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G protein-coupled receptors (GPCRs) are crucial players in various physiological processes, making them
attractive candidates for drug discovery. However, traditional approaches to GPCR ligand discovery are
time-consuming and resource-intensive. The emergence of artificial intelligence (AI) methods has revo-
lutionized the field of GPCR ligand discovery and has provided valuable tools for accelerating the identi-
fication and optimization of GPCR ligands. In this study, we provide guidelines for effectively utilizing AI
methods for GPCR ligand discovery, including data collation and representation, model selection, and
specific applications. First, the online resources that are instrumental in GPCR ligand discovery were sum-
marized, including databases and repositories that contain valuable GPCR-related information and ligand
data. Next, GPCR and ligand representation schemes that can convert data into computer-readable for-
mats were introduced. Subsequently, the key applications of AI methods in the different stages of
GPCR drug discovery were discussed, ranging from GPCR function prediction to ligand design and agonist
identification. Furthermore, an AI-driven multi-omics integration strategy for GPCR ligand discovery that
combines information from various omics disciplines was proposed. Finally, the challenges and future
directions of the application of AI in GPCR research were deliberated. In conclusion, continued advance-
ments in AI techniques coupled with interdisciplinary collaborations will offer great potential for improv-
ing the efficiency of GPCR ligand discovery.

� 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

G protein-coupled receptors (GPCRs) are a diverse and essential
class of cell surface receptors involved in various physiological pro-
cesses [1]. They belong to the largest family of membrane proteins,
with more than 800 members identified in humans [2], including
approximately 400 olfactory receptors [3]. GPCRs play fundamental
roles in cellular signaling by transducing extracellular signals into
intracellular responses and regulating a wide range of biological
functions, such as sensory perception [4], neurotransmission [5],
hormone regulation [6], immune response [7], and cell proliferation
[8]. Accordingly, GPCRs are of immense therapeutic importance and
attractive targets for drug discovery. It is estimated that more than
30% of all currently marketed drugs target GPCRs [9]. Because of
their involvement in numerous physiological processes and dis-
eases, GPCRs offer great potential for developing novel therapeutics
with high specificity and efficacy [10–13].

Despite significant progresses have been made in GPCR
research, numerous challenges remain associated with under-
standing the complex functions and regulatory mechanisms of
GPCRs. For example, numerous GPCRs have unknown endogenous
ligands [14] or ligands with limited potency and selectivity [15].
Understanding the precise ligand–receptor interactions is another
ongoing area of study. GPCRs exhibit diverse binding modes and
undergo conformational changes once bound by ligands [16].
Determining the precise structural details of the interactions and
elucidating the key residues involved are crucial for rational drug
design. Furthermore, the classification and characterization of
GPCR subfamilies pose challenges owing to their high sequence
diversity and varying functions [17]. Although experimental tech-
niques can address these challenges, they are time-consuming
and expensive.
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Advances in computational approaches, particularly artificial
intelligence (AI)-based methods, have played a pivotal role in
addressing these challenges and expediting GPCR research [18].
AI has emerged as a powerful tool that enables researchers to nav-
igate the complex landscape of GPCR biology and ligand discovery
with unprecedented efficiency. AI-based methods, such as machine
learning and deep learning algorithms, have revolutionized GPCR
research by analyzing large-scale data and extracting meaningful
patterns. Machine learning algorithms have been used to analyze
vast datasets of chemical structures, molecular properties, and bio-
logical activity to build predictive models [19–21]. Deep learning
algorithm-based methods have assisted ligand optimization by
generating novel molecular structures with desired properties
[22,23]. Generative models can learn the underlying distribution
of GPCR ligands and generate new molecules with similar proper-
ties [24,25]. By leveraging the power of AI, researchers have unrav-
eled novel insights into the intricate world of GPCRs, paving the
way for the development of innovative therapies to treat a wide
range of diseases [26].

Given the extensive number of GPCRs in humans and the stag-
gering diversity of millions of natural small molecule ligands,
potential combinations of these receptors and ligands are astro-
nomical. It is impossible to test or screen every possible interaction
experimentally. To accelerate the process of identifying and con-
firming GPCR–ligand interactions, the development of AI-based
automatic systems is indispensable. Hence, in this study, we pro-
pose an AI-based automatic system for GPCR ligand discovery, as
shown in Fig. 1.

By addressing the essential aspects of the field, the present
study provides a comprehensive survey of the application of AI
in GPCR ligand discovery. We begin by discussing the online
resources available for GPCR and ligand information, which pro-
vide researchers with valuable resources to access comprehensive
information about GPCRs and their associated ligands. Subse-
quently, various strategies for GPCR ligand representation using
AI-based approaches have been explored. Furthermore, this review
highlights the significant contributions of AI to the different
aspects of GPCR ligand discovery. In addition, the integration of
AI with multi-omics data for GPCR ligand discovery and measure-
ment is thoroughly discussed. The primary objective of this review
is to provide readers with a clear landscape of recent developments
in AI-driven GPCR ligand discovery. By bridging the gap between AI
and GPCR research, this review will facilitate the development of
novel therapeutics targeting GPCRs and contribute to advance-
ments in drug discovery.
2. Strategies of applying AI in GPCR ligand discovery

Strategies for applying AI in GPCR ligand discovery involve sev-
eral key steps, namely, data collection, data representation, model
Fig. 1. AI-based automatic systems for GPCR ligand discovery. The ligands were processe
arms, each adorned with a unique color, symbolize diverse AI-based models designed t
select out specific ligands.
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selection, and application, which are summarized in Fig. 2. These
steps form a systematic process that leverages AI techniques to
accelerate the discovery and optimization of GPCR ligands.

The first step is to gather relevant data, such as GPCRs, ligands,
and information on their interactions. These data were obtained
from various sources and formed the foundation for training AI
models and guiding drug discovery. Once data are collected from
these sources, they must be curated, cleaned, and standardized
before proceeding to the next step.

The second step is data representation, which converts the
curated data into numerical formats that can be effectively pro-
cessed using AI algorithms. The choice of the representation
scheme depends on the specific task and type of data available. Dif-
ferent types of data require different representation approaches to
convey information effectively to AI models.

Model selection is another crucial step in which researchers
select the most suitable AI model based on task complexity, avail-
able data, feature space, interpretability, computational resources,
and performance metrics. The chosen model should strike a bal-
ance between predictive accuracy, interpretability, and resource
requirements, leading to more effective drug discovery and the
identification of potential GPCR ligands with therapeutic potential.
K-nearest neighbor (KNN), support vector machine (SVM), random
forest (RF), recurrent neural network (RNN), and convolutional
neural network (CNN) [27] are commonly used algorithms in
AI-based GPCR ligand discovery.

The ultimate stage is the application step, during which the
selected AI model is deployed to execute specific tasks in GPCR
ligand discovery, such as binding affinity prediction, de novo
design, and other critical aspects. The following sections present
the key applications of AI in GPCR ligand discovery, highlighting
its profound impact on the identification of potential GPCR ligands.
3. Online resources for GPCR and ligand

Online data resources play a critical role in AI-based GPCR
ligand discovery and offer numerous advantages that significantly
enhance the efficiency and success of drug development. These
resources provide access to vast databases, allowing AI algorithms
to perform virtual screening and ligand discovery on an unprece-
dented scale, leading to the identification of novel GPCR ligands.

Several databases have been established to centralize and
curate GPCR-related information. These resources compile data
on GPCR sequences, structures, functional annotations, ligand–
receptor interactions, and signaling pathways. Ligand databases
contain a vast collection of small molecules that target GPCRs.
These resources store information about ligand structures, proper-
ties, activities, and binding affinities. For a quick reference, Table 1
[17,28–45] lists the datasets comprising these invaluable
repositories.
d by using AI techniques and represented by boxes with different colors. The robot
o specific GPCRs. As the ligands move along the conveyer belt, the robot arms will



Fig. 2. Framework of applying AI in GPCR ligand discovery. The sequential steps include data collection, data representation, model selection, and application. AAC: amino
acid composition; PSSM: position-specific scoring matrix; KNN: K-nearest neighbor; SVM: support vector machine; RF: random forest; RNN: recurrent neural network; CNN:
convolutional neural network; SMILES: simplified molecular input line entry system; 3D: three-dimensional; cAMP: cyclic adenosine monophosphate; RhoA: ras homolog
family member A; Ga: alpha subunit of G protein.

Table 1
Representative databases for GPCR ligand discovery.

Database Website Routinely updated Reference

IUPHAR/BPS www.guidetopharmacology.org Yes [28]
GLASS zhanggroup.org/GLASS/ No [29]
GPCR-I-TASSER zhanggroup.org/GPCR-I-TASSER/ No [30]
GPCR-RD zhanggroup.org/GPCR-RD/ No [31]
GPCR-EXP zhanggroup.org/GPCR-EXP/ No [32]
GPCRdb gpcrdb.org/ Yes [17]
GpDB bioinformatics.biol.uoa.gr/gpDB No [33]
GPCR-ModSim gpcr-modsim.org/ No [34]
GOMoDo molsim.sci.univr.it/gomodo No [35]
RCSB PDB www.rcsb.org/ Yes [36]
UniProt www.uniprot.org/ Yes [37]
MPStruc blanco.biomol.uci.edu/mpstruc/ Yes [38]
MemProtMD memprotmd.bioch.ox.ac.uk/ Yes [39]
PubChem pubchem.ncbi.nlm.nih.gov/ Yes [40]
ChEMBL www.ebi.ac.uk/chembl/ Yes [41]
ZINC zinc.docking.org/ Yes [42]
DrugBank go.drugbank.com/ Yes [43]
BindingDB www.bindingdb.org/rwd/bind/index.jsp Yes [44]
DUD-E dude.docking.org/ No [45]
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3.1. Resources of GPCR

The IUPHAR/BPS Guide to PHARMACOLOGY is a valuable
resource for GPCR research, as it provides detailed information
on the pharmacology and function of GPCRs [28], including recep-
tor classification, expression profiles, physiological functions, and
functional assays.

Zhang Lab has developed a series of GPCR-related resources,
including the GLASS [29], GPCR-I-TASSER [30], GPCR-RD [31], and
GPCR-EXP [32]. GLASS is a manually curated database of experi-
mentally validated GPCR-ligand associations collected from the
20
literature and crosschecked with five primary pharmacological
datasets. GPCR-I-TASSER is a computational method designed to
predict the three-dimensional (3D) structures of GPCRs. GPCR-RD
is a database that contains GPCR restraints gathered from scientific
literature through an automated text-mining algorithm combined
with manual validation. GPCR-EXP is a database of GPCR structures
that provides structure-related data, such as resolution, publica-
tion information, and biological ligands.

GPCRdb is a comprehensive and widely used online resource
that provides extensive information and tools for studying GPCRs
[17]. The GPCRdb offers a wealth of information on various aspects

https://www.guidetopharmacology.org
https://zhanggroup.org/GLASS/
https://zhanggroup.org/GPCR-I-TASSER/
https://zhanggroup.org/GPCR-RD/
https://zhanggroup.org/GPCR-EXP/
https://gpcrdb.org/
https://bioinformatics.biol.uoa.gr/gpDB
https://gpcr-modsim.org/
https://molsim.sci.univr.it/gomodo
https://www.rcsb.org/
https://www.uniprot.org/
https://blanco.biomol.uci.edu/mpstruc/
https://memprotmd.bioch.ox.ac.uk/
https://pubchem.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/chembl/
https://zinc.docking.org/
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https://www.bindingdb.org/rwd/bind/index.jsp
https://dude.docking.org/
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of GPCRs, including their sequences, structures, functions, pharma-
cology, and ligand interactions. A significant feature of GPCRdb is
its comprehensive collection of GPCR ligands and their interac-
tions. It contains a vast repository of ligand–receptor binding data,
including binding affinities, potencies, and functional activities.
Additionally, the GPCRdb offers various analysis and visualization
tools to assist researchers in studying GPCRs. These tools enable
sequence analysis, alignment, and comparison of GPCR sequences
as well as the prediction of functional sites.

GpDB is a database of G proteins and their associations with
GPCRs and effector molecules [33], where G proteins and GPCRs
are hierarchically classified into different classes, families, subfam-
ilies, and types.

GPCR-ModSim is a web server for the computational modeling
and simulation of GPCRs based on their amino acid sequences
using homology modeling techniques [34]. GPCR-ModSim can also
be used to equilibrate the GPCR structure with an all-atom molec-
ular dynamic simulation protocol.

GOMoDo is an intuitive web server that enables the seamless
modeling of GPCR structures and the docking of corresponding
ligands to these models, all within a single, unified pipeline [35].

The RCSB PDB [36] provides a repository of experimentally
determined 3D structures of GPCRs, allowing researchers to search
for specific GPCR structures, visualize them in various formats, and
analyze their interactions with ligands and other molecules.

In addition to the above-mentioned databases, Uniprot [37],
MPStruc [38], and MemProtMD [39] are also noteworthy databases
that provide valuable information and resources related to GPCRs
and will aid researchers in understanding the characteristics and
roles of GPCRs.
3.2. Resources of ligands

PubChem is a publicly available database provided by the
National Center for Biotechnology Information [40]. It contains
information on the physicochemical properties and commercial
availability of the chemical ligands. Users can search for specific
GPCRs and explore the chemical ligands associated with their bio-
logical activities and properties.

ChEMBL is a database of curated bioactive molecules with drug-
like properties [41]. It provides information about compounds and
their interactions with biological targets, including GPCRs.
Researchers can search for specific GPCRs and access information
on compounds that have been tested against them, including anti-
bodies and other small molecules.

ZINC is a widely utilized database that houses millions of com-
mercially available chemical compounds specifically curated for
virtual screening purposes [42]. In addition to providing compre-
hensive information regarding compound structures, physical
properties, and availability, ZINC offers external links to facilitate
further exploration of these compounds.

DrugBank is a widely used database that contains information
on drugs and drug targets, including their chemical structures,
pharmacological properties, mechanisms of action, indications,
and clinical data [43]

BindingDB is a database dedicated to protein–ligand binding
data [44]. It provides information on the measured binding affini-
ties and other relevant details for protein–ligand complexes,
enabling researchers to explore and analyze ligand–target
interactions.

DUD-E provides a curated collection of ligands (active com-
pounds) and decoys (inactive compounds) that can be used to
assess the performance of virtual screening methods [45].

Detailed information on the ligands (agonists, antagonists, and
modulators) that interact with GPCRs, along with data on their
21
binding affinities, activities, and structures, can also be found in
the IUPHAR/BPS Guide to PHARMACOLOGY.
4. Representation strategies

Representation strategies are essential for AI-based GPCR ligand
discovery, because they enable efficient data processing, enhance
chemical space exploration, and facilitate feature extraction. They
also contribute to interpretability, support data fusion and integra-
tion, and accelerate the screening processes. The core objective is
to convert GPCR sequences and molecular structures into mean-
ingful numerical representations that can be processed using AI
algorithms.
4.1. GPCR representation strategies

Converting GPCR into computer-readable features is a key step
in AI-aided GPCR discovery and involves converting GPCR into
numerical features that can be processed by AI models.

Amino acid composition (AAC) analysis is one of the most
straightforward methods for encoding GPCRs. AAC represents the
relative frequency of amino acids in a sequence and captures the
overall distribution of amino acids [46]. However, AAC cannot cap-
ture sequential or positional information of amino acids in GPCRs.
In such cases, a position-specific scoring matrix method has been
proposed to consider neighboring or context-dependent amino
acid information [47].

GPCRs can also be represented by encoding schemes, such as
one-hot encoding, and embedding techniques, such as Word2vec
or transformers. One-hot encoding represents each amino acid as
a binary vector that is set to 1 at the corresponding position and
0 at all other positions [48]. For example, considering 20 unique
amino acids, each amino acid in the GPCR sequence is represented
by a binary vector of length 20, with only one position being 1 and
the remainder being 0.

Word2vec is a popular algorithm for learning word embeddings
that aims to capture semantic and syntactic relationships between
words from a large corpus of text data [49]. The main idea behind
Word2vec is to train a neural network model to predict the context
words surrounding a target word within a given window size [50].
Thus, the model learns to represent words as dense vectors such
that similar words have similar vector representations, allowing
the similarity between words to be measured based on the dis-
tance or cosine similarity between their vectors. Continuous Bag-
of-Words and Skip-Gram are two primary architectures used in
Word2vec [50]. By representing the amino acids of GPCR as word
embeddings, the algorithm can capture meaningful relationships
between amino acids.

Unlike Word2vec, transformers employ attention mechanisms
to weigh the importance of different words in a sentence when
computing their embeddings [51]. This allows transformers to
effectively capture the relationships between words that are fur-
ther apart and enables the model to consider the entire sentence
or document context. Popular transformer-based embedding mod-
els, such as ProtBERT [51] and TAPE [52], leverage transformer-
based embeddings to capture important features and relationships
in protein sequences.

In addition to sequence-based features, other structural proper-
ties of GPCRs, such as secondary structure, solvent accessibility,
and physicochemical properties of amino acids, have been used
to encode GPCRs [53]. These features provide additional informa-
tion about receptor structure and can be helpful in predicting var-
ious aspects of GPCR function.

To correlate specific locations within GPCR structures across
different sequences, indexing systems have been proposed to
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compare information regarding structures, ligand-binding sites,
and functional motifs across different GPCRs. The Ballesteros-
Weinstein system is a commonly used indexing system that
assigns generic residue numbers to specific positions in GPCR. It
assigns residue numbers by considering the most conserved resi-
dues within transmembrane helices and other pivotal structural
components, ensuring uniform numbering throughout GPCRs [54].

4.2. Ligand representation strategies

Effective representation of ligands, such as in virtual screening
and ligand-based drug discovery, is crucial for various tasks in drug
discovery. In Fig. 3, using acetaminophen as an example, we list the
commonly used ligand representation strategies, namely simpli-
fied molecular input line entry system (SMILES), fingerprinting,
and molecular graphs.

SMILES is a line notation system that represents the structure of
a molecule using American Standard Code for Information Inter-
change (ASCII) characters [55]. SMILES provides a textual represen-
tation of the molecular structure, including atom type, bond type,
and connectivity information, which can be used for structure
searching and similarity calculations. SMILES is usually converted
into the aforementioned one-hot-encoded representation. Suppose
we have a SMILES string ‘‘CC(@O)NC1@CC@C(C@C1)O,” the one-
hot encoding representation was shown in Fig. 3. The resulting
one-hot encoded vector represents the presence or absence of each
character in the SMILES string and can be used as an input for the
AI. Notably, SMILES differs from isomeric SMILES, primarily by
incorporating stereochemical information. Although both nota-
tions represent chemical structures using simplified strings of
characters, isomeric SMILES considers the stereochemistry, ensur-
ing a more precise representation of molecular configurations and
potentially distinct stereoisomers.

In contrast to SMILES notation, which may lead to non-unique
representations, representing ligands using the International
Chemical Identifier (InChI) ensures a unique and standardized code
for each chemical structure. The InChI of a ligand can be either
obtained from public databases or generated using the InChI Trust
software. InChI provides a comprehensive representation of
ligands by incorporating multiple layers of information, such as
atoms and their bond connections, tautomeric forms, isotope
Fig. 3. Ligand representation strategies. Acetaminophen was taken as an e
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variations, and stereochemical arrangements. For example, the
InChI of acetaminophen is ‘‘1S/C8H9NO2/c1-6(10)9-7-2-4-8(11)5-
3-7/h2-5,11H,1H3,(H,9,10).”

Although SMILES and InChI provide simplified representations
of ligands, they cannot capture the 3D topological arrangement
of atoms in the molecule. Molecular fingerprints are binary repre-
sentations of ligands that encode the presence or absence of speci-
fic substructural features or chemical fragments and generate
fixed-length binary vectors that represent the presence or absence
of specific chemical features in the ligand. Extended connectivity
fingerprints (ECFP) [56], Molecular Access System (MACCS) keys
[57], and Morgan fingerprints [58] are commonly used
fingerprint-based methods. ECFP generates circular fingerprints
by considering atom neighborhoods and bond types within a
defined radius from each atom and captures structural information
up to a certain distance from each atom. MACCS keys are based on
a predefined set of structural fragments and capture the presence
or absence of predefined structural fragments or patterns in a
molecule using a binary value. Different keys capture various
aspects of the molecular structure, such as ring systems, functional
groups, and specific bond arrangements. Morgan fingerprints
encode the local chemical environment around each atom in a
molecule using circular substructures with increasing radii. The
fingerprints were generated by iteratively extending each atom
and hashing the encountered substructures. The resulting finger-
prints are binary or integer vectors that represent the occurrence
or count of substructures.

A molecular graph is a representation of the structural formula
of a ligand based on graph theory, where atoms correspond to
nodes and bonds correspond to edges [59]. Graph-based represen-
tations capture the connectivity and topological relationships
between atoms in a ligand, thereby providing a comprehensive
depiction of its structure. The obtained molecular graph can be
used for downstream tasks.
5. AI-based GPCR ligand discoveries

The integration of AI into GPCR research has the potential to
accelerate the discovery and development of new drugs targeting
these important receptors. According to a recent review, AI
xample to show the commonly used ligand representation strategies.



Fig. 4. Illustrative examples of applying AI in GPCR ligand discovery. Gq: G protein subfamily q; Gs: G protein subfamily s; Gi: G protein subfamily i; G12: G protein subfamily
12; PLCb: phospholipase C-beta; AC: adenylyl cyclase; Gbc: beta and gamma subunits of G protein; RhoGEF: Rho specific guanine nucleotide exchange factor.
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approaches were mentioned in only 3.6% of published GPCR
research by 2022 [60], indicating that the integration of AI into
GPCR-related drug discovery has not seen a similar level of
advancement as observed in other target areas. Notably, AI meth-
ods have the potential to contribute to multiple stages of the GPCR
drug discovery process, augmenting our comprehension and expe-
diting breakthroughs in related fields, such as GPCR function pre-
diction, ligand–GPCR binding prediction, ligand design and
bioactivity prediction, and agonist identification (Fig. 4).
y https://zhanglab.ccmb.med.umich.edu/TM-IMC.
5.1. GPCR gene ontology (GO) function prediction

GPCR GO function prediction is significantly important in the
field of drug discovery and development. By understanding the
GO functions of GPCRs, researchers can gain insights into their
roles in signaling pathways and cellular processes. This knowledge
will help identify novel drug targets, design therapeutics, develop
personalized treatment strategies, and even aid in drug repurpos-
ing and targeting orphan GPCRs.

GO [61] is a widely used vocabulary for annotating and describ-
ing the functions of genes and gene products and is an essential
resource for functional annotation. Wu et al. [53] proposed a
three-stage approach, namely text mining (TM)-inductive matrix
completion (IMC), which combines TM and IMC, to predict GO
terms associated with GPCR proteins. TM-IMC begins by encoding
the textual information of GPCR and GO terms using the Word2vec
algorithm, representing each GPCR or GO as a bag of instances that
describe specific function terms. Next, the bag of instances of GPCR
23
or GO was converted into a single vector using the multi-instance
learning algorithm based on the fisher vector representation
(miFV) [62]. Finally, the IMC method was used to predict the GPCR
functions (GO terms) by treating them as a problem of completing
the protein function association matrix. The source code of TM-
IMC is accessible free on GitHuby, through which users can predict
the GO terms of GPCRs.
5.2. Ligand–GPCR binding prediction

Ligand–GPCR binding refers to the interaction between a ligand
molecule and a GPCR and is highly selective and specific, with dif-
ferent ligands having varying affinities for specific GPCRs. The
study of ligand–GPCR binding is essential for understanding the
mechanisms of GPCR signaling and for drug discovery. Although
experimental techniques, such as X-ray crystallography, cryo-
electron microscopy, and nuclear magnetic resonance spec-
troscopy can determine the ligand–GPCR interactions, they are
costly and time-consuming. To overcome these limitations, com-
putational approaches, particularly AI algorithms, have emerged
as valuable tools for predicting ligand–GPCR interactions in a more
efficient and cost-effective manner. AI algorithms are superior to
experimental methods in handling high-dimensional data, captur-
ing complex relationships, and making large-scale predictions.
Multiple AI models have been proposed to predict ligand–GPCR
interactions.

https://zhanglab.ccmb.med.umich.edu/TM-IMC
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Based on a dataset containing 303,587 ligand–GPCR interac-
tions, Seo et al. [63] proposed an RF model to predict ligand–GPCR
interactions. In their model, GPCRs were encoded using AAC, while
motif sequences and ligands were encoded using hub and cycle
structures obtained from molecular graphs. The proposed model
not only performed better than the empirical affinity predictions
of Cyscore [64], but also accurately identified novel ligand–GPCR
interactions. Although the source code of the proposed methods
was not provided, this study provides valuable insights into com-
putationally predicting ligand–GPCR interactions, which will be
helpful for further studies on structure-unknown GPCRs and
orphan GPCRs.

In addition to computationally predicting ligand–GPCR interac-
tions, the determination of ligand-specific binding site regions on
GPCRs is crucial for understanding the mechanisms of ligand–GPCR
interactions and facilitating drug design. Di Rienzo et al. [65] intro-
duced a 3D Zernike polynomial-based approach to identify ligand-
binding sites on GPCRs, achieving an area under the receiver oper-
ating characteristic curve of 0.77. They further applied this
approach to predict ligand-binding sites in olfactory neuron GPCRs
in Caenorhabditis elegans. This study not only provides a computa-
tional tool with broad applicability for predicting binding sites on
GPCRs but also enhances our understanding of olfactory GPCRs.
5.3. Ligand bioactivity prediction

Ligand bioactivity was quantitatively measured using half-
maximal inhibitory concentration (IC50), half-maximal effective
concentration (EC50), inhibition constant (Ki), and dissociation con-
stant (Kd) values, which provided information on the potency,
affinity, and efficacy of a ligand in its interaction with GPCRs. Con-
sidering these values, researchers can focus on ligands that exhibit
the desired levels of potency and affinity, thereby increasing the
chances of identifying promising lead compounds. Hence, deter-
mining ligand bioactivity is indispensable for virtual screening
and drug discovery.

Although biological high-throughput assays offer robust com-
pound screening capabilities, they are not without limitations,
notably their time-consuming and labor-intensive nature. In this
context, computational methods have proven invaluable by
enabling the prioritization of candidates and effectively directing
experimental efforts and resources towards the most promising
subset of compounds.

In a pioneering study, Wu et al. [66] proposed a weighted deep
learning (WDL)-RF method for predicting the bioactivity of GPCR-
associated ligands. The WDL-RF is a two-stage computational
model that can handle ligands of arbitrary sizes. The first stage of
WDL-RF generates molecular fingerprints using a WDL method,
while the second stage employs an RF algorithm to perform bio-
activity calculations. Large-scale benchmark tests showed that
WDL-RF obtained an average root mean square error (RMSE) of
1.33 and a correlation coefficient of 0.80 for predicting the bio-
activities of ligands of 26 different GPCRs. Notably, owing to the
log transformation of raw bioactivities to p-activities, the resulting
RMSE was also presented on a logarithmic scale. To facilitate acces-
sibility and further development, the datasets and source codes of
WDL-RF are providedy, through which users can develop new mod-
els based on their own in-house data and predict the bioactivities of
new GPCR-associated ligands.

The identification of key substructures that govern ligand bio-
activity is of equal importance for virtual screening and drug
discovery. By identifying the specific substructures or functional
groups responsible for bioactivity, researchers can gain insights
y https://zhanglab.ccmb.med.umich.edu/WDL-RF/.
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into the ligand’s mode of action and potentially use this knowledge
to design new ligands with improved activity.

Accordingly, Wu et al. [67] developed a deep neural network
model called SED to predict ligand bioactivity and detect the sub-
structures that determine ligand bioactivity. The SED method sur-
passed WDL-RF in predicting the bioactivity of GPCR-associated
ligands by encoding ligands using the optimal bits of ECFP. It also
has the potential to identify key substructures relevant to ligand
bioactivity. The dual capabilities of the SEDmethod provide a novel
and promising approach for drug discovery.

Later, Velloso et al. [68] proposed a pdCSM-GPCR model to
quantitatively predict the bioactivity of ligands associated with
36 different GPCRs. In pdCSM-GPCR, the ligands are represented
using graph-based signatures. This representation captured the
structural information of the ligands and allowed the extraction
of relevant features for bioactivity prediction. Results from the
ten-fold cross-validation and blind tests showed that pdCSM-
GPCR outperformed WDL-RF in predicting the bioactivity of the
ligands of almost all GPCRs. They also identified important com-
mon features of potent GPCR ligands that tended to have bicyclic
rings, leading to high levels of aromaticity. The pdCSM-GPCR
model is expected to serve as a valuable tool for screening efforts
in drug discovery.

5.4. Ligand design

The design of novel ligands that can selectively and effectively
modulate GPCR activity has great potential for the treatment of
diseases. Because GPCRs are one of the most successful drug target
classes, the exploration and design of novel ligands for these recep-
tors can pave the way for the discovery of innovative drugs with
improved pharmacological properties [69–71]. Advancements in
deep learning have significantly revolutionized the field of chemi-
cal structure generation, offering powerful tools for generating
novel molecules, and driving innovations in drug design.

Using reinforcement learning techniques, Liu et al. [72] pro-
posed an RNN-based model called DrugEx to identify novel bio-
active ligands against GPCRs. DrugEx incorporates an exploration
strategy to enhance exploration and promote the generation of
diverse molecules. This combination of the exploration strategy
with the RNN-based generation model empowered DrugEx to
explore a broader range of chemical spaces, facilitating the identi-
fication of novel and promising drug candidates. Comparative
results demonstrated that DrugEx outperformed REINVENT [73]
in generating bioactive ligands against human adenosine A2A

receptors (A2AAR).
Subsequently, by adding crossover and mutation operations of

evolutionary algorithms to reinforcement learning, DrugEx was
updated to a new version, DrugEx v2 [74]. Compared to the original
version, DrugEx v2 can generate ligands for multiple targets and
one specific target. The test results from both the multitarget and
target-specific tasks showed that the SMILES generated by DrugEx
v2 were chemically reasonable and represented diverse and unique
desired molecules.

Both DrugEx and DrugEx v2 were trained with fixed objectives
and lacked the capability of users to provide prior information, such
as the desired scaffold. More recently, DrugEx v3 was developed,
which introduced a novel positional encoding scheme specifically
tailored for atoms and bonds, allowing the transformer model to
effectively process molecular graph representations [75]. This
enhancement enables simultaneous growth of multiple fragments
within a given scaffold and facilitates their connection to generate
entirely new molecules. To demonstrate its efficacy, DrugEx v3
was employed to design ligands targeting A2AAR, and its perfor-
mance was compared with that of the SMILES-based methods.
The results revealed that all the generated molecules were

https://zhanglab.ccmb.med.umich.edu/WDL-RF/
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chemically reasonable, showing a remarkable 100% validity rate. In
addition, a significant proportion of these ligands exhibited high
predicted affinities for A2AAR with the given scaffolds. These find-
ings highlighted the efficacy of DrugEx v3 in generating chemically
reasonable ligands.

5.5. GPCR ligand identification and classification

Two primary mechanisms of ligand binding exist in the discov-
ery of bioactive GPCR ligands: orthosteric and allosteric interac-
tions [76]. Orthosteric binding occurs when a ligand binds
directly to the active site of the receptor where endogenous ligands
typically bind, thereby influencing the signaling pathway of the
receptor. In contrast, allosteric binding involves ligand binding to
a distinct site on the receptor, which induces conformational
changes that modulate the binding and signaling of orthosteric
ligands. While orthosteric ligands have traditionally been the
focus, allosteric ligands offer selective modulation and the ability
to fine-tune receptor activity. Hence, identification of allosteric
ligands offers new avenues for drug discovery in the field of GPCRs.

In a recent study, Hou et al. [18] introduced an 11 class classi-
fication task that aimed to simultaneously distinguish allosteric
ligands across the GPCR A, B, and C subfamilies and inactive
ligands. To obtain an optimal model, various combinations of
diverse molecular features and machine learning algorithms were
employed during the model training process. Results from inde-
pendent test showed that ‘‘SVM-ECFP6” was the best model and
obtained satisfying performances across all GPCR classes. This
study provides insights into the in silico discovery of GPCR
allosteric ligands.

In addition to orthosteric and allosteric ligands, agonists and
antagonists are essential components of GPCR bioactive ligand dis-
covery [77]. Agonists are ligands that bind to GPCRs and activate
their signaling pathways, mimicking the effects of endogenous
ligands. They promote cellular responses and physiological func-
tions that are mediated by specific GPCR. In contrast, an antagonist
is a ligand that counteracts the effects of an agonist by binding to a
receptor without activating it [78]. This binding inhibits the
response of the receptor to an agonist, suppressing signaling and
biological effects [78]. Identifying GPCR-binding agonists and
antagonists also holds significant importance and has significant
implications for drug discovery, understanding cellular signaling,
and developing therapeutic interventions for various diseases
and disorders.

Using the RF algorithm and encoding molecules with ECFP fin-
gerprints, another research group proposed a two-layer prediction
model to classify polymerase chain reaction (PCR)-associated
ligands [79]. The first layer identifies whether a query molecule
is a GPCR ligand, while the second layer classifies the ligands as
either agonists or antagonists. The proposed method achieved an
accuracy of 70% for classifying US Food and Drug Administration
(FDA)-approved GPCR drugs, indicating its potential as a useful tool
for identifying GPCR-binding agonists and antagonists.
Fig. 5. Multi-omics integration screening
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6. Multi-omics integration screening strategy

The multi-omics integration screening strategy combines and
analyzes data from multiple omics platforms to gain a comprehen-
sive understanding of biological systems [80]. By integrating mul-
tiple omics datasets, researchers can uncover complex
relationships between different molecular layers and gain a more
holistic view.

Although the multi-omics approach is valuable for understand-
ing complex biological systems, its application in GPCR ligand dis-
covery and measurement has not been widely reported or
established. Most of the reported approaches for GPCR ligand dis-
covery and measurement focus on identifying and characterizing
ligands based on their chemical properties, molecular interactions,
and functional activities.

In this section, we propose a multi-omics integration strategy
for screening GPCR-associated ligands (Fig. 5). Integrating multi-
omics data allows for the identification of novel ligands, under-
standing their mode of action, and predicting their efficacy or
potential side effects. A general overview of this strategy is as
follows:

First, endogenously expresses the GPCR of interest or creates a
stable cell line expressing the GPCR of interest using genetic engi-
neering techniques and then treats the selected cell line with a
library of compounds or individual ligands known to interact with
the GPCR. To ensure the reliability of experimental results, it is cru-
cial to include appropriate controls. In the case of endogenously
expressing cell lines, controls might involve comparing responses
with cells lacking GPCR or using pharmacological agents known
to modulate receptor activity. For genetically engineered cell lines,
a cell line with the same genetic modifications but lacking the
GPCR insert, as well as unmodified cells, was used as a control.

Second, the treated cell lines are processed at the desired time
points, and sequencing or measurements are performed using
high-throughput technologies to obtain raw data, such as genomic,
transcriptomic, proteomic, and metabolomic approaches. These
data provide a multidimensional view of GPCR–ligand interactions.
Genomic data identifies genetic variations or mutations in GPCR
genes that may affect ligand binding or receptor activity. Although
heterologous systems strive for genomic equivalence, the choice of
expression vectors and promoters introduced during the expres-
sion process may lead to variations in genomic data. Transcrip-
tomic data revealed the expression patterns of GPCRs and their
associated signaling molecules in different cell lines. Proteomic
data can help identify proteins involved in GPCR signaling path-
ways and their post-translational modifications. Metabolomic data
provided information on the metabolites associated with GPCR
activity and downstream signaling.

Third, to ensure that multi-omics data are in a suitable format
for subsequent analysis, it is necessary to perform quality control,
normalization, filtering, and other preprocessing steps specific to
the chosen omics field. Quality control evaluates the data integrity
and removes low-quality reads and technical biases. Normalization
strategy for GPCR ligand discovery.
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adjusts the data to a common scale, accounting for various factors,
such as sequencing depth or biases. Filtering eliminated noise, out-
liers, and irrelevant features. These steps minimize technical arti-
facts and variations in the data, enabling meaningful and reliable
downstream analysis.

Fourth, analyze the processed multi-omics data to identify dif-
ferentially expressed genes, proteins, and metabolites associated
with the treatment and GPCR activation. In this process, AI meth-
ods can be employed to integrate multiple omics datasets by
selecting relevant features, applying dimensionality reduction,
choosing an appropriate integration method, training the AI model
on preprocessed data, and analyzing and interpreting the inte-
grated data for patterns and correlations.

Once the multi-omics data have been preprocessed, the subse-
quent step is to identify differentially expressed genes, proteins, or
metabolites associated with compound treatment and GPCR acti-
vation. This analysis could be further enhanced by leveraging AI
methods, particularly deep learning, to integrate multiple omics
datasets. AI plays a pivotal role in identifying relevant features
from high-dimensional multiomics datasets, reducing complexity,
and extracting meaningful information. AI integration methods
allow for the combination of different omics layers, enabling
researchers to discover intricate associations and interactions
between genes, proteins, and metabolites that may have been
overlooked when considering each omics layer independently.
Taken together, by utilizing AI to integrate diverse omics data, pre-
viously hidden relationships can be revealed, offering valuable
insights into GPCR drug discovery.
7. Future perspectives

The application of AI in GPCR ligand discovery has shown great
promise, bringing about a revolution in the process of identifying
and optimizing GPCR ligands through large-scale data analysis
and computational modeling. However, several challenges and
perspectives must be considered for further advancement in this
field.

One of the primary challenges is the availability and quality of
the data. AI techniques rely heavily on high-quality data to train
accurate models. Although there has been an increase in the
amount of GPCR-related data, they are still relatively limited com-
pared to other areas of research. GPCRs belong to a diverse family
of receptors that exhibit significant structural and functional diver-
sity [81]. Experimental data on GPCRs are not as abundant as those
on other drug target classes. The availability of diverse and well-
curated datasets encompassing a wide range of GPCR subtypes
and ligand classes is essential for training robust AI models. To
address this challenge, collaborative data-sharing efforts, diverse
data collection from multiple sources, standardized experimental
protocols, data annotation, and quality control measures should
be implemented. Additionally, AI-driven data augmentation tech-
niques can be utilized to generate synthetic data. Collectively,
the implementation of these strategies will enable the develop-
ment of more robust and accurate AI models for GPCR ligand
discovery.

The interpretability of AI models and their predictions is
another critical challenge. GPCRs possess complex structural and
functional characteristics, and understanding the molecular basis
of ligand receptor interactions is essential for rational drug design.
AI models, particularly deep learning models, are often considered
black boxes, making it difficult to interpret the underlying features
and decision-making processes. To address this challenge, efforts
should be focused on developing AI models that provide inter-
pretable results. One approach is to incorporate attention mecha-
nisms [48] into AI models, which will enable researchers to gain
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insights into the specific regions or features of GPCRs or ligands
that are most relevant for model predictions. In addition to atten-
tion mechanisms, feature importance analysis can contribute to
interpretability [82]. By analyzing the contribution of each input
feature to the model’s predictions, researchers can identify the
most influential features or descriptors.

Structural information is crucial for GPCR ligand discovery
because of the complex 3D nature of GPCRs [83]. Integrating struc-
tural data, including experimentally determined crystal structures
and homology models, into AI models can significantly enhance
their performance and enable more accurate structure-based
ligand designs. The incorporation of structural information pro-
vides valuable insights into the topological arrangement of
ligand-binding sites, key residues involved in the interactions,
and conformational changes upon ligand binding. Therefore, the
development of innovative methods that effectively integrate
structural information into AI models represents an important
future direction for GPCR ligand discovery, ultimately leading to
more efficient and rational drug design strategies.

Scoring functions that encompass low-end empirical methods
and high-end physics-based techniques also play an important role
in drug discovery. By fusing scoring functions and AI, researchers
can optimize ligand–receptor interactions and accelerate drug dis-
covery effort [84]. There are several strategies for integrating scor-
ing functions using AI protocols. These include data-driven scoring
functions, where AI models learn from experimental data and
molecular structures; hybrid approaches combining empirical
and physics-based scores through machine learning; active learn-
ing strategies for iterative model refinement; and potential
advances in deep learning and generative models for more accu-
rate predictions.

The integration of AI with experimental methods is essential for
the successful translation of AI-generated predictions into real-
world applications. Although AI can accelerate the screening and
optimization of GPCR ligands, experimental validation is necessary
to confirm the predicted results and ensure the safety and efficacy
of the identified ligands. Collaboration between computational and
experimental researchers is crucial for bridging the gap between
AI-based predictions and experimental validations.

Finally, the integration of multi-omics data sources, including
genomic, transcriptomic, proteomic, and metabolomic data, holds
tremendous potential for enhancing our understanding of GPCR
biology and accelerating the discovery of novel ligands. These dif-
ferent types of data can provide complementary information
regarding GPCR function, expression patterns, and signaling path-
ways, offering a more comprehensive view of GPCR biology. Hence,
challenges related to data integration, standardization, and analyti-
cal methods must be addressed. Establishing standardized formats
and ontologies, developing robust analysis methods, and promot-
ing data sharing will facilitate the effective integration of multi-
omics data, ultimately leading to a deeper understanding of GPCR
biology and the discovery of novel ligands.

By addressing these challenges and leveraging the power of AI,
we can continue to revolutionize the process of identifying and
optimizing GPCR ligands, ultimately leading to the development
of effective therapies and treatments for various diseases.
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