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The coronavirus disease 2019 (COVID-19) and concerns about several other pandemics in the 21st cen-
tury have attracted extensive global attention. These emerging infectious diseases threaten global public
health and raise urgent studies on unraveling the underlying mechanisms of their transmission from ani-
mals to humans. Although numerous works have intensively discussed the cross-species and endemic
barriers to the occurrence and spread of emerging infectious diseases, both types of barriers play syner-
gistic roles in wildlife habitats. Thus far, there is still a lack of a complete understanding of viral diffusion,
migration, and transmission in ecosystems from a macro perspective. In this review, we conceptualize
the ecological barrier that represents the combined effects of cross-species and endemic barriers for
either the natural or intermediate hosts of viruses. We comprehensively discuss the key influential fac-
tors affecting the ecological barrier against viral transmission from virus hosts in their natural habitats
into human society, including transmission routes, contact probability, contact frequency, and viral char-
acteristics. Considering the significant impacts of human activities and global industrialization on the
strength of the ecological barrier, ecological barrier deterioration driven by human activities is critically
analyzed for potential mechanisms. Global climate change can trigger and expand the range of emerging
infectious diseases, and human disturbances promote higher contact frequency and greater transmission
possibility. In addition, globalization drives more transmission routes and produces new high-risk
regions in city areas. This review aims to provide a new concept for and comprehensive evidence of
the ecological barrier blocking the transmission and spread of emerging infectious diseases. It also offers
new insights into potential strategies to protect the ecological barrier and reduce the wide-ranging risks
of emerging infectious diseases to public health.

� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Background

Since 1970, over 1500 pathogens have been identified and
isolated, 70% of which come from animals. The World Health
Organization (WHO) has listed 15 pathogens as global threats
causing infectious diseases [1–4]. In recent decades, numerous
viruses such as Ebola, hydrophobia, avian influenza, dengue, Zika,
and human immunodeficency virus (HIV) have infected over 1
billion people and killed 80 million, and their area of influence
and the populations affected by them are increasing (Table 1)
[5–54]. Important cases include: West Nile River disease, which
has infected 4161 people and caused at least 277 deaths [23,55];
severe acute respiratory syndrome coronavirus (SARS-CoV), which
infected 8422 people and caused 919 deaths in 2003 [43,56]; and
Middle East respiratory syndrome coronavirus (MERS-CoV), which
has infected 701 people and caused 249 deaths since 2012 [51]. In
particular, the coronavirus disease 2019 (COVID-19), caused by the
novel severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2), has infected over 43 million people and caused over 1.1
million deaths as of 25 October 2020 [57], raising extensive
attention from both scientific and social communities.

The increasing frequency of emerging infectious diseases has
raised the question of how viruses can spread from natural hosts
in their wildlife habitats to human societies. As events that
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Table 1
Data on the first record of viral epidemics or pandemics.

Virus Type First record Epidemic area Infected
cases

Death Mortality References

Dengue virus Flavivirus, enveloped, single-stranded
ribonucleic acid (ssRNA)

16th century Global ~390
million�a�1

Unknown 1%–5% [5–8]

Hanta virus Bunyaviridae, enveloped, ssRNA 1913, Soviet
Union

Global > 1 000 000 Unknown 1%–60% [9–11]

Spanish flu, H1N1
pandemic (pdm)

Orthomyxovirus, enveloped, ssRNA 1918, United
States

Global ~500 to 1000
million

~25 to 50
million

0.1%–5% [12–14]

West Nile virus Flavivirus, enveloped, ssRNA 1937, Uganda Global > 57 354 >2447 3%–15% [15–20]
Zika virus Flavivirus, enveloped, ssRNA 1947, Uganda Global > 200 000 Unknown Unknown [21,22]
Chikungunya virus Alphaviruses, ssRNA 1952, Tanzania Global > 1.5 million Unknown < 1% [23–26]
Kyasanur forest

disease virus
Flavivirus, enveloped, ssRNA 1957, India India 3 263 Unknown 2%–10% [27–29]

Marburg virus Filovirus, enveloped, ssRNA 1967, Germany Africa 587 475 24%–88% [30,31]
Ebola virus Filovirus, enveloped, ssRNA 1976, South

Sudan
Africa 31 161 12 999 20%–90% [32–34]

Hendra virus Paramyxoviruses, enveloped, ssRNA 1994, Australia Australia 7 3 30%–60% [35–37]
H5N1 Orthomyxovirus, enveloped, ssRNA 1997, Hong

Kong (China)
Hong Kong
(China), Thailand

650 386 53% [38–40]

Nipah virus Paramyxoviruses, enveloped, ssRNA 1998, Malaysia Southeast Asia 477 248 52% [35,41,42]
SARS-CoV Coronavirus, enveloped, ssRNA 2002, China 32 countries 8 439 812 9.6% [43–45]
H1N1 pdm Orthomyxovirus, enveloped, ssRNA 2009, Mexico Global 0.7 billion–

1.4 billion
18 449
(confirmed);
201 200
(estimated)

0.01% [46–50]

MERS-CoV Coronavirus, enveloped, ssRNA 2012, Saudi
Arabia

27 countries 815 313 38.4% [51]

H7N9 Orthomyxovirus, enveloped, ssRNA 2013, China China 1 568 616 39% [40,52]
SARS-CoV-2 Coronavirus, enveloped, ssRNA 2019, China Global > 40 million > 1 million ~3% [53,54]

SARS-CoV: severe acute respiratory syndrome coronavirus.
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hypothetically correlate with viral transmission across both
species [58] and physical space, pandemic outbreaks are predomi-
nantly linked to the relationship between the natural environment
and humanity. Human activities have caused increasing environ-
mental problems around the world, including intensive contami-
nation [59], global warming [60], frequent natural disasters [61],
destruction of wildlife habitats [62], loss of biodiversity [63], and
so forth. These challenges have significantly altered the global
ecosystem and thereby shaped the behavior and habits of wildlife,
including natural pathogens and viruses to some extent [64,65],
consequently influencing the emergence and distribution of infec-
tious diseases. As a result, emerging infectious diseases are appear-
ing with high frequency, and the epidemic areas of some controlled
infectious diseases are expanding or even changing, causing severe
outbreaks and threatening public health [66]. New trends chal-
lenging the prevention and control of emerging infectious viruses
include the increasing number of viruses, diverse infection and
transmission routes, and the scope and frequency of pandemics
[67,68].

A vaccine is currently the most effective and cost-efficient strat-
egy to prevent susceptible populations from infection. However,
most RNA viruses and emerging zoonoses have no vaccines with
satisfactory protection efficiency [69]. For emerging infectious dis-
eases, prevention in advance is far more effective and economical
than treatment after an outbreak has occurred [70]. It is therefore
important to unravel the viral transmission routes from viruses’
natural hosts to human societies and to understand the underlying
mechanisms in order to design timely and long-lasting prevention
strategies [71].

Many studies have addressed the cross-species (molecular) bar-
rier or the endemic barrier against emerging infectious diseases
[58,72]; in fact, they are the two sides of the ecological barrier that
determines the possibility of emerging viruses transmitting to and
spreading among human societies from both the micro and macro
perspectives. The cross-species barrier represents the rarity of
viruses spreading efficiently within new hosts that have not been
previously exposed or susceptible [58]. Effective breakthrough of
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the cross-species barrier—namely, spillover infection into alterna-
tive hosts—is mainly attributed to viral mutation or evolution,
which allows viruses to gradually adapt to new host cells and
eventually spread into new populations [58,73]. On the other hand,
crossing the endemic barrier depends on the probability and fre-
quency of viral spread, which is closely correlated with contacts
between viruses’ natural hosts and potential hosts or humans
[72]. Although many studies have explored the initial outbreaks
and epidemics of infectious diseases and examined how they are
linked to the cross-species or endemic barriers, these studies
mainly focus on epidemiology and immunology; there is a lack
of a comprehensive and systematic analysis of viral migration
and transmission in ecosystems from a macro perspective.

Viruses have low genetic stability, and their evolution or varia-
tion is closely related to changes in the ecological environment
[74]. In addition, viral transmission is determined by interactions
among viruses, environmental media, and hosts, and the influential
factors vary across geographic regions [75]. It is worth noting that
human activities have a significant influence on ecosystems, such
as encroachment on the wild habitats of viruses’ natural hosts
[72] and a shifted geographical distribution of viruses’ natural or
intermediate hosts driven by climate change [76]. Accordingly,
the increasing intensity of human activities might deteriorate eco-
logical barriers by shaping the contacts between humans and the
natural environment, and thus accelerate viral transmission into
human societies. The sudden appearance and global spread of
COVID-19 as a representative of emerging infectious diseases hint
at the relationship between human activities and the destruction
of the ecological barrier, which is a key issue for both public health
and sustainable development in the future. As there is limited
knowledge on the relationship between ecological barrier deterio-
ration and human activities, it is necessary to systematically sum-
marize the viral transmission routes in ecosystems and reveal the
mechanisms of viral transmission across the ecological barrier,
thereby uncovering how human activities can deteriorate the eco-
logical barrier and accelerate viral transmission. This will assist in
the prevention and control of emerging infectious diseases.
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2. Key factors in the ecological barrier to virial transmission
from natural hosts to humans

Viral transmission and infection normally occur within limited
species; thus, viral infection of a human must break the ecological
barrier. More precisely, four key factors in the ecological barrier
play critical roles in viral transmission across either the molecular
or the endemic barrier: transmission routes, contact probability,
contact frequency, and viral characteristics (Fig. 1). The ecological
barrier integrates all the potential challenges to viral transmission
from viruses’ natural or intermediate hosts to human society, and
acts as a key node for emerging infectious diseases.
2.1. Transmission route

Viral transmission across the ecological barrier primarily
depends on the mechanisms of virus spillover and transmission
between species, via either natural hosts, domestic hosts, or wild
vectors. Natural hosts can release viruses to the surrounding envi-
ronment through secretions, feces, urine, corpses, and so forth [77].
Viruses can survive in soil or water and on various surfaces in wild
habitats for a prolonged period of time [78], causing potential
infection in other species including humans via direct contact or
intake. Domestic animals can also be infected by viruses through
contact with environmental media polluted by wild animals carry-
ing viruses [35] which makes it easier for viruses to break the eco-
logical barrier and enter human societies through the excreta,
fluids, or wastes of domestic animals during the life cycle of breed-
ing, transportation, slaughter, and sale. Alternatively, wild virus
vectors such as mosquitoes can directly deliver viruses by biting
domestic animals and humans, thereby behaving as a key group
of intermediate hosts transmitting viruses across species with a
larger range and higher risk [79].

Increasing human activities in recent decades have resulted in
regional and even global climate change, which significantly alters
the habitats and movement trajectories of wild animals [80,81].
Climate change can enlarge the living area of natural and interme-
diate hosts carrying viruses, allowing viruses to spread over greater
distances; furthermore, global warming can release ancient viruses
from the permafrost [82,83]. In addition, rapid urbanization pro-
cesses increase the demands placed on land resources, leading to
frequent land use change and the massive destruction of wildlife
habitats [84]. Ecosystems such as forests and grasslands have been
gradually eroded, and the living space of wild animals has been sig-
nificantly compressed to smaller scales. The improvement in
human living standards and the development of agriculture and
animal husbandry have increased the numbers and distribution
Fig. 1. Key factors of the ecological barrier to viral transmission from natural or interm
frequency, and viral characteristics. Human activities can deteriorate the ecological barr
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of domestic animal populations [85], inadvertently providing a
new breeding habitat and route for zoonoses to cross the ecological
barrier. These human-driven factors work together to increase the
transmission routes of emerging viruses from natural environ-
ments into human society.

2.2. Transmission possibility

Besides diversified transmission routes that offer opportunities
for viruses to break through the ecological barrier, the possibility of
viral transmission from wildlife to humans depends on the proba-
bility of contact within a given area between virus hosts and
humans. The range and intensity of human activities are key fac-
tors in the possibility of transmission, especially in overlapping
areas used by both humans and wildlife. Changes in wildlife habi-
tats driven by global and regional climate change may lead to wild-
life invading human residential areas, increasing the probability of
direct contact between humans and natural hosts carrying viruses
[76]. In fragmented areas where both wildlife and humans are
active, the dynamic numbers and geographical distribution of
viruses’ natural hosts result in higher contact probability in com-
parison with closed wildlife habitats [72]. Furthermore, rapid
urbanization processes produce massive human gathering areas
and promote the high-density reproduction and activity of domes-
tic animals in urban areas, which unintentionally raise the trans-
mission possibility through breeding, transportation, slaughter,
and sale [86]. The emergence of poverty, slums, and shantytowns
in urban areas can result in potential centralized transmission
places for emerging infectious diseases [87].

2.3. Contact frequency

Contact frequency, which refers to the level of human exposure
to hosts carrying viruses over a time scale, is another key factor in
viral transmission across the ecological barrier. Given certain
transmission routes and possibilities, contact frequency is strongly
associated with the density and active intensity of human popula-
tions in fragmented areas that are the habitats of wildlife [72]. As
for most zoonoses, contact frequencies between domestic animals
and humans are closely linked to living habits and urbanization
level [35].

2.4. Viral characteristics

Viral survival time, load, and infectivity are key features affect-
ing the possibility of viruses breaking through the ecological bar-
rier. Viruses of different types have distinct survival times and
ediate hosts to human, including transmission routes, contact probability, contact
ier and intensify the emergence and spread of infectious diseases.
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decay patterns across environmental media and conditions, and
numerous studies have reported on the survival time and influen-
tial factors of classic viruses on solid surfaces or in domestic water,
sewage, air, and soil. Temperature is a critical factor influencing
viral activity and is generally inversely proportional to viral sur-
vival time [88–93]. Coronaviruses lose 99.9% of their activity after
ten days in filtered water, and even survive after 100 days at 4 �C
[94]. Airborne viruses mainly exist on aerosol surfaces and trans-
mit via airflow over hundreds of meters, far beyond the range of
droplets, forming an important transmission route for influenza
and other respiratory diseases [95]. Soil is also an important envi-
ronmental source of or carrier for viruses. Many spherical, tailless
viruses and phages have been detected in the soils of deserts, farm-
lands, forests, wetlands, and pastures around the world at a high
level (2.2 � 103–5.8 � 109 g�1) [96–103]. Viruses causing respira-
tory diseases such as influenza (H1N1, H9N9, and H5N1) and coro-
navirus (MERS-CoV, SARS-CoV, and other human coronavirus) have
a relatively shorter survival time in soils. Influenza viruses can sur-
vive for several hours to three days on solid surfaces and to
six days on masks, latex, and feathers [104–113] and coronaviruses
can survive on solid surfaces or in soils for 2–6 days [114–120]. It is
worth noting that soil moisture content is normally proportional to
viral activity [121,122]; however, the mechanisms of virus inacti-
vation differ under dry and wet conditions. Viral capsid proteins
are easy to dehydrate and inactivate in dry soils, causing the virus
to lose its capability to protect RNA, infect, and reproduce, whereas
viral RNA may not be destroyed. In contrast, RNA lyase activity is
stronger under wet conditions due to the higher microbial activity
in soils, resulting in a higher rate of virus capsid dissolution and
RNA degradation [123].

Viral loads in viruses’ natural hosts have been reported to be
affected by human invasions [124]. Wildlife habitat destruction
can create extra environmental stresses on wild animals and trig-
ger a stress response to increase the viral load in urine and saliva
secretion [125]. Furthermore, viral infectivity and pathogenicity
in other hosts are key factors in the frequent occurrence of emerg-
ing infectious diseases. Viruses with a longer survival time or more
transmission routes have a greater possibility of transmitting from
their natural hosts to others, and RNA viruses are prone to greatly
mutate in response to environmental changes and to rapidly repli-
cate, contributing to their higher chance to break through the eco-
logical barrier and adapt to new hosts [126].
3. Ecological barrier deterioration driven by human activities

The prevalence of emerging infectious diseases crossing the
ecological barrier is related to many ecological processes that are
intensively affected by the consequences of human activities, such
as global climate change, invasions in fragmented wildlife habitats,
diverse human habitats and agricultural development, and rapid
urbanization [124,127,128]. In this context, the ability of the eco-
logical barrier to block viral transmission from natural hosts to
human society is related to the burden of viral transmission in wild
intermediate hosts, breeding animal hosts, and environmental
media, respectively (Fig. 2).
3.1. Expanding and emerging infectious diseases driven by global
climate change

Global climate change has caused a series of problems including
sea level rise, extreme weather, flood, drought, and air/water qual-
ity degradation [129]. It can also affect vector ecology to promote
the spread of emerging infectious diseases in many ways [130].
In general, global climate change shifts the range and distribution
of the habitats of viruses’ natural or intermediate hosts and
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releases ancient viruses from the permafrost, thereby increasing
the wide-ranging risks of emerging infectious diseases.

3.1.1. Wildlife habitats
Global climate change driven by industrialization significantly

alters the habitat range and movement trajectory of wild animals
[80,81]. The population and distribution of viral natural hosts or
vectors that benefit from global climate change will expand,
thereby increasing the possibility and frequency of contact with
humans in order to transmit emerging infectious diseases across
the ecological barrier [76]. The West Nile, chikungunya, Zika, and
dengue viruses are all arboviruses. Although their natural hosts dif-
fer, their vectors are all arthropod mosquitoes that transmit these
arboviruses in a mosquito–natural host–mosquito cycle. Humans
are easily infected by mosquitoes carrying viruses [79] among
which Aedes aegypti (A. aegypti) and Aedes albopictus (A. albopictus)
are two typical climate-sensitive vectors. Temperature, rainfall,
and humidity are key factors in the reproduction, expansion, and
activity of A. aegypti and A. albopictus [131,132]. Outbreaks of West
Nile virus disease are mostly related to high temperature, and a
drop in temperature from 26 to 18 �C can decrease the infection
rate of Culex pipiens from 97% to 18% [133]. As global warming
can drive mosquitoes to spread in higher altitudes [134], the Lancet
Countdown to 2030: Public Health and Climate Change points out
that climate change is increasing dengue fever transmissibility by
A. aegypti; dengue fever has already increased by 9.4% from 1950
to 2015 [135]. Such shifting habitats and the expanding transmis-
sion of arboviruses driven by global climate change pose a serious
threat to public health.

3.1.2. Ancient virus release
Global climate change can also bring about another acknowl-

edged risk of emerging infectious diseases, widely known as the
release of ancient viruses from the melted permafrost. Giant icosa-
hedral DNA viruses [136] and Mollivirus sibericum [82] identified in
30 000-year-old permafrost still retain their ability to infect after
resuscitation. A recent study found 33 viral populations represent-
ing four known genera and likely 28 novel viral genera from about
15 000-year-old ice in the glaciers of the Tibetan Plateau [83]. In a
worst-case scenario, all the ancient viruses might be released from
melted permafrost or glaciers alongside global warming.

3.2. Higher contact frequency and transmission possibility by
increasingly intensive human activities

The intensity of human activities determines the level of human
invasion into wildlife habitats, the viral load in viruses’ natural
hosts, and the number and density of domestic animals, including
livestock, poultry, and pets. Human activities in wildlife habitats
increase the contact frequency between humans and wild animals
carrying viruses and shorten the effective contact time, thereby
remarkably increasing the risks of viral transmission across the
ecological barrier [137]. Although habitat fragmentation isolates
populations with low mobility, it provides access to mobile ani-
mals and thus changes the diversity in undisturbed areas [125].
Such impacts change both the habitats of vectors and the patterns
of emerging diseases [138].

3.2.1. Immune response in fragmented areas
Environmental stress caused by human activities may lead to an

immune response in wild animals, which changes the viral load in
the viruses’ natural or intermediate hosts. Stress response is
reported to alter immune function and change the transmission
and infection patterns among wild animals, domestic animals,
and humans [139]. Although no convincing experimental data
has illustrated the relationship between stress response and host



Fig. 2. Ecological barrier deterioration driven by human activities. The ecological barrier blocks the three main viral transmission routes (wild intermediate hosts, breeding
animal hosts, and environmental media) from natural hosts to human society. Human activities deteriorate the ecological barrier through global climate change, intensive
human invasions, growing human habitats, and urbanization. KFDV: Kyasanur forest disease virus.
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viral load, two hypotheses have been raised to explain this phe-
nomenon. The ‘‘accidental spillover” hypothesis suggests that the
immune response of virus hosts suppresses the persistent infec-
tion, and replication and periodic shedding of viruses only occur
when the immune response is weakened by internal or external
pressure, breaking the balance between viruses and their hosts
[140,141]. This hypothesis explains one of the driving mechanisms
of Hendra virus as the immune response of fruit bats induced by
human-caused stress [125,142]. In contrast, the ‘‘transient epi-
demic” hypothesis describes a dynamic balance between local
virus extinction and re-colonization between hosts. Accordingly,
an infection pulse is generated as a wave of infection across hosts.
The key factor triggering a transient epidemic of non-lethal viruses
is recovery after infection and subsequent immunity [125]. As time
passes, the immunity of the whole population decreases, and the
viral load then increases. A study on the significant correlation
between land use change and the outbreak of Ebola disease
reported that, among the 11 first-reported infectious cases of Ebola
disease, eight cases occurred in areas with a high degree of forest
destruction [72]. Such areas are all habitats of bats carrying the
Ebola virus, and the viral load in bats is only detectable in the case
of Ebola disease. The migration and distributions of ticks in dam-
aged forests are strongly correlated with the case numbers and
geographical features of Kyasanur forest disease [143], Lyme dis-
ease [144], and Crimean-Congo hemorrhagic fever [145].

3.2.2. Contact with environmental media
Besides directly coming into contact with wildlife, human

infection can occur by touching environmental media containing
viruses in wildlife habitats. Natural viral hosts can release viruses
into the surrounding environmental media in many ways, such as
through saliva on fruit, animal carcasses during feeding, feces or
urine entering the water or soil, and even dead corpses. Typical
examples include the Nipah [146,147], Ebola [30,33,148,149],
Marburg, and Hanta [9] viruses. Nipah virus was first identified in
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1998 in Malaysia; its natural hosts are Pteropus giganteus (P. gigan-
teus). The habitats of P. giganteus are close to jujube trees, and the
hosts’ excreta of urine and feces containing Nipah virus can con-
taminate the jujube juice and juice collection jars, resulting in
human infection [146,147]. Fruit bats are natural Ebola hosts, and
the most recognized transmission routes from fruit bats to humans
include eating batmeat with live viruses, consuming foods contam-
inated by bat excreta, and coming into direct contact with fruit bats
in caves [30,33,148,149]. Hanta virus disease can be traced back to
1913; its natural hosts are rodents, including Apodemus agrarius,
Rattus norvegicus, Apodemus dahlia, and Apodemus agrarius. The
main transmission route of Hanta virus is animal-derived contact
through saliva, urine, and feces, which release viruses into the sur-
rounding environment. Infection can occur through the respiratory
tract due to dusts carrying viruses, the digestive tract from contam-
inated food and water, direct contact with rodents or their excreta,
and invasion through damaged skin [9].

More importantly, viruses can survive in environmental media
for a prolonged length of time, waiting for opportunities to infect
animals and humans and cause an outbreak of an emerging infec-
tious disease. Under suitable conditions, viruses can survive for
hundreds or even thousands of days in environmental matrices.
Porcine parvovirus can survive for more than 43 weeks in soil
[150] and human norovirus retains at least 10% activity after
1266 days in groundwater [151]. SARS-CoV-2 viral RNA has been
detected on the floor in COVID-19 patient rooms [152] and even
in the soil surrounding the outpatient department [153]. Accord-
ingly, environmental media in wildlife habitats are hypothesized
to receive and store viruses from natural virus hosts—particularly
in soil, silt, or fallen leaves in caves or forest interiors, which are
cold, dark, and humid, and thus allow viruses a longer survival
time. These residual viruses may contaminate the surface water
through rainfall and the groundwater through infiltration. Human
activities that involve directly touching these media, eating con-
taminated fruits, or drinking contaminated water in these wildlife
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habitats offer opportunities for viruses to break through the eco-
logical barrier during wilderness backpacking, mining, logging, or
poaching. As SARS-CoV-2 is reported to survive on plastic surfaces
for at least three days [154], it is strongly suspected that virus-
contaminated clothing might spread a wide range of viruses in
crowd-gathering areas, eventually causing an outbreak of an
emerging infectious disease in human society.

Outbreaks of Kyasanur forest disease are a good example of a
transmission route through direct contact with environmental
media containing viruses. Kyasanur forest disease is caused by
the Kyasanur forest disease virus (a member of the virus family
Flaviviridae). Monkeys and rodents such as Macaca mulatta and
Rattus rattus are its natural hosts, and ticks (mainly Haemaphysalis,
especially Haemaphysalis spinigera) are its wild vectors [155]. Epi-
demics of Kyasanur forest disease exhibit an obvious seasonal
behavior and are consistent with the life habits of local ticks carry-
ing viruses. Patients or susceptible people predominantly include
young farmers, herdsmen, and forestry workers, who frequently
enter wildlife habitats in their daily work, resulting in increased
exposure to intermediate virus hosts and a much higher chance
of getting infected in comparison with other people [27–29,156].

3.2.3. International trading
International trading provides new opportunities for the long-

distance transmission of viruses or pathogens. Frequent interna-
tional or transnational trading increases the exchange of wild or
domestic animals carrying viruses, thus increasing the likelihood
of a global outbreak [157]. For example, the outbreak of monkey-
pox in the United States in 2003 originated from the transnational
pet trade [158] and avian influenza in Asia presents a high risk to
countries in other continents through the international poultry
trade [159]. In addition, some crop pathogens can be transmitted
by international trading and can infect humans and animals in
other countries [160]—a transmission route that explains many
outbreaks of foodborne diseases. A significant case is the emer-
gence of Salmonella in the United States in 1998–2003, which
was linked with imported mangoes from Brazil [161].

3.3. Increasing transmission routes driven by human habits

Natural virus hosts can transmit viruses to other wild animals
(i.e., intermediate hosts), including predators (through being bitten
or eaten by intermediate hosts), and parasites (ticks or fleas). After
adaptation and evolution, viruses can infect and spread in the new
intermediate hosts, expanding natural virus reservoirs in wider
habitats. This process effectively breaks through the ecological bar-
rier and poses a threat to human societies, as an increasing number
of wild animals and parasites can cause outbreaks of emerging
infectious diseases. Residents’ living habits can also affect the
transmission routes and infectivity of viruses, including eating wild
animals, domestic breeding, farming, and personal sanitation.

3.3.1. Eating wild animals
Some residents of East Asia and Africa consider wild animals to

be nourishing foods to maintain one’s health; therefore, eating
wild animals is common behavior in some countries [162]. This
habit sets up an industrial chain of wildlife poaching, feeding,
and slaughtering, which increases the risk of viral transmission
from their natural or intermediate hosts to human societies.
Among all natural virus hosts, bats are an important reservoir of
coronaviruses, including those related to SARS-CoV and SARS-
CoV-2 [163]. A possible transmission route is through wild inter-
mediate hosts (e.g., civets and weasels) to humans. Cooks and
employees in wildlife food markets have a greater chance of being
infected with such viruses due to their frequent contact with SARS-
CoV or SARS-CoV-2 intermediate hosts [44,56,164]. Eating wild
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animals in restaurants further encourages the whole supply chain,
exacerbating the possibility of direct or indirect contact between
wild animals carrying viruses and hunters, breeders, butchers, or
consumers, and offering additional opportunities for viral evolu-
tion and human infection.

3.3.2. Domestic breeding
Besides wild intermediate hosts, domestic breeding animals

such as horses, camels, chickens, and ducks can become intermedi-
ate hosts after infection. Domesticated animals can come into close
contact with natural hosts carrying viruses by sharing foods in
cribs or through biting and predation, which permits frequent viral
transmission to occur between wild and domestic animals [85].
Livestock polyculture also accelerates viral mutation and inter-
specific transmission, making domesticated breeding animals into
key intermediate hosts for many zoonoses [86]. These viruses can
infect and spread within domestic breeding animal populations
and directly enter human societies through the processes of rais-
ing, sales, and eating. Thus, breeders, transporters, farmers, and
seafood market sellers are highly susceptible to infection by
emerging infectious diseases including Hendra virus, MERS-CoV,
and influenza (H1N1, H5N1, etc.).

Hendra virus was first identified in Hendra (Brisbane, Queens-
land, Australia) in 1994, where it caused the deaths of 22 horses
and three people; its natural hosts are fruit bats [165]. Breeding
increases the horse populations close to the living habitats of fruit
bats carrying Hendra virus [35]. These breeding farms provide
additional habitats for fruit bats, which gives the horses more
chances to touch the urine or secretions of the fruit bats, allowing
the spread of Hendra virus among horses and then among farm
staffs in close contact with the horses [166–169].

MERS-CoV was first isolated from the lung tissues of deceased
cases of severe pneumonia in Saudi Arabia in 2012, and its natural
hosts may be bats. The MERS outbreak is attributed to the domestic
breeding of single humped camels in the Middle East, as the single
humped camel is an important intermediate host of MERS-CoV. As
thousands of single humped camels are imported into Saudi Arabia
from African countries every year, the outbreak of MERS is strongly
correlated with the traffic of camels [170]. Sufficient evidence
shows that MERS-CoV is transmitted from camels to humans, as
the infection rate of breeding staffs who come into close contact
with camels is much higher than that of other people, and as sero-
logical studies have documented that the positive rates of MERS-
CoV antibody in breeding and slaughterhouse staff members are
15 and 23 times higher, respectively, than in the general popula-
tion [43,51,171,172].

Influenza A viruses aremutagenic in their natural hosts, showing
huge potential to infect poultry and invade humans. H5N1 is a
zoonosis with first recorded infection case in Hong Kong, China in
1997 andwidely detected in other Asian countries [173].Wild birds
and poultry are considered to be the natural and intermediate hosts
of H5N1, respectively [174]. Wild birds are responsible for virial
long-distance transmission from Qinghai Lake in China to India,
Siberia, and Southeast Asia, and interspecies transmission between
poultry populations has promoted the regional transmission of
H5N1 into human societies [39,40]. H1N1 was first identified in
Mexico in 2009 and affected 214 countries and regions, infecting
millions of people and causing at least 18 449 deaths. Domestic pigs
are considered to be the intermediate hosts in which H1N1 virus
obtains the capability to infect humans [46,175]. H7N9 virus comes
from wild birds and can eventually infect humans by recombining
genes with other influenza viruses in breeding chickens and ducks
[127]. During the adaptation process in domestic poultry, H7N9
evolved from a low pathogenic avian influenza into a highly
pathogenic one, causing a serious epidemic in China in 2017
with 1564 infected cases and more than 600 deaths [38,176,177].
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In conclusion, domestic breeding animals including poultry and
livestock are key intermediate hosts of influenza viruses and are
key factors in influenza outbreaks in human society.

3.3.3. Farming
Some traditional farming practices can increase the risk of viral

transmission to human society. Untreated sewage and sludge are
commonly used for irrigation or fertilization in many rural areas
around the world; however, a variety of pathogens can be found
in fresh sewage or feces, such as viruses (norovirus, enterovirus,
hepatitis E virus, etc.) [178,179], bacteria (Salmonella, Escherichia
coli (E. coli), Vibrio cholera, etc.) [180], and parasitic eggs (Ascaris
eggs, Trichuris eggs, etc.) [181,182]. Hepatitis E viruses are found
in pig manure or wastewater from pig-breeding facilities [183].
Infectious hepatitis E viruses were detected in pig manure from
15 out of 22 pig farms in Iowa, USA [184]. As the fecal–oral path-
way is a main transmission route of hepatitis E viruses, pig manure
applications and surface wastewater runoff may contaminate agri-
cultural products and the surrounding water sources [185,186].
The positivity of hepatitis E viruses in untreated and concentrated
sewage samples was found to be as high as 10.97% in a wastewater
treatment plant in Puna, India [187], indicating that sewage treat-
ment workers face a higher risk of hepatitis E infection. Therefore,
sewage irrigation can directly increase viral transmission from
sewage to humans, or can indirectly contaminate soil, water, and
food products to cause foodborne infectious diseases. Farming
and storage products can also attract the active approach of wild
animals, thereby increasing the transmission routes and contact
frequency of some viruses, allowing them to cross the ecological
barrier [72]. For example, the Ebola virus can be transmitted from
fruit bats to humans through contaminated fruit; this process is
aggravated by the fruit storage in villages, which draws fruit bats
from caves into an area of human activity [162].

3.3.4. Personal sanitation
Personal sanitation is a critical way to block viral infection

[188]. Inappropriate cultural norms and personal habits related
to personal cleanliness can increase the exposure and infectious
probability of viruses and pathogens [189]. Hand, foot, and mouth
disease (HFMD) is caused by enterovirus (mainly coxsackievirus
A16 and enterovirus 71); the susceptible population is mainly chil-
dren with weak immunity [190]. Studies show that children who
have a habit of sucking their fingers face a significant higher risk
of such infection than others, whereas children who wash their
hands before meals face only half the risk in comparison with
others [191]. In addition, burying a corpse for several days and
then touching the corpse is part of traditional funeral customs in
some rural areas of West Africa, and can increase the risk of
spreading emerging infectious diseases [192].

3.4. New hotspots generated by urbanization and sanitary conditions

The increasing level of urbanization has changed the global pat-
tern of infectious diseases [193]. Although urbanization can
improve the basic infrastructure and sanitation conditions to pro-
tect the public health to some extent [84], it can also alter the
numbers, diversities, and community structure of wildlife in city
areas [194]. As a result, urbanization generates new hotspots that
cause the outbreak of infectious diseases. Some municipal infras-
tructures provide new points or networks for viral transmission
in human societies. For example, Zika virus is mainly transmitted
by A. aegypti and other Aedes, which have already adapted to a den-
sely populated urban environment [195]. Driven by both global cli-
mate change and urbanization processes, these vectors have a
wider distribution and significantly contribute to the global out-
break of Zika virus disease [196]. SARS-CoV-2 has been detected
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in the wastewater in many countries, and wastewater-based epi-
demiology (WBE) not only offers a new diagnostic tool for disease
prevention and control, but also highlights the signs of disease
spread through the urban pipeline network [197].

3.4.1. Landfills
Landfills are typical sources for viral transmission in urban

areas. Due to the complexity of the wastes dumped in landfills, it
may include animals that die of infection or contaminated medical
wastes carrying many infectious viruses, making landfills a virus
sink. In the United States, poultry and livestock with infectious dis-
eases are generally disposed in landfills; during an epidemic, some
medical wastes carrying viruses are also buried. These activities
increase the chance of viral secondary transmission and generate
new hotspots of emerging infectious viruses in urban areas. Studies
have demonstrated that avian influenza H6N2 virus in poultry car-
casses remains infectable for nearly two years—or even for more
than 30 years in municipal landfills under appropriate temperature
and pH conditions—and that viruses can survive in landfill lea-
chates for at least 30 days [198]. The prolonged survival time of
infectious pathogens can result in wide distributions of bacterial
pathogens (e.g., E. coli and Salmonella) and viruses causing avian
influenza, HFMD, Newcastle disease, and porcine epidemic diar-
rhea [199,200]. Studies have also reported that the waste treat-
ment facilities in landfills can continuously release a variety of
viruses in the form of bioaerosols, which spread emerging infec-
tious viruses to wild animals and even to the landfill staff [201].

In addition, a large number of foraging rodents and birds in or
around landfills can transport and excrete feces containing viruses
as a transmission route, as they forage in groups during the day and
return to their residence communities at night. Rodents living in
landfills can carry and transmit viruses by ingesting organic wastes.
For example, rodents living at landfill sites in the Istra peninsula
are more likely than wild rodents to be infected by zoonotic viruses,
such as lymphocytic choriomeningitis virus and tick-borne
encephalitis virus [202]. Birds and their stools have been reported
to carry over 60 types of pathogens, including bird influenza [203]
and other human epidemic viruses such as H1N1, H2N1, and H3N2
[204,205]. Mutated influenza viruses can accumulate in migratory
birds until they break through the ecological barrier to infect humans
[73,206]. Studies in the United Kingdom have shown that landfills
provide a wide range of foraging opportunities for rotifers such as
seagulls and crows, which are known carriers of human infectious
pathogens such as Salmonella, E. coli, Campylobacter, and influenza
A viruses [207]. Their daily shuttle between landfills and reservoirs
introduces the risk ofwater contamination by pathogens and viruses
and challenges drinking water safety. White storks nesting in land-
fills carrymorepathogens than thosenestingnaturally [208]. Accord-
ing to the wild migratory bird surveillance program for highly
pathogenic avian influenza by the United States, wild ducks living
in landfills are thebirdsmost likely tobe infectedby influenzaviruses
[209]. By taking organic waste as a food source, American black vul-
tures living in a Patagonia landfill (Argentina) were reported to be
infected with and to spread zoonotic pathogens such as Salmonella
[210]. It can be concluded that birds around landfills are potential
hosts carrying and transmitting viruses to humans via stools, con-
taminated water, and dead bodies. As pathogen reservoirs, landfills
are high-risk sites for birds and rodents to transmit emerging infec-
tious diseases across the ecological barrier.

3.4.2. Water-supply and sewage systems
Human agricultural activities can also provide breeding grounds

and livinghabitats for the vectors of insect-borne infectiousdiseases
by constructing dams, ponds, and other water-storage facilities for
irrigation. The construction of the Aswan Dam in Egypt, the Jama
Dam on the Senegal River, and the Manantari Dam in Mali and
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Guinea has intensified the outbreak frequency of schistosomiasis
mansoni [211]. In addition, about 60 species ofAnopheles are vectors
of mosquito-borne malaria, and they can breed in the open ponds
constructed close to farmlands, becoming an important reasons
for the malaria epidemics in many countries [212].

Backward municipal infrastructure—such as water-supply and
drainage networks, sewage treatment systems, and improper
water storage—provides extra habitats in cities for some vectors
carrying and spreading emerging infectious diseases; for example,
Aedes and Culex flourish in urban sewage, causing outbreaks of Rift
Valley fever and other diseases [138,212].

The occurrence of SARS-CoV-2 in wastewater and rivers has
been reported in China (Wuhan) [213], France (Paris) [197], and
Australia [214]. High levels of SARS-CoV-2 viral RNA in wastewa-
ter, ranging from several to thousands of copies per milliliter, sug-
gest the potential transmission and spread of SARS-CoV-2 viruses
in the urban and rural water cycle, presenting a potential threat
to public health [215].
3.4.3. Sanitation conditions
Sanitation conditions are closely related to viral transmission in

urban areas, and improved sanitation conditions can protect the
public health from emerging infectious diseases. The transfer of
huge populations from rural areas to cities in the early stage of
rapid urbanization is often accompanied by poverty caused by
urban expansion and underdeveloped infrastructure [87]. From
1963 to 2010, over 110 000 cases of hemorrhagic fever renal syn-
drome (HFRS) caused by hantavirus were reported in Hunan pro-
vince (China), and a positive correlation was detected between
the number of city migrants and the incidence rate of HFRS in
the initial stage of urbanization [84]. In addition, urban public
health problems are a key factor in the emergence of infectious dis-
eases [216]. Many cities have slums or shantytowns with poor san-
itation conditions, and some infectious diseases are rampant in
these densely populated and relatively closed areas. Some develop-
ing countries in Asia and Africa with poor sanitation conditions,
limited basic medical capabilities, and insufficient vaccine cover-
age cannot sufficiently deal with emerging infectious diseases,
which have a higher possibility of breaking out there [185]. The
largescale outbreak of acute viral hepatitis (AVH) from 1955 to
1956 in New Delhi was mainly located in slums with poor sanita-
tion conditions and a low socio-economic level [217].
4. Conclusions and future perspectives

In summary, the ecological barrier is the key to viral transmis-
sion from viruses’ natural or intermediate hosts to human soci-
eties. The strength of the ecological barrier determines the
possibility and scale of epidemics caused by emerging infectious
viruses. Future studies should focus on the dynamic process of
viruses crossing the ecological barrier, which is a critical step for
the prevention and control of emerging infectious diseases. The
main influential factors affecting the ecological barrier include
transmission routes, contact probability, contact frequency, and
viral characteristics; environmental media are also an important
component of the ecological barrier. Emerging infectious diseases
are currently exhibiting global spreading patterns owing to the
deterioration of the ecological barrier by intensive human activi-
ties. Global climate change driven by industrialization and global-
ization processes has triggered and expanded the emergence of
infectious diseases, and the increasing levels of human disturbance
in fragmented wildlife habitats are significantly promoting greater
contact probability and a higher frequency of emerging infectious
viruses breaking through the ecological barrier. With the rapid
development of the social economy, international transportation
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through the air and over sea and land is becoming more intensive.
As a result, such transportation is advancing a cross-border
exchange of emerging infectious viruses that is driving the global-
ization of epidemics and introducing great challenges for public
health and biosafety management. The presence of diverse human
habitats across countries also increases the transmission routes of
viruses, and global urbanization is shaping new hotspots of poverty
and poor sanitary conditions in urban areas that promote the
spread of emerging infectious diseases in human societies.

It is extremely urgent to further explore the quantitative effects
of human activities on the strength of the ecological barrier and to
understand themechanisms by which emerging infectious diseases
are transmitted and spread across the ecological barrier. As viruses
are ‘‘darkmatter” inmany environmentalmedia that behave as viral
reservoirs,more studies should focus on building the environmental
virus database for wildlife habitats. A comprehensive investigation
into the interactions between viruses, their hosts, and environmen-
tal media can grant us better insight into the effects of ecological
barrier deterioration on the spread of emerging infectious diseases,
as well as the underlying influential factors.

For the effective prevention and control of emerging infectious
diseases, potential strategies should be considered to protect the
ecological barrier and block the transmission of viruses from their
natural reservoirs into human societies. Firstly, largescale environ-
mental surveys on viruses inwildlife habitats are suggested in order
to map the origin and distribution of emerging infectious viruses
and visualize ‘‘hot” or weakened spots in the ecological barrier. Sec-
ondly, dynamicmonitoring of natural (e.g., bats, pangolins, birds) or
intermediate (e.g., camels, mosquitoes, and ticks) hosts of zoonoses
should focus on fragmented wildlife habitats being invaded by
human activities. In addition, we propose a biosafety ‘‘skynet” as a
novel strategic concept for preventing and controlling the rapid out-
break of emerging infectious diseases in urban areas. It consists of
online diagnostic devices formonitoring viral load in environmental
media like aerosol and water, and a real-time big data management
system for earlywarning and emergencymanagement. Regular bio-
safety management and emergency measures are necessary to
enable the ecological barrier in either the natural environment or
human societies to effectively control emerging infectious viruses
of great concern. Lastly, but most importantly, in following a path
of sustainable development, human society must reconsider the
correlation between human and global ecology and paymore atten-
tion to the protection of the ecological barrier.
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