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The transmission of coronavirus disease 2019 (COVID-19) has presented challenges for the control of the
indoor environment of isolation wards. Scientific air distribution design and operation management are
crucial to ensure the environmental safety of medical staff. This paper proposes the application of
adaptive wall-based attachment ventilation and evaluates this air supply mode based on contaminants
dispersion, removal efficiency, thermal comfort, and operating expense. Adaptive wall-based attachment
ventilation provides a direct supply of fresh air to the occupied zone. In comparison with a ceiling air
supply or upper sidewall air supply, adaptive wall-based attachment ventilation results in a 15%–47%
lower average concentration of contaminants, for a continual release of contaminants at the same air
changes per hour (ACH; 10 h�1). The contaminant removal efficiency of complete mixing ventilation
cannot exceed 1. For adaptive wall-based attachment ventilation, the contaminant removal efficiency
is an exponential function of the ACH. Compared with the ceiling air supply mode or upper sidewall
air supply mode, adaptive wall-based attachment ventilation achieves a similar thermal comfort level
(predicted mean vote (PMV) of �0.1–0.4; draught rate of 2.5%–6.7%) and a similar performance in
removing contaminants, but has a lower ACH and uses less energy.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

During an infectious disease pandemic, such as coronavirus dis-
ease 2019 (COVID-19), Middle-East respiratory syndrome (MERS),
or severe acute respiratory syndrome (SARS), the risk of transmis-
sion between patients and healthcare workers (HCWs) greatly
increases. It has been reported that the diffusion of droplets from
the respiratory tract and intimate contacts are the main transmis-
sion routes of COVID-19 [1]. Moreover, aerosol transmission has
been suggested to be an additional—yet important—pathway on
the basis of clinical observations in confined spaces [2,3]. A retro-
spective cohort study suggested that airborne spread may have
had an important role in the transmission of SARS [4,5]. Many
other viruses, such as rhinovirus, influenza, and adenovirus, are
spread by the airborne route [6,7]. In addition to taking personal
protection (i.e., protective clothing, medical masks, goggles, etc.)
and decontamination (i.e., handwashing, surface cleaning, and dis-
infection) measures, the airflow distribution of the airborne infec-
tion isolation room (AIIR) should be addressed [4,8,9].

The purpose of the AIIR should be to minimize the threat of
exposure to the medical staff within the isolation room and to
others outside of the room to the airborne infectious media. Air
changes per hour (ACH) and air distribution are important factors
in reducing contaminant concentration in hospital buildings
[10,11]. The ACH is commonly used as a measure of how quickly
the supply air spread throughout the entire volume of air in the
room [12]. Many studies have observed that a lower ACH can
increase the risk of airborne cross-infection [13,14]. In research
studies, ACHs of 3.0–29.9 h�1 have been adopted [15–17]. In differ-
ent national regulations and theWorld Health Organization (WHO)
recommendations, ACHs range from 6 to 15 h�1 [12,18–23]. Field
test studies have also shown that new isolation rooms do not
always comply with an ACH of 12 h�1, and as many as 21%
(3/14) of tested isolation rooms violated the lowest requirement
of 6 h�1 for existing buildings [24]. Lower ACHs are used in order
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to conserve energy [25,26]. However, the ACH describes the venti-
lation in a room as a whole, and assumes a complete mixing of the
supply air throughout the entire volume. The degree of mixing of
ventilation air depends on the air distribution.

There are many different air distribution modes for built envi-
ronments [27]. The general principles for AIIRs are to achieve and
maintain a directional air distribution from a clean area to a less
clean area [28,29] and to position exhaust vents as close to con-
taminant sources as possible [12]. The air distribution in a built
environment is mainly determined by the positions of the supply
and exhaust vents; the Reynolds number (Re), as it is generally
known that the supply air Re relates to the ACH; the Archimedes
number (Ar) of the supply air [26]; and other potential con-
founders. Ceiling and sidewall air supply modes are usually used,
based on mixing ventilation under the assumption that the air in
the room is completely mixed [15,17]. The concept of mixing ven-
tilation was originally developed from the perspective of thermal
comfort considerations [26], so it does not promote better inhaled
air quality [30,31], especially when there is a point source of air
pollutants, as in the case of airborne infectious disease spread
[32]. Displacement ventilation is created using the buoyancy forces
from heat sources in the room [33]. The contamination distribution
in a displacement-ventilated room depends on the position of the
contamination sources and their association with the heat sources
[27]. Since air is supplied directly to the occupied zone, the ACH is
limited in order to avoid undesirable thermal sensation. Wall-
based attached ventilation is therefore proposed, based on a com-
bination of mixing ventilation, displacement ventilation, and
impinging jet flow. An air jet with high momentum can be main-
tained by the air jet attaching to the wall and reaching the occu-
pied zone with acceptable air velocity via imping. The
background mechanism of this concept is the extended Coanda
effect (Coanda–Li effect) [27,34], firstly proposed by Li, which is
the tendency of a fluid jet to continually attach to a complex of
convex and concave surfaces after impinging [35].

In this paper, the concept of wall-based attachment ventilation
is extended to an adaptable form according to the requirement of
the AIIR. In adaptive wall-based attachment ventilation, the jet
impinging zone is elevated to the zone occupied by the HCWs. In
Fig. 1. Adaptive wall-based attachment ventilation used in AIIR and its airflow structur
attachment length; sy: distance between Separation point I and the stagnation point; sv:
range; vmax: the jet axis velocity; v: velocity at different locations.
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the discussion below, the performance of adaptive wall-based
attachment ventilation is evaluated and compared with those of
two traditional air supply modes (ceiling air supply and upper
sidewall air supply). Both constant and transient air contaminant
sources are taken into account. Removal efficiency and availability
of air supply are calculated for different air distribution modes.

2. Theoretical model of adaptive wall-based attachment
ventilation

Adaptive wall-based attachment ventilation is based on vertical
attachment ventilation. The airflow structure is shown in Fig. 1.
When an isothermal airflow near to a vertical solid surface is a
jet, the jet is deflected and attaches to the surface due to the
Coanda effect, as shown in Region I. Based on the inertia momen-
tum, the jet moves in the original direction, reaches a separation
point (Separation point I), and causes a stagnation phenomenon
after collision. The pressure of the stagnation zone, which is the
area between the separation point and the reattachment point, is
close to the ambient pressure. In the region downstream of the
stagnation point, the static pressure increases and reaches a
maximum value. With the recovered static pressure, the jet fluid
overcomes the wall resistance and moves horizontally, as shown
in Region II. In vertical attachment ventilation, the airflow attaches
to the floor in Region II. The key to the jet movements shown in
Regions I and II is the virtual origin inlet [36], which is determined
by the extended Coanda effect zone of the real jet inlet that deter-
mines the horizontal jet range sh and the axis velocity attenuation
vmax/v0 of the air supply (v0 is the supply air velocity of the slot
inlet). The final result of the axis velocity attenuation is the
designed air velocity in the occupied zone. Theoretical and experi-
mental studies on the virtual origin inlet and the extended Coanda
effect with planar surfaces can be found in Ref. [37].

Although the air supply jet plays a leading role in the ventila-
tion of a room, there are many potential confounders, such as con-
taminant sources, thermal buoyancy, obstacles in the flow path,
and so forth. Therefore, computational fluid dynamics (CFD) vali-
dated by experimental results was adopted to study the applica-
tion of adaptive wall-based attachment ventilation in AIIRs.
e. Region I: vertical attachment region; Region II: horizontal jet region; s0: vertical
distance between the virtual origin inlet and the stagnation point; sh: horizontal jet



Fig. 2. Experimental validation of the axis velocity attenuation of adaptive wall-
based attachment ventilation. K: the empirical coefficient related to inlet type; DT:
the temperature difference between the supply air and the wall; h: the distance
between the slot inlet and the floor; z: different height from the floor; b: the width
of the slot inlet.
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3. Materials and methods

Researchers in the field of indoor environment studies have
adopted CFD as a useful tool for predicting air movement in venti-
lated spaces. This method has been used as a research tool for
many years [38,39]. In hospitals such as the Huoshenshan and
Leishenshan Hospitals (the two hospitals built in Wuhan, China),
which needed to be rapidly built over a short time period, it is
often difficult to solve design problems using field experimental
methods. In this case, CFD can produce scientific numerical calcu-
lations on air distribution and effective control methods for con-
taminated air in isolation wards by means of validated numerical
models.

3.1. Physical model and ventilation configurations

A normal two-bed AIIR was adopted for the current
study; it includes a ventilation system, contaminant sources,
and beds. The dimension of the ward is 6 m � 3 m � 3 m (length �
width � height). The exhaust vent is close to the floor [23], while
the air supply vent is in the ceiling or upper sidewalls, with the
aim of forming a clean directional airflow path. We highlight the
air supply modes, as the sink flow at the exhaust vents has a much
smaller effect on the flow field. For ceiling air supply and upper
sidewall air supply, there are three inlets with a size of 0.32 m �
0.12 m each. For adaptive wall-based attachment ventilation, the
inlet is a slot with a size of 3 m � 0.05 m. For each mode, the out-
lets are on the lower part of the wall, near the contaminant sources
(i.e., the patients), and have a size of 0.25 m � 0.25 m each.
Detailed layouts of the air vents are shown in Fig. S1 in Appendix A.

3.2. Governing equations and turbulent model

The airflow of the ward is described with basic equations of
mass, momentum, energy, and species transportation, which can
be found in Ref. [40].

One of the keys to successful CFD application in an indoor envi-
ronment is the turbulence model. Based on the preliminary results
[41], the turbulent model shear stress transport (SST) k–x (k:
specific turbulent kinetic energy (m2�s�2); x: specific turbulent
dissipation rate (s�1)) was adopted. The quasi-steady and unsteady
conditions were both included. As the air velocity in an indoor built
environment is relatively slow, the air is assumed to be incom-
pressible [42]. The Boussinesq approximation was adopted to solve
the equations with density [43].

3.3. Boundary conditions and grids

In the simulation, the walls, floors, and ceilings are non-slip sur-
faces. A pressure outlet at �10 Pa is used for the outlets. The tracer
gas (i.e., contaminants) is assumed to be released from the heads of
the patients in the ward [24,44]. Based on the literature, given the
most unfavorable conditions for the environment of medical staff
in an isolation ward, the rate of contaminants generated is 0.7 L�s�1

under steady conditions [45,46] and 10 L�s�1 for 2 s with a fre-
quency of 40 counts per hour under unsteady conditions [47–
49]. As mentioned in Section 1, the air change rates of AIIRs ranging
from 6 to 15 h�1 are adopted. Due to the buoyancy of warm air,
winter is the most unfavorable working condition for ventilation.
Therefore, this paper focuses mainly on winter conditions. A total
of 21 typical cases under different boundary conditions are studied
and compared, as shown in Appendix A Table S1.

The geometry of the calculation domain is regular. Three kinds
of unstructured grids with total numbers of 0.100 million, 0.195
million, and 0.392 million are used, respectively. The dimension-
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less air velocity, temperature, and concentration of the occupied
zone at the height of 2 m vary with the dimensionless horizontal
distance from the inlet, as shown in Appendix A Fig. S2. The dimen-
sionless parameters are defined in Appendix A Table S2 for analy-
sis. The results show that 0.195 million grids can ensure
calculation accuracy under these conditions with fewer computing
resources.
3.4. Experimental validation

As axis velocity attenuation is the key to the whole flow field.
This work collects the experimental data from the research team’s
previous wall-based attachment ventilation studies [35,37,41,50]
and semi-empirical formulas from the American Society of Heat-
ing, Refrigerating and Air-Conditioning Engineers (ASHRAE) [26],
Topp et al. [51], Yu et al. [52], and Rajaratnam [53] to validate
the numerical model, as shown in Fig. 2. These formulas corre-
spond to a variety of empirical coefficient K, which is related to
inlet type, for describing the axis velocity of a wall-based attach-
ment air supply. The dimensionless results of CFD are compared
with these data. The range of errors is 4.0%–9.3% (cf. Ref. [51])
when the temperature difference between the supply air and the
wall is 5 �C (warm air). For cool air, the temperature difference
between the supply air and the wall is �4 �C, and the errors range
from 0.2% to 7.4% (cf. Ref. [52]). Here, Refs. [51,52] were chosen for
comparison because they use the same inlet type. There is good
agreement between the CFD results and the experimental results,
so the numerical model can be used to carry out further analysis.
The flow pattern and the jet axis velocity and temperature distri-
bution are shown in Appendix A Figs. S3 and S4.
4. Results and discussion

4.1. Contaminant concentration dispersion

According to the modified Wells–Riley equation [54], airborne
contamination should be kept low in order to reduce the risk of
infection. Given the most unfavorable working conditions, the
patients continually release contaminants into the environment.
At the same ACH, the average contaminant concentration of the
occupied zone is the lowest (0.45%) for adaptive wall-based



Fig. 3. Contaminant concentration distribution in an isolation ward with the same
ACH under different air supply modes: (a) ceiling air supply; (b) upper sidewall air
supply; and (c) adaptive wall-based attachment ventilation.
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attachment ventilation, followed by that for the ceiling air supply
mode (0.95%), shown in Fig. 3. The cause can be analyzed according
to the velocity of the cross-section. Zhao et al. [55] simulated air
movement and aerosol particle concentration and deposition using
a discrete trajectory model in mixing (upper sidewall air supply)
and displacement ventilation rooms. It was found that mixing ven-
tilation has a lower indoor particle concentration, but the deposi-
tion rate is larger. Zhao et al. [55] pointed out that this finding
did not necessarily mean that mixing ventilation will lead to better
indoor air quality, because the deposited particles may re-suspend.

For ceiling air supply, there is a downdraft under each inlet, and
the updraft is along the sidewalls. The contaminated air is induced
by the momentum of the supply airflow along the wall and ceilings
after the release, and turns downward. The contaminants are
diluted and diffused throughout the entire ward before finally
being exhausted through the outlets. This mode can cause
contaminants to circulate repeatedly in the ward, increasing the
risk of infection of the medical staff. Qian et al. [17] showed a flow
visualization of cool air with a high supply velocity from the
diffuser right above the head. Their results also showed strong
entraining of the surrounding contaminated air from exhalation
in spite of the high supply air velocity. In the present research,
the average contaminant concentration of the upper sidewall air
supply mode is 1.4% (noting that 0.45% for adaptive wall-based
attachment ventilation). The airflow moves along the ceiling after
coming out of the inlets on the upper sidewall, and turns
downward when reaching the opposite wall. Airflow cannot be
efficiently supplied to the occupied zone due to buoyancy between
the supply air and indoor air in winter. Ceiling air supply and the
upper sidewall air supply are the most popular modes in public
buildings. However, the requirements of isolation wards are stric-
ter than those of other public places, including common hospitals.
Adaptive wall-based attachment ventilation is an improvement of
the traditional ventilation mode that combines the advantages of
mixing ventilation and displacement ventilation. In addition, adap-
tive wall-based attachment ventilation focuses on providing a
direct supply of fresh air to the occupied zone. It is found that
the airflow first attaches to the vertical wall near the inlet; it then
reaches the deflector (2 m above the floor), and turns toward the
occupied zone. To supply warm air in winter, the upward deflec-
tion of the airflow can be changed by adjusting the angle of the
deflector, so that fresh air can be directly supplied to the zone
occupied by medical staff and patients.

Respiratory diseases often cause repeated coughing or sneezing.
As a result, intermittent release of a large amount of contaminants
can occur. In order to simplify the condition of intermittent
exhaled contaminants, tracers are regularly released, shown as
the right y-axis in Fig. 4(a). The transient source causing the con-
centration distributions varies with time. To evaluate the perfor-
mance of the air distribution, the concentration of the outlets
over time was integrated, as shown in Fig. 4. Adaptive wall-
based attachment ventilation achieves the highest concentration
of outlets and the greatest concentration integration over time, fol-
lowed by those of an upper sidewall air supply. This is because
adaptive wall-based ventilation supplies air to the occupied zone
directly, which pushes out more contaminants. The outlets’ accu-
mulated concentration of mixing ventilation depends on the dilu-
tion time. When the release frequency is higher than the dilution
time, contaminants accumulate continuously. The dilution time
in minutes that is required for certain airborne contaminant
removal efficiencies, as mentioned in Refs. [12,20,22], can be
traced to a manual on industrial ventilation published by the
American Conference of Governmental Industrial Hygienists
133



Fig. 4. Mean concentration of outlets under the condition of intermittent exhaled contaminants. (a) Concentration versus time; (b) accumulated concentration versus time.
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(ACGIH) [56]. This dilution time is used to calculate the duration of
dilution after contaminant sources are interrupted. However, the
time should be evaluated with an effective ACH while considering
K, which is a factor reflecting the degree of incomplete mixing. The
K value is selected based on the locations of inlets and outlets, the
working process, the typical locations of staff relative to the
sources of contamination, and so forth. However, complete mixing
usually does not occur, and the mixing factor K can be as high as 10
[29,56].

4.2. Ventilation performance

Contaminant removal efficiency (also called removal effective-
ness or ventilation efficiency) is recommended as the index to
evaluate ventilation performance [57,58]. For the same ACH, the
removal efficiency of adaptive wall-based attachment ventilation
is the highest of the three air supply modes in both winter and
summer. In winter, the removal efficiency is 1.33, which is fol-
lowed by that of ceiling air supply, at 1.04. In summer, the removal
efficiency of adaptive wall-based attachment ventilation is 1.93,
which is followed by that of upper sidewall air supply, at 0.92, as
shown in Appendix A Fig. S5. The removal efficiency of adaptive
wall-based attachment ventilation is 1.3–2.5 times greater than
that of ceiling air supply. This is because the airflow of adaptive
wall-based attachment ventilation turns toward the target zone
by impinging the deflector. Fresh air is thus supplied to the HCWs
and patients. However, for complete mixing ventilation, the maxi-
mum removal efficiency is 1.0 [59]. This means that the contami-
nants are mixed throughout the air of the entire room, and the
occupied zone is contaminated as much as the exhaust vent. In this
case, the fresh air supplied is not fully utilized. The results of
Cheong and Phua [15] showed that the local removal efficiency
at the HCWs’ positions ranges from 0.91 to 1.12 in AIIRs with ceil-
ing air supply and lower exhausts in the sidewall. The removal effi-
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ciency exceeds 1.0 when the sampling points are right under the
air supply vents at 1.4 m height. In practice, an air supply that
directly vents toward the occupants is unacceptable due to unde-
sirable draughts.

By increasing the ACH, the removal efficiency of adaptive wall-
based attachment ventilation increases significantly, while those of
ceiling air supply and upper sidewall air supply remain around 1.0,
as shown in Fig. 5 [23,60]. In an experiment, Berlanga et al. [61]
carried out four kinds of mixing ventilation configurations. For very
similar air distribution modes with ceiling air supply and low side-
wall exhaust, the removal efficiency ranged from 0.97 to 0.99 when
the ACHs varied from 6 to 12 h�1. According to the theory of com-
plete mixing ventilation, the removal efficiency cannot exceed 1.0,
despite a continuous increase in ACH. For adaptive wall-based
attachment ventilation, the relation between ACH and removal
efficiency (E) can be obtained by exponential function fitting, as
in Eq. (1):

E ¼ E0 þ A � eR0 �ACH ð1Þ
where E0, A, and R0 are coefficients of the fitting formula;
E0 = –0.96 ± 1.71, A = 0.51 ± 0.65, and R0 = 0.16 ± 0.06, with
R2 = 0.98. It has also been reported that variation occurs in removal
efficiencies according to the ACHs of other air distribution modes,
such as displacement ventilation and stratum ventilation. Tian
et al. [62] found that the removal efficiencies were 1.10–1.49 when
the ACHs were 2.2–4.7 h�1. Mateus and Carrilho da Graça [63]
tested the removal efficiencies of displacement ventilation and
found that the average value was 1.7 when the ACH was 4.4 h�1.
Although these two studies were not aimed at AIIRs, their core idea
for airflow distribution is to move clean air into the occupied
zone. Adaptive wall-based ventilation has a similar principle. By
supplying fresh air to the occupied zone directly, these studies
achieved higher removal efficiencies. However, these studies used
limited ACHs because the air supply vents of displacement



Fig. 5. Removal efficiency of the air distribution mode for varying ACHs. The ACHs
in the red box is the recommended range [23,60].
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ventilation and stratum ventilation are usually directly aimed
toward the occupants. Thus, increasing the ACH may lead to a high
air velocity, with a greater risk of a draught at floor level [64]. For
adaptive wall-based ventilation, the air velocity decays by imping-
ing the deflector before entering the occupied zone. Thus, air can be
supplied with an ACH as large as the rate required for mixing ven-
tilation, but with greater removal efficiency.
4.3. Effect of negative pressure

To prevent contaminants from leaking out from the isolation
ward, a negative pressure should be maintained. In the present
research, a range from 0 to �30 Pa was used to determine how
the negative pressure affects the flow fields and ventilation in
the isolation wards. The removal efficiency ranged from 1.31 to
1.48 when the negative pressure of the outlets was changed. The
result can be fitted linearly with a slope of 0 and the residual
sum of squares 0.02, as shown in Appendix A Fig. S6. This finding
illustrates that, in practice, the negative pressure of the outlets
has barely any influence on air distribution. There are vertical pres-
sure gradients in the studied isolation ward due to the air stack
effect. The largest negative pressure appears near the outlets, while
the smallest pressure is near the inlet due to the boundary condi-
tions at the inlets and outlets.

There is insufficient scientific evidence regarding the pressure
difference limit values that are required to prevent the escape of
infectious air from an AIIR [65]. As Xu and Zhou [66] pointed out,
a negative pressure within the AIIR can only prevent the leakage
of contaminants and has nothing to do with protecting the medical
staff. In different countries and districts, the commonly required
value of negative pressure is different. According to US guidelines
[12], the pressure difference between the AIIR and the corridor
should be at least 2.5 Pa. In the United Kingdom, this value is
5 Pa [18]. Nordic countries require the pressure difference to be
15 Pa [20,22], while an even higher pressure difference of 30 Pa
is recommended in Australia [29]. In practice, a small pressure dif-
ference is not enough to hold against variable weather conditions,
especially when the airtightness of an AIIR is insufficient [65]. Li
et al. [67] found that the pressure difference criteria of �2.5 Pa
was met in 97% of the 38 rooms tested (mean �7.7 Pa for all the
rooms tested) in SARS isolation wards in Hong Kong, China.
Alevantis et al. [68] suggested that the negative pressure in an AIIR
should be at least �7 Pa to prevent the leakage from exceeding 1%.
Due to both the effect on removal efficiency and the pressure
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distribution, a large negative pressure for the outlets is
unnecessary.

4.4. Thermal comfort and economic analysis

To assess the thermal conditions in the room, environmental
parameters and different local discomfort indices were obtained,
as presented in Appendix A Table S3. To maintain a comfortable
indoor thermal environment, assuming that the heating load is
40 W�m�2 in winter and the cooling load is 60 W�m�2 in summer,
the indoor air temperature is required to be 20–22 �C in winter and
26–27 �C in summer [23]. According to the balance of heat and
mass, the supply air temperature is 24 �C in winter and 21 �C in
summer for the ceiling air supply mode using an ACH of 10 h�1,
while the temperature is 24.6 �C in winter and 20 �C in summer
for adaptive wall-based ventilation with an ACH of 8.5 h�1.

Adaptive wall-based attachment ventilation can meet all the
requirements [23,69] for air temperature and air velocity as well
as the ceiling air supply mode. The thermal comfort indices, pre-
dicted mean vote (PMV), and draught rate (DR) were adopted to
evaluate the thermal environment [70]. An HCW is considered to
be a standing person performing a light activity (1.4 met), while
the patients are considered to be quietly sitting (1 met) [60]. As
the HCWs and patients have different metabolic rates, their ther-
mal comfort levels are different. When using adaptive wall-based
attachment ventilation, the HCWs’ and patients’ thermal comfort
levels in both winter and summer are within the thermal comfort
interval (�1, 1). The HCWs feel slightly warm in both winter and
summer due to their light activity, while the patients’ thermal
comfort levels are lightly cool in winter and lightly warm in sum-
mer. In winter, with the same ACH, the PMV results for adaptive
wall-based attachment ventilation comply with regulation EN-
16798 from Energy performance of buildings—ventilation for build-
ings—Part 1 in European Union (EU) countries [71]. This is because
the extended Coanda effect in adaptive wall-based attachment
ventilation helps to maintain a downward momentum against
buoyancy, enabling air to be effectively supplied to the occupied
zone. For the same reason, the DRs of adaptive wall-based attach-
ment ventilation (6.7%) are a bit higher than those of mixing ven-
tilation in summer, although they still meet the requirement of EN-
16798 [71]. Berlanga et al. [61] found that HCWs (with a PMV of
0.39–0.72) felt warmer than patients (with a PMV of �0.32 to
�0.07) under different mixing ventilation modes. In their study,
when the ACH increased, the PMV for the ceiling air supply mode
did not change. Aganovic et al. [72] proposed a protected occupied
zone ventilation by using an air curtain between HCWs and
patients. At a short distance from the air supply, the DRs of differ-
ent body parts were evaluated, and were found to range from 0.9%
to 31.0% [72].

It is noted that adaptive wall-based attachment ventilation
achieves a slightly better thermal environment with the same
removal efficiency and a lower ACH when compared with the ceil-
ing air supply mode. From the perspective of system configuration,
adaptive wall-based ventilation uses slots instead of grills or dif-
fusers. A specialized hospital for the airborne infection isolation
of diseases was taken as an example for economic analysis. The
hospital has ten sections for patients with confirmed cases, and
each section has 20 AIIRs. The air in each section is controlled by
an air handling unit and a set of air transmission systems. As the
heating and cooling load are respectively the same for both air dis-
tribution modes, the main operating energy costs come from the
fans of the air transmission systems. For adaptive wall-based ven-
tilation with an ACH of 8.5 h�1, the fan capacity is 85% of that of the
ceiling air supply mode with an ACH of 10 h�1. An economic anal-
ysis comparison of one section is shown in Appendix A Table S4.
Although the proposed system increases the initial material costs
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and the labor costs of the deflector, it saves air duct material costs
due to the reduction of the total air volume, and saves operating
costs due to less ACH. Therefore, adaptive wall-based attachment
ventilation is economically feasible and more energy efficient than
other options.
5. Conclusions

Studies have shown that better ventilation can greatly reduce
the suspension time of respiratory droplets in the air. In order to
establish suitable ventilation strategies for isolation wards, the
application of adaptive wall-based attachment ventilation was
studied and compared with the ceiling air supply and upper side-
wall air supply modes. Contaminant source emission characteris-
tics, negative pressure, and outdoor climate were taken into
account. Three aspects of different air distribution modes, includ-
ing contaminants dispersion, removal efficiency, and indoor ther-
mal comfort, were evaluated by indexes. It can be concluded that
adaptive wall-based attachment ventilation can create a clean
and comfortable occupied zone for medical staff and patients with
less energy use than other air transmission systems.

(1) Adaptive wall-based attachment ventilation can supply
fresh air to the zone occupied by medical staff and patients. Under
the constant release of contaminants, with the same air change
rate (10 h�1), adaptive wall-based attachment ventilation has the
lowest average contaminant concentration in the occupied zone
(winter 0.45%, summer 0.29%), followed by ceiling air supply (win-
ter 0.95%, summer 1.91%) and upper sidewall air supply (winter
1.4%, summer 1.19%). Adaptive wall-based attachment ventilation
provides greater access to fresh air supply than the other two
modes. When intermittent releases of a large number of contami-
nants occur, the concentration of contaminants varies with time.
Within the same duration, adaptive wall-based attachment venti-
lation exhausts the greatest quantity of contaminants.

(2) A formula associating air change rate with removal effi-
ciency for adaptive wall-based attachment ventilation can be
obtained based on an exponential function. When air change rates
increase, the removal efficiency of adaptive wall-based attachment
ventilation increases significantly, while those of ceiling air supply
and upper sidewall air supply remain at around 1.0. For an ACH of
10 h�1, the removal efficiency of adaptive wall-based attachment
ventilation is 1.3–2.5 times greater than that of ceiling air supply.

(3) The effect of negative pressure only appears locally around
the exhaust vent. It barely has any influence on the air distribution
of adaptive wall-based attachment ventilation. Thus, with this
mode, there is no need for a large negative pressure in isolation
wards.

(4) Under the same heating and cooling load, adaptive wall-
based attachment ventilation can achieve the same removal effi-
ciency and a similar thermal comfort level as ceiling air supply,
but with a 15% lower ACH. A lower ACH also means that less duct
area is required in terms of material investment. The duct area
saved when using this mode is 12.6 times greater than the
increased area of the deflector that is required for this mode. Thus,
adaptive wall-based attachment ventilation is both economically
feasible and more energy efficient than other options.
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