditions are given by the following equations:
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	 ( ) ( )( )1 2 1 2 60.8ln 1 0.96ln 1 0.8 0x x x xλ + + − + − = �  (77)

	 ( )2 2 1 0x xλ − =  � (78)

	 ( )3 2 1 0x Uyλ − = � (79)

	 ( )4 1 2 2 0x x Uyλ − − = � (80)

	 ( ) ( )( )5 2 1 2 6 3ln 1 1.2ln 1 2 0x x x x Uyλ + + − + − − + = � (81)

	 6 1 7 2 8 60, 0, 0x x xλ λ λ= = = � (82–84)

Mathematica 10 is then employed to solve Eqs. (74–84), in which 
the binary variables are considered as parameters. The output gen-
erates a total of 59 candidate solutions; however, similar to Case 
Study 1, 17 of them are removed from further consideration because 
of violations of the dual feasibility conditions, thus resulting in 42 
possible solutions. Table 7 presents a sample of the output generat-
ed from Mathematica 10.

Like Case Study 1, this case study has three binary variables; thus, 
the output from Mathematica 10 is subjected to the same variation of 
binary variables, as shown in Table 5. Table 8 gives the final integer  

Table 5
Possible combinations of binary variables for Case Study 1.

Combination y1 y2 y3

1 1 0 0

2 1 1 0

3 1 1 1

4 0 1 1

5 0 0 1

6 0 1 0

7 1 0 1

Table 6
Final integer feasible solutions for Case Study 1.

Solution y1 y2 y3 C B1 B2 B3 A2 A3 f

1 0 0 0 0 0 0 0 0 0 0

2 1 0 0 1 1.11 0 0 0 0 0.28

3 1 0 1 1 0 0 1.11 0 1.52 –1.92

4 1 1 0 1 0 1.11 0 2.04 0 –1.72

5 1 0 1 1 0 0 1.11 0 1.52 –1.92

6 0 0 0 0 0 0 0 0 0 0

7 0 1 0 0 0 0 0 0 0 1

8 1 1 0 1 0 1.11 0 2.04 0 –1.72

9 0 0 0 0 0 0 0 0 0 0

10 0 0 1 0 0 0 0 0 0 1.5

11 0 1 0 0 0 0 0 0 0 1

12 0 1 1 0 0 0 0 0 0 2.5

Table 4
Sample of the candidate solutions computed after Step 3 of Algorithm 1 for Case Study 1.

Solution A2 A3 B1 B2 B3 C μ1 μ2 μ3 λ1 λ2 λ3 λ4 λ5 λ7 λ8 λ9

1 0 0 1.11y1 0 0 y1 6 5.8 7.77 3.22 0 0 0 0 0 –4.2 –5.16

2 2.33 2.86 –2.82 + 1.11y1 1.20 1.62 y1 6 5.8 7.77 3.22 0 0 0 0 0 0 0

3 0 2.86 –1.62 + 1.11y1 0 1.62 y1 6 5.8 7.77 3.22 0 0 0 0 0 –4.2 0

4 2.33 0 –1.20 + 1.11y1 1.20 0 y1 6 5.8 7.77 3.22 0 0 0 0 0 0 –5.16
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feasible solutions.
On examination of Table 8, the global minimum is seen to be 5.58, 

with an integer vector when [y1, y2, y3] = [0, 1, 0]. The same solution 
was computed from SBB/CONOPT3, as shown in Table 3. This result 
reinforces the applicability of the algorithm to MINLP problems. Fi-
nally, Table 9 presents a computational comparison of the proposed 
algorithm with the commercial solvers DICOPT, SBB, BARON 16.3, 
and ANTIGONE 1.1. As seen in Table 9, the proposed algorithm is out-
performed for the deterministic instance by the rest of the solvers, 
with DICOPT being the solver that converges the fastest. However, 
note that for the non-deterministic case, a series of MINLP prob-
lems would have to be solved in order to obtain the solution of the 
corresponding p-MINLP. In contrast, when following the proposed 
methodology, the computational time remains the same as with the 
deterministic case.

4.2. MINLPs under uncertainty using parametric programming

4.2.1. Case Study 1
The uncertain variables to be investigated in this example are 

B1 and C. This is due to the fact that B1 is the flow rate of fresh feed 
brought into the system, which will subsequently be converted into 
the desired product, and C is the product of the system, which car-
ries the possibility of varying due to consumer demand.

4.2.1.1. B1 as the uncertain variable
To investigate the effect of B1 on the process, Mathematica 10 is 

used to solve the following first-order KKT conditions, where the 
binary variables and B1 are considered as parameters.

	 �
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The first-order KKT conditions shown above have been altered 
from the formulation derived in Eqs. (53–70), which was used when 
optimizing the process in the previous section. The non-negativity 
constraint from the original model and the Lagrange derivative of 
B1 are not included in this formulation, since B1 is considered to be 
a parameter. This results in an output that consists of explicit solu-
tions in terms of the binary variables and B1. Solving the system of 
Eqs. (86–101) results in 39 candidate sets of explicit solutions; how-
ever, 13 of these violate dual feasibility conditions and, as such, are 
removed from further consideration.

The greatest and optimal exit flow rate of C from the process is 1,  
as can be seen in Eq. (28) and Table 1, respectively. Assuming that 

Table 7
Sample of the candidate solutions computed after Step 3 of Algorithm 1 for Case Study 2.

Solution x1 x2 x6 λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

1 0 0 0 0 0 0 0 0 –9.2 1.2 –7

2 0 –0.0326 0 0 0 0 0 0 –8.6 0 –7

3 0 0 0 0 –1.2 0 0 0 –8 0 –7

4 2y1 2y1 0 0 –9.2 (4 – 10y1)/(0.5 + y1) 0 0 0 0 –7

5 0.92 + 2y1 2y1 0 0 0 (4 – 10y1)/(0.5 + y1) 0 0 0 0 –7

Table 8
Final integer feasible solutions for Case Study 2.

Solution y1 y2 y3 x1 x2 x6 f

1 0 1 0 1.76 0 1.22 5.58

2 0 1 1 1.76 0 1.22 13.58

3 1 0 1 1.5 1.5 0.92 15.09

4 0 0 0 0 0 0 10

5 0 0 1 0 0 0 18

6 0 0 1 0 0 0 18

Table 9
Computational comparison of the performance of the proposed algorithm for the solution of the deterministic instance of Case Study 2.

Proposed algorithm DICOPT SBB BARON 16.3 ANTIGONE 1.1

CPU (s) 6 0.172 0.234 1.21 2

Number of iterations 0 33 47 5 7
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the reaction from B to C is 1:1, the flow rate of B1 is varied from 0 
to 1 in order to examine its impact upon the process. The first step 
of the analysis is to assess the feasibility of each solution. This was 
achieved using Excel by varying the flow rate of B1 from 0 to 1 and 
by varying the configuration of binary variables as shown in Table 5. 
This was done to ensure that the flow rates and Lagrange multipliers 
of the inequality constraints are positive.

The objective function at each of the solutions shown in Table 9 
must then be examined, as B1 varies. Table 10 provides the objective 
function for each solution, as derived by Mathematica 10.

The functions shown in Table 10 are then evaluated at their feasible  
configurations, as shown in Table 11, through the corresponding in-
teger combinations, while manipulating B1 to examine its impact on 
the optimal solution. Table 12 provides the results.

An examination of Table 12 clearly shows that the lowest value 
of the objective function is –1.92 when B1 is equal to 0 in Solution 1,  
with a configuration of y1 = 1, y2 = 0, and y3 = 1. This result yields 
the same optimal solution as can be seen in the literature (Table 1).  
More importantly, however, as the flow rate of B1 increases, the 
configuration with the lowest value of the objective function chang-
es. This result strongly suggests that changing variables can have a 
significant impact on the optimal process route within a plant. The 
same result can be seen more clearly in Fig. 3, which shows how the 
optimal configuration changes as the flow rate of B1 increases.

To verify that the optimal configuration of the plant changes de-
pending on an uncertain parameter, the deterministic formulation 
was solved again, with B1 as a varying parameter. Table 13 provides 
the corresponding results.

Table 12 underlines the fact that the optimal configuration of 
a process can change based on uncertain parameters. Both tech-
niques—that is, the technique using Mathematica 10 and the screen-
ing process in Excel and the numerical solution of the MINLP prob-
lems—generated the same output. This result reiterates the validity of 
the algorithm used for the process synthesis. It confirms the sugges-
tion that the optimal flow rate of B1 is 0, with a configuration of y1 = 1,  
y2 = 0, and y3 = 1. It also demonstrates that an increase in the flow rate 
of B1 leads to the process becoming less profitable. In turn, this result 
implies that, should the need arise for the purchase of B1 from the 
market, the process will eventually operate at a loss and will not be 
financially viable.

4.2.1.2. C as the uncertain variable
Next, we investigate the effect of C on the process. Algorithm 2  

Table 11
Binary combinations when B1 is the uncertain parameter in Case Study 1.

Solution y1 y2 y3

1 1 0 1

2 1 0 0

3 1 1 0

Table 10
Optimal explicit results when B1 is uncertain for Case Study 1.

Solution ( )1 2 3 1, , ,f y y y B CR

1 ( ) ( )1 1 1 2 2 1 2 35.8 3.6 1.8exp 0.833 0.926 0.926 1.8exp 1.11 6.167 0.77 1.5B B y y y y y y− + − + − + − + +
( ) ( )1 1 1 2 2 1 2 35.8 3.6 1.8exp 0.833 0.926 0.926 1.8exp 1.11 6.167 0.77 1.5B B y y y y y y− + − + − + − + +

10 0.15376B≤ ≤

2 ( ) ( )1 1 2 3 1 2 33.5 3.6 2.9 1.8exp 1.11 1.8exp 0.926 3.5 8.889 8.167y B y y y y y− − + + + − −
( ) ( )1 1 2 3 1 2 33.5 3.6 2.9 1.8exp 1.11 1.8exp 0.926 3.5 8.889 8.167y B y y y y y− − + + + − − 10.15376 0.9675B≤ ≤

3 ( ) ( )1 1 1 3 3 1 2 36 3.6 1.8exp 1.11 1.11 1.8exp 0.926 6.389 1.722B B y y y y y y− + − + − + − + +
( ) ( )1 1 1 3 3 1 2 36 3.6 1.8exp 1.11 1.11 1.8exp 0.926 6.389 1.722B B y y y y y y− + − + − + − + +

10.9675 1B≤ ≤

Table 12
Objective value for each integer feasible solution under varying values of B1 for Case 
Study 1.

Flow rate of B1 Value of objective function at solution configuration

Solution 1 [1, 0, 1] Solution 2 [1, 0, 0] Solution 3 [1, 1, 0]

0 –1.92 3.500 –1.721

0.1 –1.706 3.210 –1.641

0.2 –1.461 2.920 –1.512

0.3 –1.188 2.630 –1.338

0.4 –0.891 2.340 –1.124

0.5 –0.571 2.050 –0.872

0.6 –0.231 1.760 –0.588

0.7 0.129 1.470 –0.274

0.8 0.506 1.180 0.068

0.9 0.900 0.890 0.434

1.0 1.308 0.600 0.823

Fig. 3. Explicit optimal objective function for the range of variability of the uncertainty parameter B1.
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Table 13
Effect of variations in the value of B1 on the optimal solution for Case Study 1.

B1 y1 y2 y3 C B2 B3 A2 A3  f

0 1 0 1 1.000 0.000 1.111 0.000 1.524 –1.923

0.1 1 0 1 1.000 0.000 1.011 0.000 1.322 –1.706

0.2 1 1 0 1.000 0.911 0.000 1.487 0.000 –1.512

0.3 1 1 0 1.000 0.811 0.000 1.250 0.000 –1.338

0.4 1 1 0 1.000 0.711 0.000 1.036 0.000 –1.124

0.5 1 1 0 1.000 0.611 0.000 0.842 0.000 –0.872

0.6 1 1 0 1.000 0.511 0.000 0.667 0.000 –0.588

0.7 1 1 0 1.000 0.411 0.000 0.508 0.000 –0.274

0.8 1 1 0 1.000 0.311 0.000 0.365 0.000 0.068

0.9 1 1 0 1.000 0.211 0.000 0.235 0.000 0.434

1.0 1 0 0 0.900 0.000 0.000 0.000 0.000 0.600

Table 15
Binary combinations when C is the uncertain parameter in Case Study 1.

Solution y1 y2 y3

1 1 0 1

2 1 0 0

3 1 1 0

Table 14
Optimal explicit results when C is uncertain for Case Study 1.

Solution ( )1 2 3, , ,f y y y C CR

1 ( ) ( )1 1 1 2 2 1 2 35.8 3.6 1.8exp 0.833 0.926 0.926 1.8exp 1.11 6.167 0.77 1.5B B y y y y y y− + − + − + − + +

( ) ( )1 1 1 2 2 1 2 35.8 3.6 1.8exp 0.833 0.926 0.926 1.8exp 1.11 6.167 0.77 1.5B B y y y y y y− + − + − + − + +
0 0.227C≤ ≤

2 ( ) ( )1 2 3 1 2 33.6 2.9 1.8exp 1.11 1.8exp 0.926 3.5 8.889 8.167B y y y y y− − + + + − −

( ) ( )1 2 3 1 2 33.6 2.9 1.8exp 1.11 1.8exp 0.926 3.5 8.889 8.167B y y y y y− − + + + − −

0.227 0.8616C≤ ≤

3 ( ) ( )1 1 1 3 3 1 2 36 3.6 1.8exp 1.11 1.11 1.8exp 0.926 6.389 1.722B B y y y y y y− + − + − + − + +

( ) ( )1 1 1 3 3 1 2 36 3.6 1.8exp 1.11 1.11 1.8exp 0.926 6.389 1.722B B y y y y y y− + − + − + − + +

0.8616 1C≤ ≤

is again employed, and the corresponding p-KKT conditions are 
formulated and solved using Mathematica 10. Solving the p-KKT 
results in 32 candidate solutions, with 11 solutions removed during 
preprocessing; thus, 21 candidate solutions are considered for the 
subsequent algorithmic steps. Due to the constraint in Eq. (28), the 
maximum possible flow rate of C is 1. Therefore, to examine how C 
impacts the process, this variable will be varied from 0 to 1.

The objective function at each of the solutions shown in Table 13  
must then be examined, as C varies. This can be achieved by exam-
ining the functions, which are derived by Mathematica 10 for each 
solution, of the objective function in terms of the binary variables 
and the uncertain variable, as shown in Table 14.

The functions shown in Table 14 can then be evaluated using the 
binary combinations shown in Table 15 while manipulating C; the 
values of the objective function are reported in Table 16.

An examination of Table 16 clearly shows that the lowest value of 
the objective function is –1.92 when C is equal to 1, with the integer 
solution of y1 = 1, y2 = 0, and y3 = 1. This binary combination yields the 
same optimal solution that was reported in the literature, as shown 
in Table 1. This result reinforces the solution that is obtained when 
the process is optimized parametrically and under uncertainty, and 
when B1 is the uncertain parameter. It also reiterates the fact that 
an uncertain variable can influence the optimal process route. Fig. 4 
shows how the optimal configuration changes as the flow rate of C 
increases.

To verify that the optimal configuration of the plant changes de-
pending on the uncertain parameter, the original formulation—Eqs. 
(24–38), where Eq. (31) is removed to ensure that C is considered as 
a parameter—was entered into GAMS 24.4.1.

4.2.2. Case Study 2
The uncertain variable to be investigated in this example is x1. 

Mathematica 10 is used to solve the following p-KKT conditions, in 
which the binary variables and x1 are considered as parameters.
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Using Mathematica 10, 23 candidate solutions were computed, with 

Table 16
Objective value for each integer feasible solution under varying values of C for Case 
Study 1.

Flow rate of C Value of objective function at solution configuration

Solution 1 [1, 0, 0] Solution 2 [1, 0, 1] Solution 3 [1, 1, 0]

0 3.500 5.000 4.500

0.1 3.178 4.208 3.723

0.2 2.856 3.433 2.970

0.3 2.533 2.676 2.245

0.4 2.211 1.940 1.552

0.5 1.889 1.226 0.893

0.6 1.567 0.537 0.273

0.7 1.244 –0.125 –0.304

0.8 0.922 –0.758 –0.833

0.9 0.600 –1.358 –1.307

1.0 0.278 –1.92 –1.721
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eight solutions being removed during preprocessing. The remaining  
15 solutions were analyzed further. Based on Eq. (48) from the 
original formulation, the maximum value for x1 was 2. Therefore, to 
study how x1 affects the process, this variable will be varied from 0 
to 2, and Excel will be used to determine whether each solution is 
feasible at each configuration of binary variables.

It is important to emphasize that the feasibility of the solution 
can change, depending on the function of each of the variables. Each 
variable in the solution may be impacted differently by the value of 
the uncertain parameter. This can subsequently lead λ to fluctuate in 
a given range, potentially leading to infeasibility. The objective func-
tion at each of the integer solutions shown in Table 17 must then be 
examined as x1 varies. This can be achieved by examining the objec-
tive functions derived by Mathematica 10 for each solution, which 
are provided in Table 18.

The functions shown in Table 18 can then be evaluated at their 
feasible configurations, as shown in Table 17, while manipulating x1 to 
examine its impact on the optimal solution. Table 19 presents a sample 
of the impact that variations of x1 have on the optimal explicit solution.

From Table 19, it is evident that the lowest value of the objec-
tive function is 5.583 when x1 is equal to 1.8 from Solution 2, with a  
configuration of y1 = 0, y2 = 1, and y3 = 0. This result gives an extreme-
ly similar optimal solution to the one provided in Table 3. Upon 
increasing the accuracy of the variation of x1 to two decimal places, 
the optimal solution reported in Table 3 is achieved. This result re-
iterates the fact that the algorithm can be applied to p-MINLP prob-
lems in order to obtain optimal solutions. It also reinforces the fact 
that an uncertain variable can influence the optimal process route. 
This fact is demonstrated more clearly in Fig. 5, which shows how 

the optimal configuration changes as the value of x1 increases.
To verify the accuracy of Fig. 5, the original formulation, Eqs. 

(39–51), was solved using GAMS 24.4.1 in order to ensure that x1 is 
considered as a parameter.

Fig. 4. Explicit optimal objective function for the range of variability of the uncertainty parameter C for Case Study 1.

Table 17
Integer feasible solutions and parametric ranges for varying x1 for Case Study 2.

Solution y1 y2 y3 Range

1 0 1 1 x1 ≥ 0.1

2 0 1 0 x1 ≥ 0.1

3 1 0 0 x1 ≥ 0

4 0 0 1 x1 ≥ 0

5 1 0 1 x1 ≥ 0

6 0 0 1 x1 ≥ 0

7 1 0 1 x1 ≥ 0

Table 18
Optimal explicit results when x1 is uncertain for Case Study 2.

Solution ( )1 2 3 1, , ,f y y y x

1 [ ] [ ]( )1 1 2 3 1 1 110 1 0.5 0.6 0.8 2.76ln 1 2 2.5ln 1 2x y y y x y y+ + + + − + − − +

2 [ ] [ ]1 1 2 3 1 2 210 10 5 6 8 25ln 1 2 27.6ln 1 2x y y y x y y+ + + + − + − − +

3 [ ] [ ]1 1 2 3 1 2 24 10 5 6 22 25ln 1 2 27.6ln 1 2x y y y x y y− + + + + − + − − +

Table 19
Different solution instances for two integer feasible solutions under varying x1 for 
Case Study 2.

x1 Value of objective function at solution configuration

Solution 2 [0, 1, 0] Solution 3 [1, 0, 0]

0 N/A 15.000

0.1 14.369 13.617

0.2 12.968 12.442

0.3 11.759 11.441

0.4 10.713 10.588

0.5 9.809 9.863

0.6 9.028 9.250

0.7 8.355 8.734

0.8 7.777 8.305

0.9 7.285 7.954

1.0 6.869 7.671

1.1 6.523 7.452

1.2 6.239 7.289

1.3 6.012 7.177

1.4 5.837 7.113

1.5 5.710 7.093

1.6 5.628 7.112

1.7 5.586 7.169

1.8 5.583 7.260

1.9 5.614 7.382

2.0 5.678 7.535
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5. Conclusions

Under the constant pressure of uncertainty, the need for efficient 
and reliable decision-making in the process industry is increasingly 
important. The problem of decision-making in the process industry 
is indubitably a multi-layered issue, and decisions made at an early 
stage, such as those related to process synthesis, can determine the 
sustainability of the process. Current developments in the design of 
new-generation bio-refineries [30,31] advocate for the importance 
of uncertainty-aware decision-making, especially for the stage of 
process synthesis.

Motivated by this situation, in this study, we introduce two algo-
rithms for solving deterministic and parametric MINLPs, respectively, 
for the special case in which the nonlinearities are expressed by log-
arithmic functions. The idea of the proposed algorithm is two-fold:  
First, the binary variables are treated as uncertain parameters and 
restricted within their respective bounds; next, the square system of 
equations derived from the first-order KKT conditions is solved an-
alytically using a symbolic manipulation technique. This process re-
sults in a set of candidate solutions that are examined further so as 
to only keep the optimal solution. For the case of single-parametric  
uncertainty, a modified version of the aforementioned algorithm 
is proposed, in which the varying parameter and binary variables 
are treated together as uncertain parameters. Following the pro-
posed parametric algorithm, the optimizers—and consequently the 
objective function—are computed as exact explicit functions of the 
uncertain parameter together with the corresponding parametric 
ranges, for which each explicit expression remains optimal. Despite 
the merits of the proposed algorithm, there is a trade-off between 
the ability of the algorithm to compute the exact explicit solution 
and the size of the problems handled. Current developments in our 
group aim toward a computationally more efficient implementation 
of the proposed algorithms.
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