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a b s t r a c t

As widespread wetland plants, Phragmites play a vital role in water purification and are widely utilized in
constructed wetlands (accounting for 15.5% of applied wetland plants) as a natural alternative to
wastewater treatment. However, despite such common applications, current understanding of the basic
composition of the Phragmites root-inhabiting microbiome and the complex functions of each member of
this microbiome remains incomplete, especially regarding pollution remediation. This review summa-
rizes the advances that have been made in ecological and biochemical research on the Phragmites root
microbiome, including bacteria, archaea, and fungi. Based on next-generation sequencing, microbial com-
munity compositions have been profiled under various environmental conditions. Furthermore, culture-
based methods have helped to clarify the functions of the microbiome, such as metal iron stabilization,
organic matter degradation, and nutrient element transformation. The unique community structure and
functions are highly impacted by Phragmites lineages and environmental factors such as salinity. Based on
the current understanding of the Phragmites root microbiome, we propose that synthetic microbial com-
munities and iron–manganese plaque could be applied and intensified in constructed wetlands to help
promote their water purification performance.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Wetlands are often considered to be the ‘‘kidneys of the Earth”
due to their unique ecological role in water purification [1].
Wetlands constructed for wastewater treatment are engineered
systems inspired by natural processes, which transform and/or
stabilize pollutants in contaminated water within a more
controlled environment [2]. Constructed wetlands (CWs) have
developed rapidly over the last two decades due to their superior
performance in comparison with traditional wastewater treatment
plants and have thus drawn increased attention from researchers
(Fig. 1). CWs are robust, have low external energy requirements,
and are easy to operate and maintain, which makes them suitable
for decentralized wastewater treatment in areas without public
sewage systems or that are economically underdeveloped [3,4].

The removal of contaminants in CWs is a complex process that
mainly involving the combined roles of soil particles, microbes, and
plants. These three parts of the CWs play different roles in
pollution remediation: Soil particles filter out and adsorb pollu-
tants, thereby providing greater opportunities for their degrada-
tion and transformation by plants and microorganisms [5].
Enriched microorganisms around the plant roots, resulting from
the rhizosphere effects of plants, play a critical role in the
biodegradation of pollutants [6]. These root-inhabiting microbes
also provide transformed substances (e.g., nitrate) for uptake and
assimilation by plants [7]. Therefore, interactions between plants
and microbes are critical for CW performance [6,8] and have gar-
nered increasing attention in recent years [9,10]. Most previous
studies have focused on how to manipulate the root microbiota
to promote crop production [11–13], avoid diseases or pathogens
[10,14,15], and resist stress such as drought [16–18]. However,
only a few reports have explored wetland plant root-associated
microbiomes and their relevant functions [8,19]. To improve the
water purification capacity of CWs, it is critical that we understand
how wetland plants interact with microbes and contribute to pol-
lution remediation.

As perennial gramineous emergent aquatic plants with strong
adaptability and wide ecological amplitude, Phragmites can form
dense dominant communities in aquatic ecosystems and are
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among the most common plants found in wetlands [2,20]. More-
over, Phragmites are one of the most commonly used plants in
CWs, accounting for 15.5% of applied wetland plants over the last
two decades (Fig. 1) and even higher in actual engineering treat-
ment plants. Given their wide distribution in natural wetlands
and large-scale application in CWs, Phragmites and their root-
inhabiting microbiome exhibit unique potential for contaminant
remediation and improved wetland function.

To determine how microbial-based control strategies can be
enhanced in CWs using a collective impact approach, effort should
be expended on understanding the symbiosis between reed roots
and microbes. In this review, we summarize previous research on
the exploration of the reed root-associated microbiome, including:
① the role of the Phragmites root microbiome in pollution remedia-
tion; ② the contribution of each member in the microbiome,
including bacterial, archaeal, and fungal communities; and ③ the
wide application of Phragmites in CWs, in which potential bioaug-
mentation approaches can be applied to enhance pollutant
removal. Given the above aspects, we also summarize the
strengths and deficiencies of current research and propose future
developments in this area.
2. Roles of the Phragmites root microbiome in metals, organics,
and nutrients removal

As CWs are impacted by different types of contaminants, the
reed root microbiome must be versatile under different situa-
tions—that is, when interacting with metal ions, organic matter
(OM), or nutrient elements.
2.1. Metal ions

The removal of metal ions mainly relies on the plant rhizo-
sphere environment [21,22]. For some metal ions, such as zinc
(Zn), iron (Fe), and manganese (Mn) ions, which are attributed to
plant growth and photosynthesis, assimilation by plants is of first
consideration, especially when metal ions are present at relatively
low concentrations [23]. The ions can be absorbed by plants and
are then transferred to the shoots and leaves. Nevertheless, these
metal ions are generally precipitated in anaerobic and anoxic envi-
ronments, given their redox potentials. Plant root exudates, which
are associated with root microbes, can influence metal ion
bioavailability and anti-aggregation by secreting secondary com-
pounds to mediate dissolution. For example, siderophores are
Fig. 1. Proportions of applied plants in CWs in articles published from 2000 to 2020.
wetlands” as the topic words in articles from 2000 to 2020. The grey bar represents the t
in title or abstract or keywords); the black bar represents studies that applied reeds (Ph
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known to play a role in the chelation and dissolution of various ele-
ments [22,24].

Other metal ions that are harmful to human health and the
environment, such as arsenic (As) and chromium (Cr), especially
at high concentrations, can be immobilized and transformed by
roots and their microbes. This is regarded as the primary approach
for metal ion stabilization in heavy metal wastewater treatment
[25–27]. Phragmites can form Fe plaque to strengthen the wetland
load under high-concentration metal ion stress [28]. Fe plaque is
generated under root radial oxygen loss [29,30] and with the help
of Fe-oxidizing bacteria, which are common root-inhabiting
microbes [31]. The plaque is characterized as amorphous oxide
or hydroxides, which provide sufficient sites for microbial congre-
gation and metal ion absorption [32,33]. Therefore, high concentra-
tions of metal ions can be sequestrated by Fe plaque in reed root
systems. Certain harmful ions such as As(III) can be adsorbed onto
the Fe plaque and oxidized into less harmful As(V) by As-oxidizing
root-inhabiting bacteria [34,35]. The same process has been
reported for selenium and mercury [36]. A more detailed discus-
sion is provided later in this work.

Collectively, the above processes can transfer metal pollution
from aggregations in the soil to microbes and plants, thereby alle-
viating soil pollution and enhancing the performance of CWs.

2.2. Organic matter

OM in wastewater treatment is commonly characterized by
chemical and biochemical oxygen demand (COD and BOD, respec-
tively). In CWs treating artificial wastewater, the establishment of
Phragmites exhibits a higher removal efficiency of COD and organic
nitrogen (N) than areas without Phragmites [37]. Phragmites can
absorb a certain amount of soluble OM (octanol/water partition
coefficient, logKow between 0.5 and 3.5), such as trichloroethene
(TCE) [38], and show a low adsorption efficiency for perfluorooc-
tanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS) [39], and
ibuprofen [40]. Nevertheless, certain OM pollutants can be
removed by root microbes [41]. In addition, OM can serve as a car-
bon (C) and N source for the root-inhabiting microbiome [38]. For
example, the Phragmites root microbe Sphingobium fuliginis uses
4-tert-butylphenol as the sole C source for growth [42].

The reed root microbiome is like a ‘‘black box” in which interac-
tions among microbes and microbes, and among microbes and
plants, are complex. During rhizoremediation, plant roots secrete
exudates, which enhance or stimulate the growth and activity of
the rhizosphere microbial community, resulting in the effective
Data were obtained from the Web of Science Core Collection using ‘‘constructed
otal number of publications using ‘‘constructed wetlands” as topic words (contained
ragmites).
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degradation of OM pollutants [8]. However, future research needs
to explore the pollution remediation potential against more com-
plex and harmful OM, which could broaden the application of
reed-bed CWs.
2.3. Nutrient elements

Both nitrogen (N) and phosphorus (P) are essential growth fac-
tors for Phragmites species and their rhizosphere microbes. The
removal of nitrogen and phosphorus by Phragmites is effective
when the plants are harvested and removed from the system;
otherwise, nitrogen and phosphorus can be reintroduced following
plant decomposition [43]. In contrast, root microbes may be able to
convert or mobilize these nutrient elements in situ, which benefits
the long-term and sustainable operation of CWs.

It has been found that the planting of Phragmites promoted the
mineralization of organic nitrogen, nitrification, and denitrification
in the resulting sediments compared with sediments that had not
previously been planted. The microbes inhabiting the roots of
Phragmites were responsible for almost half of the total N removal
[37]. The rhizosphere environment of the Phragmites provided the
necessary conditions for microbial N cycling: ① a repeating cycle
of oxidizing and reducing conditions to cope with different envi-
ronments for the transformation of the varied forms of nitrogen;
② sufficient C source for denitrification or dissimilatory nitrate
reduction to ammonium (DNRA), which is provided by the exu-
dates of Phragmites, while OM can serve as a C source for microbes;
and ③ most importantly, a specific microbiome with functional
genes, which is commonly composed of bacteria and archaea.
The abundances of bacterial 16S ribosomal RNA (rRNA), archaeal
16S rRNA [44], ammonia-oxidizing bacterial ammonia monooxy-
genase (coding by the gene amoA), ammonia-oxidizing archaeal-
amoA [40,41], denitrifying bacterial nitrite reductase (nirK) genes
[44], and even the anaerobic ammonium oxidation (anammox)
process [45,46] increased significantly in sediments planted with
Phragmites, and promoted the mineralization of organic N, carried
out nitrification and denitrification in the sediments, and eventu-
ally facilitated the N removal. Therefore, it is obvious that reed
roots provide a suitable platform for root-inhabiting microbes to
complete N removal.

For phosphorus, as a basic growth element for plants and
microbes, assimilation is the primary process that occurs during
wastewater treatment in CWs. Compared with nitrogen, the exist-
ing forms of phosphorus (e.g., PO4

3–) can also precipitate with
metal ions [44]. Given that Fe plaque on the reed root surfaces
gathers metal ions as well as different forms of phosphorus, the
reed rhizosphere environment forms a phosphorus pool for both
the plant itself and its root microbes [48]. In addition, some root
microbes can further transform or absorb phosphorus for plants
or themselves, resulting in purification [49].

To conclude, the Phragmites root-inhabiting microbiome is a
vital part of pollution remediation in CWs. Therefore, understand-
ing the Phragmites root microbiome is essential for successful con-
taminant removal and immobilization, and includes an
understanding of: ① microbial composition and existence in the
root environment; ② microbial performance under various situa-
tions; and ③ potential microbial functions for further applications.
3. Phragmites root microbiome members and their
performance

Investigation of the magnitude and distribution of plant micro-
biome inhabitants—which include fungi, bacteria, archaea, protists,
and viruses—over the past several decades has had a transformative
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effect on plant–microbe research [11]. The development of next-
generation sequencing (NGS), a culture-independent method, has
allowed researchers to study the composition profiles of micro-
biomes under different environments. Among different NGS meth-
ods, amplicon sequencing has been widely used for the
composition profiling of bacteria, archaea (e.g., 16S ribosomal DNA
(rDNA)), and fungi (e.g., internally transcribed spacer (ITS), 18S
rDNA). Therefore, we reviewed recent culture-independent and
culture-dependent research profiling the root microbiomes and
their contributions to pollution remediation. As current research
on protists and viruses in the Phragmites root environment has not
directly contributed to contaminant transformation due to their
specific ecological roles [50,51], separate discussions are only pro-
vided for the bacterial, archaeal, and fungal communities.

3.1. Bacterial community composition

Bacterial community composition (BCC) has been extensively
studied in previous research using 16S rDNA gene-based high-
throughput sequencing. Studies on the root-inhabiting bacterial
microbiota have focused on the ‘‘bulk soil compartment” (i.e., bac-
teria in unplanted soil); ‘‘rhizosphere compartment” (i.e., bacteria
attached to roots and collected by the centrifugation of root wash-
ings); and ‘‘root compartment” (i.e., epiphytic bacteria found in
root tissue depleted of soil particles by sequential washing and
sonication) [52]. In Phragmites roots, these three compartments
generally exhibit different structures and compositions. He et al.
[53] examined the BCC of the common reed (Phragmites australis
(P. australis)) and observed higher a-diversity (indicating richness)
and lower b-diversity (indicating stability across samples) of the
BCC in the rhizosphere compared with that in the bulk soil and root
compartments. These findings indicate that the assembly of the
Phragmites root microbiome is recruited under the synthetic effects
of plants and the environment, which is consistent with the finding
that deterministic processes determine the bacterial assemblages
of the Phragmites rhizosphere microbiome from the perspective
of microbial community ecology [54]. In addition, the Phragmites
rhizosphere BCC can affect the composition of the root compart-
ment bacteria [53]. Due to their distinct roles, the rhizosphere bac-
terial community is of particular interest in research, as shown in
Table 1 [54–63].

3.1.1. Compositional variation
Taxonomically, bacteria are strongly represented by Proteobac-

teria, Firmicutes, Actinobacteria, and Bacteroidetes at the phylum
level [64]. However, the BCC structure can vary in different studies,
as Phragmites are well adapted to a wide variety of soil (or sedi-
ment) environments, which exhibit considerable differences in
salinity (0–25 part per trillion (ppt)), pH, nutrient content, and
hydrological regime [65]. As shown in Table 1, geographical sam-
pling sites in previous wetland research can be classified into
shoreline and riparian zones, in which salinity plays an important
role in driving BCC [55]. Furthermore, the water quality of CWs
exerts an important influence on the structural and functional
characteristics of Phragmites BCC [66]. In addition to environmen-
tal effects, Phragmites lineage and genotype are important. Bowen
et al. [56] explored different lineages and compositions of the root
microbiota of P. australis and showed that within-lineage bacterial
communities are similar but among-lineage bacterial communities
are distinct. In contrast, Yarwood et al. [67] reported that bacterial
biomass and composition do not differ between native and inva-
sive P. australis lineages. The reasons for these different results
may be related to the effects of the environment, which differed
considerably between the garden control test used by Bowen
et al. [56] and the field test used by Yarwood et al. [67]. Even



Table 1
Research applying 16S rDNA sequencing on the Phragmites root microbiome.

Phragmites species Amplification region Sampling area Sampling compartment Accession number Reference

P. australis V4 Riparian zone Rhizosphere soil SRR4420130 [56]
P. australis V3–V4 Riparian zone Rhizosphere soil PRJNA488152 [58]
P. australis V3–V4 Riparian zone Rhizosphere soil PRJNA412147 [59]
P. karka V5–V7 Shoreline Rhizosphere sediments Not available [55]
P. australis V5–V6 Flooded area Bulk sediments, rhizosphere soil, roots, seeds PRJNA528336 [55]
P. australis V5–V6 Flooded area Rhizosphere and phyllosphere SRP189428 [54]
P. australis V4–V5 Riparian zone Rhizosphere soil, roots, seeds SRP120065 [60]
P. australis V4–V5 Tidal marsh Rhizosphere sediment PRJNA543564 [61]
P. australis V4 Flooded area Rhizosphere soil PRJEB23940 [57]
P. australis V4–V5 Riparian zone Rhizosphere soil PRJNA438165 [62]
P. australis V4 Flooded area Rhizosphere soil SRP160913 [63]
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though P. australis lineages can cause composition differences, the
outer environment might have masked the effects brought by line-
ages. Furthermore, genotype-driven influence could also be super-
seded by environmental factors. For example, Phragmites karka (P.
karka), another genotype of Phragmites, shows an over-
representation of Proteobacteria, Firmicutes, Actinobacteria, and
Chloroflexi in rhizosphere communities, which is in agreement
with existing studies on P. australis [55]. In fact, the composition
of the exudates produced by different species or lineages and the
accompanying changes in soil C and N compounds might stimulate
or inhibit specific species of bacteria [68]. Moreover, under the
same habitat, P. australis and Typha latifolia tend to converge
toward a common taxonomic composition [57].

In general, environmental factors exert a strong influence on
Phragmites BCC, and may even masked the ‘‘rhizosphere effects”
caused by host plants. Nevertheless, the current methods limit
our understanding. Even under the same amplicon sequencing
method, primer bias or variation in amplification region can differ,
which makes cross-validation between studies difficult to carry
out. Therefore, sampling and sequencing methods with uniform
procedures should be established [69]. In addition, shotgun
metagenomic/metatranscriptomic sequencing could be further
considered in order to profile the functional compositions of the
Phragmites root-inhabiting microbiome.

3.1.2. Potential roles in pollution remediation
The aim of BCC profiling is to thoroughly understand the special

functions fulfilled by the bacterial community. Zhang et al. [58]
used Phylogenetic Investigation of Communities by Reconstruction
of Unobserved States (PICRUSt) to predict the potentially func-
tional composition of the Phragmites root bacterial microbiome
from 16S rDNA gene sequences. The results showed that xenobiotic
biodegradation and metabolism, which are related to benzoate and
aminobenzoate degradation, were the most dominant functional
groups. The functional categories involved in the degradation of
chloroalkane, chloroalkene, caprolactam, naphthalene, and toluene
were also plentiful.

In addition to culture-independent methods, culture-dependent
methods can be used to confirm the distinct functions of a bacterial
community. Toyama and colleagues carried out a series of degrada-
tion experiments using P. australis rhizosphere sediments to biode-
grade technical nonylphenol (tNP) [70] and pyrene and benzo[a]
pyrene [71], and found results similar to those predicted using
PICRUSt above. The researchers could not only profile the func-
tional composition in combination with the isotopic tracer tech-
nique, but also quantify the contribution of the Phragmites
bacterial community to nitrate reduction in different habitats
(i.e., water sediment or land soil) [47]. Thus, bioinformatics can
provide a relatively complete profile of functional composition,
and can therefore help in future experiments to verify the pro-
posed functions of interest.
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3.2. Phragmites root-inhabiting archaea and fungi

Although they are active members of microbial communities,
archaea and fungi remain poorly characterized in the roots of wet-
land plants, and their functional roles are largely unreported. How-
ever, they still contribute to and play important roles in microbe–
Phragmites interactions. Most previous research has examined
archaea and fungi in regard to the root compartment, where they
attach closely to the root surface of Phragmites, as discussed below.

3.2.1. Archaeal community
Archaeal community composition has been studied based on

16S rDNA gene sequencing, in the same way as bacteria has been
studied [72]. However, as only a few archaeal species have been
successfully cultivated using culture media, culture-independent
methods (e.g., NGS) are more commonly utilized to study archaeal
diversity [73]. Based on current research, the most commonly doc-
umented archaeal phyla are Crenarchaeota and Euryarchaeota,
among which ammonia-oxidizing and methanogenic archaea are
the dominant types and play significant roles in the N cycle and
methane production in Phragmites rhizosphere soil, respectively
[72,74,75].

Archaeal community composition is influenced by many fac-
tors. The composition of Phragmites root archaea is more sensitive
to environmental factors compared with the host-plant-driven
effect from the genotypes of Phragmites, as the same dominant
archaeal composition in the Phragmites root is also present in the
rice root system [76]. However, unlike bacterial communities,
endophytic archaeal communities are more vulnerable to soil
salinity [74]. The different distribution patterns of Phragmites root
bacterial and archaeal endophytes along a salinity gradient imply
that these two groups play different roles in plant–microbe inter-
actions. Furthermore, archaea may have the ability to promote
Phragmites growth and resistance to salinity, as archaeal commu-
nity composition is strongly associated with water salinity [75].

Unfortunately, due to a lack of available databases and effective
cultural methods, the structure and functions of Phragmites root
archaea are beyond current research. From the perspective of
bioinformatics, a total of 19.1% of the sequences in the Phragmites
root environment are unclassified, suggesting that many unidenti-
fied archaea are actively involved in the reed wetland ecosystem
[72]. Therefore, more unique functions of Phragmites root archaea
could be discovered with the development of more advanced
methods.

3.2.2. Fungal community
Integrated cultivation and molecular identification approaches

are commonly used to explore fungal community structure [77].
Based on molecular analysis of the rDNA internal transcribed
spacer (ITS) region, only a few fungal species are reported to domi-
nate the highly diverse community structures associated with
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Phragmites [68]. Endophytes have been recovered from the roots of
P. australis, showing that Hypocreales and Sarocladium strictum
dominate the isolated fungal community [77,78]. Although the dif-
ferent climatic and geophysical conditions at sampling sites may
influence the composition of fungal communities, these dominant
species contribute to certain functions associated with Phragmites,
such as the ability to resist salinity [72]. Phragmites root fungal
communities under high-salt circumstances show higher resis-
tance to Zn, mercury, and salt stress compared with fungal species
found under low-salt conditions. These endophytes also show a
greater propensity for the growth promotion of rice seedlings (a
model species) under salt stress [79,80].

Apart from salinity, lineage is also important in fungal commu-
nity composition [20]. Recently, Gonzalez Mateu et al. [81]
assessed the role of dark septate endophytes (DSEs) in the fungal
endophyte communities of native and invasive lineages of P. aus-
tralis and found that native and invasive lineages had distinct fun-
gal endophyte communities. Studies on the differences between
invasive and native lineages of P. australis are consistent with the
‘‘habitat-adapted symbiosis” hypothesis—that is, that endophytic
microbes may help plants adapt to extreme habitats [64,74,80].
The co-evolution of plants and microbes, along with the capacity
of plants to establish symbiotic relationships with diverse endo-
phytic microbes, appears to enhance plant tolerance to abiotic
stress [80]. These results could indicate a factor that contributes
to plant invasiveness, which can cause both economic and ecologi-
cal damage [82].

Each member of the Phragmites root microbiome is closely
related to the host plant as well as to the environment, which
can exert varied influences on different members. During the
operation of CWs, changes in temperature, pH, and dissolved oxy-
gen and redox potential (ORP) influence the biomass, microbial
composition, and intensity of microbial interactions, which can
be indicated by network complexity [83]. A variety of key
pollutant-removal processes such as sedimentation, precipitation,
and volatilization would be subsequently influenced [84]. All
members of the microbiome exhibit a high potential for pollution
remediation, which makes Phragmites the most widely applied
plant in CWs. However, as a compact pollution remediation plat-
form, CWs show great strength in integrating state-of-the-art tech-
niques for performance promotion. Based on the current advances
in microbial functional composition, further effort is required
regarding how to apply biological augmentation processes in
CWs in order to control and promote performance precisely.
4. Bioaugmentation application in CWs

Each member of the root microbiome plays a role in pollution
remediation. Nevertheless, interactions among members of the
microbiome can amplify certain functions, such asN transformation
and stubborn OM degradation [85,86]. Therefore, based on our
understandings of the exact functions of each member in the rhizo-
sphere microbiome and the complex interactions among them, we
can design and assemble amicrobial community according to speci-
fic purposes, which are known as synthetic microbial communities
(SynComs) [87]. Moreover, aside from livingmicrobes, extracellular
polymer substances that are generated by microbes, as well as root
iron plaque, also contribute to pollution remediation [14]. For
example, iron plaque has been shown to participate in harmful
heavy metal ion (e.g., As) stabilization, phosphate immobilization,
N cycling, and micropollutant removal [88–92]. The components
of the iron plaque not only included Fe oxides, but also Mn oxides,
which were generated by microbial processes [92]. Therefore, we
propose intensifying the generation of Mn oxides by stimulating
the functional microbes, which can eventually lead to the enhanced
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performance of CWs. Based on the two aspects described above, two
methods can be applied to enhance the performance of CWs: the
application of synthetic microbial communities, which may pro-
mote the microbial removal of pollutants; and intensification of
the generation of biogenic Fe–Mn oxides.

4.1. Synthesizing rhizosphere microbiomes

According to the National Human Genome Research Institute
(National Institutes of Health (NIH), USA), synthetic biology is
defined as ‘‘a field that involves redesigning organisms for useful
purposes by engineering them to have new abilities.” This tech-
nique can be applied to give host plants growth-promoting advan-
tages and disease resistance [93]. For a new CW, the Phragmites
rhizosphere microbiome can be engineered using bottom-up or
top-down approaches. In bottom-up approaches, microbes associ-
ated with special functional traits and abilities are isolated from
environmental microbiomes. After direct assembly or genetic engi-
neering (e.g., phage integrases, integrative and conjugative ele-
ments (ICEs), or chassis-independent recombinase-assisted
genome engineering (CRAGE) to ensure that the microbes carry
desired physiological traits and functions (e.g., degrading specific
pollutants)), the selected microbes are reassembled as SynComs
[87,94]. The selection of microbes in SynComs should consider
the unique traits and abilities of each member in order to ensure
that they complement each other; functional redundancy of Syn-
Com members can increase the resilience of inoculants, especially
in wetland environments [95]. Plants are then inoculated with the
SynComs, which can robustly recolonize the hosts. In top-down
approaches, mobile genetic elements (e.g., plasmid-harbored
specific degradation genes) are incorporated into a conjugal donor
strain. Then, ideally through horizontal gene transfer, the donor
strain can deliver the mobile genetic element to a broad range of
rhizosphere microbes in situ [93]. At present, the application of
SynComs has helped clarify the roles of the rhizosphere micro-
biome (e.g., plant–microbe interactions) under different environ-
mental conditions; however, the use of SynComs to reinforce the
rhizosphere effect (e.g., bioremediation) is still largely unexplored.
Furthermore, whether SynCom members can survive and exert
their functions in situ is unpredictable because plant–microbe
and microbe–microbe interactions among rhizobial plants, indige-
nous microbes, rhizobial inoculants, and SynComs are complex and
may hinder successful colonization (Fig. 2).

4.2. Intensifying the generation of biogenic Fe–Mn oxides

Precipitation of Fe hydroxides and oxyhydroxides in reed
rhizosphere environments can lead to the formation of Fe
plaque, which can, in turn, act as a barrier to heavy metal uptake
[96]. Mn plaque is usually co-generated or sub-generated with Fe
plaque [97]. Fe plaque not only shows a high affinity to Mn ions,
but can also provide growing sites for Fe and/or Mn oxidizing
bacteria (FeOB and MnOB) [32,98]. Unlike Fe oxides, which rely
heavily on chemical reactions between Fe(II) and oxygen [31],
bacterially mediated oxidation dominates the abiotic oxidation
of Mn(II) by several orders of magnitude [99]. Thus, bacterial
Mn(II) oxidation is considered to be a primary driver for Mn
(III) and Mn(IV) oxide formation within the environment. Like
Fe hydroxides, biogenic Mn oxides have a large specific surface
area, which results in high absorption rates of OM and of heavy
metal ions such as As, Cr, and lead [100]. Due to the high redox
potential of Mn oxides, the adsorbed contaminants can be
oxidized, and the generated Mn(II) is subsequently re-oxidized
by MnOB [101–103].

Active Mn cycling shows great potential in wastewater treat-
ment in CWs [104]. The removal efficiencies of nitrate, phosphate
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polycyclic aromatic hydrocarbon (PAH), and micropollutants in
CWs are significantly increased with the application of Mn oxides
[105–109]. As the abovementioned Mn-amending research did
not detect Mn(II) in the effluent, the researchers speculated that
Mn oxidation occurred within their systems; however, they
underestimated the Mn(II) oxidation processes and plant–
microbe reactions (Fig. 2). Xie et al. [110] noted that Mn oxida-
tion activity is more intense at depths of 10–20 cm below the
CW surface, where plant–microbe interactions are also relatively
more intense. Thus, it is reasonable to believe that the plant
rhizosphere environment favors Mn(II) oxidation and MnOB
enrichment.

In natural environments, Fe–Mn plaque accumulation can
account for up to 10% of reed root dry weight and extends as
much as 15–17 lm into the rhizosphere, thus providing an eco-
logical foundation for wastewater treatment [111]. However, the
average concentration of Mn in wetlands is approximately
100 mg�kg�1 [97]. This is a critical factor in regard to the applica-
tion of the Mn-amending method to promote the removal of pol-
lutants in CWs, as shown in Fig. 2. Key enzymes in Mn bio-
oxidation processes are closely related to litter decomposition
[112]. Plant litter can accelerate Mn oxidation by enriching MnOB
in the Phragmites root environment [113]. In addition, microbial
Mn oxidation may be a stress response to the molecular arms
secreted by plants [114,115]. Phragmites usually successfully
compete with other plants to form dense dominant communities,
and are considered to be invasive species in North America; fur-
thermore, it has been found that their root exudates can act as
‘‘molecular arms” [116]. It is reasonable to believe that planting
Phragmites together with other wetland plants in CWs could
stimulate the generation of Phragmites’ molecular arms to win
Fig. 2. Applications of SynComs and biogenic Fe
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the competition, which could, in turn, contribute to the genera-
tion of Mn oxides (Fig. 2).
5. Summary

In general, the ecologically meaningful application of Phrag-
mites depends on interactions between reed roots and their associ-
ated microbes. Each root-inhabiting microbe, including bacteria,
archaea, and fungi, directly or indirectly contributes to metal ions
sequestration, OM degradation, and nutrient element transforma-
tion. The composition of the microbiome varies with environmen-
tal factors (e.g., salinity) as well as plant genotype. While current
culture-dependent and culture-independent methods have pro-
filed the structure of the microbial communities, advances in
genetic sequencing technology and the development of cultivation
media will increase our capability to detect and identify new
microbial taxa. To better understand the complex interactions
involved in the root microbiome, basic scientific research in com-
bination with improved technologies will enable CWs to be used
on a broader scale. Designing and applying Phragmites root Syn-
Coms and bio-generating Fe–Mn plaque (oxides) could help to bal-
ance and strengthen the current shortfalls and functions of CWs. In
future research, we consider it essential to explore the detailed
mechanisms of pollutants’ transformation and degradation in the
rhizosphere environment and recognize the exact groups of func-
tional microbes that contribute to pollution remediation. Based
on that knowledge, SynComs could be assembled more suitably
for application in CWs. In addition, substrate materials of CWs
(e.g., Mn oxides) could be modified to possess the ability to selec-
tively accumulate functional microbes.
–Mn oxides in CWs. OB: oxidizing bacteria.
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