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The optical and microphysical properties of aerosols remain one of the greatest uncertainties associated
with evaluating the climate forcing attributed to aerosols. Although the trends in aerosol optical depth
(AOD) at global and regional scales have been widely examined, little attention has been paid to the
trends in type-dependent AODs related to aerosol particle properties. Here, using the aerosol optical com-
ponent dataset from the Multi-angle Imaging SpectroRadiometer (MISR) instrument, we investigate
decadal-scale trends in total aerosol loading as well as AODs for five aerosol components by particle size
and morphology during 2003–2018 over land. Relationships between the total AOD (TAOD) trends and
type-dependent AOD changes were examined, and the relative contribution of each type-dependent
AOD to the overall TAOD trends was quantified. By dividing the TAOD values into four different aerosol
pollution levels (APLs) with splits at 0.15, 0.40, and 0.80, we further explored the relationships between
TAOD changes and interannual variations in the frequency-of-occurrences (FoOs) of these APLs.
Long-term trends in FoOs in the different APLs show that there was a significant improvement in air qual-
ity between 2003 and 2018 in most land areas, except South Asia, corresponding to a shift from lightly
polluted to clean conditions. However, the effects of different APLs on TAOD changes are regionally
dependent and their extent of correlation varied spatially. Moreover, we observed that the annual mean
TAOD has decreased by 0.47%�a�1 over land since 2003 (P < 0.05). This significant reduction was mainly
attributed to the continued reduction in small-sized (< 0.7 mm diameter) AOD (SAOD) (�0.74%�a�1) and
spherical AOD (SPAOD) (�0.46%�a�1). Statistical analysis shows that SAOD and SPAOD respectively
accounted for 57.5% and 89.6% of the TAOD, but contributed 82.6% and 90.4% of the trend in TAOD.
Our study suggests that small-sized and spherical aerosols composed of sulfate, organic matter, and black
carbon play a dominant role in determining interannual variability in land TAOD.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

As a key perturbation quantity in the Earth’s climate system,
atmospheric aerosols (AAs) from anthropogenic or natural sources
have been shown to affect weather, climate, and the environment
on global to regional scales to varying degrees through mecha-
nisms such as aerosol–radiation and aerosol–cloud interactions
[1–11]. Moreover, AAs (especially fine particulate matter (PM2.5)
near the surface) have adverse health effects when inhaled into
the human body because they contain toxic substances that affect
the respiratory and circulatory systems, potentially increasing
morbidity and mortality [12–15].

Aerosol optical depth (AOD), defined as the integral of the
extinction coefficient of AAs along the entire atmospheric column,
describes the overall attenuation of solar radiation by AAs. As one
of the critical variables for characterizing atmospheric aerosol
loading, AOD has been widely applied to examine atmospheric pol-
lution characteristics at urban, regional, and global scales, and to
assess its effects on radiation, precipitation, and clouds [1,16–19].
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Numerous studies have been conducted to investigate the
interannual and intra-annual variability of AOD at global to
regional scales using ground-based observations, satellite remote
sensing, and numerical modeling, and to explore their relation-
ships with anthropogenic emissions, meteorological factors, and
climate forcing [20–23]. However, little attention has been paid
to the interannual variation in the frequency-of-occurrences
(FoOs) of different aerosol loading levels and its implications for
the variation in total aerosol loading. Different aerosol loadings
are associated with different aerosol pollution levels (APLs), and
their changes can clearly indicate the degree of improvement or
deterioration of air quality. Thus, the magnitude of adverse health
effects caused by aerosols is not only induced by interannual con-
centration changes, but also strongly depends on the frequency of
human exposure to different aerosol pollution loadings.

Regional aerosol particles are influenced by several factors such
as geographic location, topography, surface properties, population
density, proximity of pollution sources, and meteorological
conditions, resulting in large differences in their concentration,
size distributions, morphology, chemical compositions, and optical
properties [23,24]. As a result, even for the same AOD, different
aerosol types with a wide range of size distributions and complex
morphology have different effects on the magnitude and sign of
aerosol radiative forcing [18,25]. Correspondingly, in addition to
total AOD (TAOD), a systematic analysis of the interannual variabil-
ity of AODs due to different aerosol types at global and regional
scales is essential to enhance our knowledge of aerosol climatic
and environmental effects. This knowledge will also help us to bet-
ter distinguish the role of natural and anthropogenic aerosols in
driving interannual variability in total aerosol loading.

In this study, we investigated the interannual variability and
trends in land total aerosol loadings and type-dependent AODs
related to aerosol particle properties (i.e., size and morphology)
using the latest Multi-angle Imaging SpectroRadiometer (MISR)
V23 aerosol component products during 2003–2018 and explored
the effects and relative contributions of these type-dependent
AODs to TAOD changes. In addition, by categorizing the TAOD
values into four different APLs with splits at 0.15, 0.40, and 0.80,
we further examined the climatological characteristics and
variability of the FoOs at these APLs. The objectives of this study
were as follows: ① to identify the dominant aerosol types driving
the decadal variations in TAOD at land and regional scales in
terms of aerosol microphysical properties (i.e., particle size and
morphology); and ② to understand the spatiotemporal variations
in the FoOs of different APLs.
2. Data and methodology

2.1. MISR aerosol component products

The MISR sensor, which is onboard the Terra satellite, can pro-
vide near-global coverage once every nine days [26]. MISR
observes the Earth’s atmosphere at four visible or near-infrared
spectral bands along nine orbital viewing angles, which allow it
to categorize aerosol loadings by particle type and provide detailed
aerosol particle property information [27]. In this study, we used
the Level-3 (gridded) monthly global aerosol component products
(MIL3MAEN) from the latest release version F15_0032 during
2003–2018. MISR Level-3 aerosol component data are provided
at 0.5� � 0.5� spatial resolution, based on the higher resolution
(4.4 km) Level-2 (swath) aerosol product. Compared with the pre-
vious version of the algorithm (V22), the MISR data products based
on the latest algorithm (V23) provide significant improvements in
both accuracy and resolution [28]. The V23 dataset was produced
by two separate retrieval algorithms: the heterogeneous surface
83
(Het Surf) algorithm, which is applied to land surfaces, and the
dark water algorithm, which is applied to the ocean or deep inland
water [29].

The parameters used in the study were the TAOD at 550 nm as
well as the AODs for three different particle size groups—namely,
small (< 0.7 lm diameter), medium (0.7–1.4 lm diameter), and
large (> 1.4 lm diameter)—and for two different particle
shapes—namely, spherical and non-spherical. Hereafter, small,
medium, large, spherical, and non-spherical AODs are referred to
as SAOD, MAOD, LAOD, SPAOD, and NSPAOD, respectively. Note
that the V23 of the MISR product does not provide SPAOD directly;
rather, it must be obtained by the difference between TAOD and
NSPAOD. Particle size classifications in MISR are based on prede-
fined particle types described by a log-normal distribution and
are characterized by their characteristic width parameters and
radius [30]. The classifications of these three modes are different
from the two-mode description in most aerosol optical properties
studies, which only distinguishes between fine and coarse modes.
Moreover, using the particle property retrieval algorithm, MISR
separates the NSPAOD from the TAOD. Evaluation of the MISR
V23 Level-2 AOD product with the ground-based measurements
of Aerosol Robotic Network (AERONET) suggested significant
agreement over land (correlation coefficient (R) = 0.81 and root–
mean-square error = 0.154) [28]. Further statistical results show
that 66.1% of the matched samples of the MISR-retrieved AOD val-
ues fall within 0.03 or 10% � AOD of the AERONET [28]. More
importantly, the MISR V23 AOD product has acceptable accuracy
even at low-AOD ranges (i.e., AOD < 0.1) because the unrealistic
quantification of low AOD in the MISR V22 AOD product has been
largely eliminated from V23 [28]. Unlike TAOD, the valuation of the
accuracy of aerosol particle properties is more challenging, in part
because both ground-based and aircraft validation data for MISR
are very sparse and the sensitivity of remote sensing to particle
properties is much more dependent than AOD on retrieval condi-
tions. Nevertheless, the analysis of retrieval constraints on particle
size and shape conducted by Kahn and Gaitley [31] largely con-
firmed the results of pre- and post-launch theoretical sensitivity
studies [32]. In addition, individual case studies show that there
is good discrimination between non-spherical dust and spherical
particles in field observations.

2.2. MODIS, MERRA-2, and CAMS AOD products

We also examined the annual trend in total aerosol loading over
land during the same overlapping period as MISR using the
monthly gridded AOD data at 550 nm (combined Dark Target
and Deep Blue algorithms, MOD08_M3 and MYD08_M3) with a
spatial resolution of 1� � 1�, observed by MODIS/Terra and
MODIS/Aqua. Similar analyses were also performed using the
Copernicus Atmosphere Monitoring Service (CAMS) and the
Modern-Era Retrospective Analysis for Research and Applications,
version 2 (MERRA-2) aerosol reanalysis products. CAMS is the lat-
est global atmospheric composition reanalysis dataset generated
by the European Centre for Medium-Range Weather Forecasts
(ECMWF) and consists of atmospheric composition fields including
major precursors, chemical species, and aerosols [33]. MERRA-2 is
a second-generation atmospheric aerosol reanalysis of the new
modern satellite era (post-1980), which assimilates both meteoro-
logical observations and the AODs from various ground- and
satellite-based observations [34]. The spatial resolutions of the
CAMS and MERRA-2 AOD fields are 0.75� � 0.75� and 0.500� �
0.625�, respectively. On the land average (Fig. S1 in Appendix A),
MISR shows acceptable synergy with the other four datasets, with
R ranging from 0.60 to 0.83.

To explore the role of anthropogenic and natural aerosols in
driving interannual variability in total aerosol loading, we used
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the AODs for five aerosol components from the CAMS reanalysis,
including sulfate (SU), dust (DU), black carbon (BC), organic matter
(OM), and sea salt (SS). In this study, we define SU, BC, and OM as
anthropogenic fine-mode aerosols (SU + BC + OM), whereas DU and
SS are described as natural coarse-mode aerosols (DU + SS). To
perform the spatial analysis, the MISR dataset at high spatial
resolution (0.5� � 0.5�) was bilinearly interpolated to the CAMS
resolution of 0.75� � 0.75�.

2.3. Definition of the FoO of APLs

By counting the number of Level-2 available daily AOD retrie-
vals within each 0.5� � 0.5� grid box, MISR’s Level-3 AOD product
stores the monthly cumulative number of occurrences of eight
AOD intervals. In general, different TAOD ranges usually corre-
spond to different APLs. In this study, the APLs are categorized as
having clean (APL 1), lightly polluted (APL 2), moderately polluted
(APL 3), and heavily polluted (APL 4) conditions, with the corre-
sponding TAOD values of < 0.15, 0.15–0.40, 0.40–0.80, and > 0.80,
respectively. By quantifying the FoO of these four different
APLs, we were able to explore their climatology, trends, and
links to changes in TAOD. The FoO (%) for each APL is defined as
follows:

FoO ¼ NAPL

Nall APLs
� 100% ð1Þ

where NAPL and Nall APLs represent the cumulative samples of
specified APL and all APL occurrences, respectively. In general, the
spatio–temporal evolution in TAOD reflects the variations in
columnar aerosol concentrations, but it is difficult to characterize
the changes in different aerosol concentration levels. Therefore,
quantifying the FoOs from APL 1 to APL 4 at each grid point will pro-
vide insight into the distribution characteristics of different APLs at
the global scale, since the magnitude of the adverse health effects
caused by aerosols is usually closely related to the frequency of
human exposure to different aerosol pollution loadings.

2.4. Correlation and trend analysis

In this study, Pearson’s R was used to explore the relationships
between TAOD trends and interannual variations in the type-
dependent AODs and the FoOs of different APLs. Two-tailed Stu-
dent’s t-tests were used to assess the robustness of the correlation,
and statistical significance was set at the 95% confidence level (i.e.,
P < 0.05). The trend analysis was carried out for the TAOD and
AODs by different aerosol types at both the global and regional
scales using the Mann–Kendall (M–K) s test [35,36] with Sen’s
slope method. To ensure the robustness of the trend assessment,
we required that at least 60% of the data in each annual time series
be valid before the trend calculations could be performed. When
calculating the annual time series, it is necessary to ensure that
the length of the valid monthly time series is greater than 60%.
The M–K trend test is a nonparametric method with the advantage
that data samples do not have to follow a particular probability
distribution and are rarely disturbed by ‘‘outliers.” In this study,
Sen’s slope was applied to evaluate the strength of the trend value;
then, the M–K statistical test was employed to test whether these
estimated trends were significant at a given significance level (in-
terested readers can refer to Text S1 in Appendix A for detailed pro-
cedures of trend estimation and the M–K statistical tests).

2.5. Isolating the relative contribution of type-dependent AODs

In MISR’s retrieval algorithm, the TAOD can be expressed as
follows:
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TAOD ¼
X3

i¼1

bi � AODi
size ¼

X2

i¼1

@i � AODi
shape ð2Þ

where AODi
size and AODi

shape represent each size-segregated AOD
(i.e., large, medium, and small AODs) and shape-segregated AOD
(i.e., spherical and non-spherical AODs), respectively; and bi and
@i are weighting coefficients (both equal to 1). The relative contribu-
tion (RC, %) of each size-segregated (shape-segregated) AOD to the
TAOD trend was estimated through a comparison with the TAOD
change:

RCi ¼ Di

DTAOD
� 100% ð3Þ

where Di and DTAOD represent the linear change for each size-
segregated or shape-segregated AOD and TAOD, respectively. Linear
changes were determined by the slope of ordinary least-squares lin-
ear regression, and two-tailed Student’s t-tests were used to detect
whether the slopes were significant at the 95% confidence level. For
RCs, the positive (negative) sign of the RC indicates that type-
dependent AOD changes exhibit a facilitating (offsetting) effect on
the TAOD trend. Furthermore, the non-negative RCs (NRCs) of
size-segregated and shape-segregated AOD, respectively, were
obtained using Eqs. (4) and (5) below.

NRCi
size ¼

RCi
size

���
���

P3
i¼1 RCi

size

���
���
� 100% ð4Þ
NRCi
shape ¼

RCi
shape

���
���

P2
i¼1 RCi

shape

���
���
� 100% ð5Þ

In this study, we considered the RC or NRC to be significant only
when the change values for TAOD and type-dependent AODs were
both significant at the 95% confidence level. Using Eqs. (3)–(5), the
annual RC and NRC of each size-segregated or shape-segregated
AOD were separately calculated for each 0.5� � 0.5� grid box for
the period 2003–2018. Similarly, by applying the above method,
the RC of the composition-dependent AODs (i.e., SU, BC, OM, DU,
and SS) based on CAMS reanalysis was isolated.
2.6. Sub-regions

Because atmospheric aerosols have large spatiotemporal vari-
ability, it is essential to explore the inhomogeneity in the spatial dis-
tribution of aerosols and the consequent regional effects. Therefore,
in addition to the global land perspective, we particularly focus
herein on characterizing regional type-dependent AOD distribu-
tions and variability over the 14 sub-regions (SRs): North America
(NAM), Central America (CAM), South America (SAM), Europe
(EUR), North Africa (NAF), South Africa (SAF), the Middle East
(MDE), Russia (RUS), Central Asia (CAS), South Asia (SAS), East Asia
(EAS), the Indochina Peninsula (ICP), Southeast Asia (SEA), and Aus-
tralia (AUS). Results fromtheAntarctica andGreenland regionswere
excluded because the Het Surf algorithmperforms poorly for homo-
geneous regions that are largely covered with ice or snow [28]. The
geographic boundaries of these SRs are indicated by different color
blocks in Fig. S2 in Appendix A. Overall, compared with the global
land average (Fig. S1), MISR shows good consistency with other
AOD products in terms of year-to-year variation over all SRs, albeit
with slight differences in magnitude (Fig. S3 in Appendix A).
Specifically, among the 14 SRs, the R between MISR and MODIS/
Terra, MODIS/Aqua, MERRA-2, and CAMS varies from 0.28 to 0.99,
0.40 to 0.98, 0.44 to 0.95, and 0.45 to 0.98, respectively.
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3. Results and discussion

3.1. Global distributions of type-dependent AODs

Fig. 1(a) shows the distributions of the multi-year (2003–2018)
mean AODs for size-segregated (large, medium, and small) and
shape-segregated (spherical and non-spherical) aerosols. Overall,
among the size-segregated aerosols, small-sized aerosols con-
tributed the most to aerosol extinction over land, with a multi-
year average TAOD of 0.093, followed by large- and medium-
sized aerosols with land-average AODs of 0.057 and 0.023, respec-
tively. To be specific, LAODs were mainly distributed in the lower
latitudes of the Northern Hemisphere (0–30 �N), with enhance-
ments (about 0.2–0.3) located mainly in dust-source areas (includ-
ing the Sahara Desert, Saudi Arabian Desert, and Taklimakan
Desert) and in regions of high anthropogenic emissions, such as
northern India and eastern China (EC). The distribution pattern of
MAODs was similar to that of LAODs, but the intensities of high
MAOD loading were about half those of LAODs. In contrast, high
SAODs were widespread over most of the land area of the world
and had complex contributors, including a fine fraction of natural
Fig. 1. Climatological distributions of (a) type-dependent AODs and (b) type-dependent A
(iii) small-sized, (iv) spherical, and (v) non-spherical. The proportion given in the lower le
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mineral dust in desert-source areas, fine or ultrafine modes of
strongly absorbing aerosols emitted from typical biomass-
burning regions, and urban and industrial aerosols from areas with
high anthropogenic emissions. In terms of aerosol morphology,
spherical aerosols completely dominated global aerosol extinction
over land, with a global average value (0.149) about six times
higher than that of non-spherical aerosols (0.024). In general, sea
salt particles, smoke aerosols, and secondary aerosols generated
by air pollution are close to spherical, while coarse particles such
as dust aerosols and biological debris (e.g., pollen) are non-
spherical aerosols. Therefore, the global distribution pattern of
NSPAODs was very similar to that of LAODs and MAODs, particu-
larly in desert-source regions.

We further calculated the annual proportion of the multi-year
mean AODs by different particle types to the TAOD (Fig. 1(b)). As
a global average, small-sized aerosols contributed the largest pro-
portion of the multi-year average TAOD (57.5%), followed by large-
sized aerosols (32.2%), while medium-sized aerosols (10.3%) con-
tributed the smallest proportion. From the perspective of aerosol
shape, we found that spherical and non-spherical aerosols con-
tributed 89.6% and 10.4% of the TAOD, respectively. Specifically,
ODs as a proportion of TAOD during 2003–2018. (i) Large-sized, (ii) medium-sized,
ft of each panel represents the land average corresponding to the individual variable.
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as illustrated in Fig. 1(b-i), the proportion of LAOD to TAOD
(P_LAOD) was generally less than 50% in other land areas except
for the Sahara Desert, East Arabian Peninsula, Iranian Highlands,
northwestern China, and the southeastern Tibetan Plateau, China
(TP). It is noteworthy that over the TP, the multi-year average
P_LAOD was about 40%–60%, which can be mainly attributed to
the long-range transport of dust aerosols [37]. As a result of the
narrow particle size range (0.7–1.4 lm diameter) and limited aero-
sol sources, variations in the proportion of MAOD to TAOD
(P_MAOD) over land were not prominent, except for the NAF
region, where the P_MAOD was around 30%–40%. For small-sized
aerosols, the enhanced proportion of SAOD to TAOD (P_SAOD)
(> 70%) was mainly located in typical biomass-burning regions,
including Central and North America, SAM, SAF, and Eastern
Siberia. Unlike the distribution of size-segregated AOD, spherical
aerosols contributed almost 90% of the total aerosol extinction over
land areas other than NAF, MDE, and the TP. In contrast, the Sahara
Desert region was the largest contributor of land non-spherical
aerosol types, as it caused about 30%–60% of the total aerosol
extinction.

3.2. Climatology and trends of the FoOs for different APLs

As clearly depicted in Fig. 2(a), distinctly different land distribu-
tion characteristics can be observed between the climatology of
the FoOs for different APLs. Overall, the FoOs tended to decrease
progressively with increasing aerosol loading over the land areas.
The land-average FoOs for APL 1 to APL 4 were 63.1%, 26.9%,
8.5%, and 1.6%, respectively. For APL 1 (TAOD < 0.15; considered
as clean condition), the high FoOs were mainly located in areas
Fig. 2. (a) Climatological distributions of the FoOs for different APLs during the period 20
the FoO. (b) The annual trends in FoOs, expressed as a percentage change: Slope

�y � 100%
number in the lower left of each panel represents the percentage trend value calculated
indicate that the trend values are above the 95% significance level from the M–K test. (c
with R above 95% significance level are shown). (i) ALP 1, (ii) APL 2, (iii) APL 3, and (iv)
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far from natural and anthropogenic aerosol pollution, and ranged
from 80% to 100%. It should be noted that the FoOs of APL 1 were
less than 5% in North–Central Africa, MDE, northern SAS, and east–
central China, indicating that people in these regions are exposed
to varying degrees of aerosol pollution all year round. For APL 2
(0.15 < TAOD < 0.40; considered as lightly polluted), the intensifi-
cation of multi-year annual average FoOs (about 50%–70%) was
located mainly in northern SAM, NAF, the MDE, CAS, SAS, SEA,
and Chinese mainland, except for the TP. Remarkably, the FoO for
APL 2 was about 0–30% over the TP, indicating that the region is
also susceptible to varying degrees of aerosol pollution. Previous
studies have suggested that aerosols over the TP are mainly trans-
ported from surrounding areas, including springtime dust aerosols
from the Taklamakan Desert and anthropogenic aerosols in SAS
[37,38]. These aerosols have been confirmed to play a key role in
the weather and climate system over the TP through aerosol–radi-
ation and aerosol–cloud interactions [39].

Compared with the spatial distribution pattern of the FoO for
APL 2, the FoO for APL 3 (0.40 < TAOD < 0.80; considered as mod-
erately polluted) presented a similar distribution with attenuated
intensity, and the extent of its high-value area was significantly
reduced or even shifted. For example, the highest FoO (> 60%)
was mainly distributed in Central Africa and northern India, with
the former mainly being attributed to frequent biomass-burning
events from summer to winter [40] and the latter to enhanced per-
sistent anthropogenic emissions [41]. The second-highest FoOs
(about 20%–50%) were found in NAF, the MDE, southern India,
eastern and northwestern China, and ICP, while the third-highest
FoOs (10%–20%) were found in regions such as central SAM, with
forest wildfires as the dominant contributor [42]. In contrast, the
03–2018. The number in the lower left of each panel represents the land average of
, where slope represents Sen’s slope and �y represents the annual mean value. The
from the time series of the land annual average. Note that numbers marked in red
) The correlation coefficients (R) for the TAOD versus FoOs (note that only grid cells
APL 4.
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FoO for APL 4 (TAOD > 0.80; considered as heavily polluted) exhib-
ited a clear and distinct spatial distribution, successfully capturing
several well-known areas of high aerosol pollution around the
world [23], dominated by different aerosol types. For example,
NAF and the MDE were dominated by mineral dust aerosols, north
China and the Sichuan Basin were dominated by anthropogenic
aerosols, and Central Africa, central SAM, ICP, and SEA were
dominated by biomass-burning aerosols. These findings suggest
that the people in these regions experienced the world’s worst
atmospheric ambient conditions for about 10%–20% of days during
2003–2018. The spatial distribution of these pollution hotspots is
consistent with the high value of surface PM2.5 concentrations
estimated from satellite-retrieved AOD [43].

Quantifying long-term variations in different APLs contributes
to revealing the historical evolution of the FoOs in humans exposed
to different APLs. Therefore, we further estimated the trends in the
FoOs of different APLs, as shown in Fig. 2(b). The temporal trend
results show that the trend distribution patterns were very distinct
among different APLs. Globally, we found a 0.238%�a�1 (P < 0.05)
increase in the FoO in APL 1 over land during 2003–2018. In other
words, the number of days with clean aerosol conditions increased
by 3.8% over the study period, indicating that air quality improved
dramatically in most regions over land, although a few zones (e.g.,
SAS and East–Central Africa) exhibit negative trends. Spatially, the
significant increase (about 2%–8% per year) in the FoO in APL 1
occurred predominantly in NAF, the entire EUR, eastern NAM, cen-
tral SAM, and EAS. However, the significant negative trend in SAS
and East–Central Africa means that air quality gradually deterio-
rated over the study period.

Compared with the trend distribution of APL 1, the trend signs
of APL2 reversed sharply in all regions except for SAS and EAS,
where it did not change significantly. The widespread negative
trend directly contributed to a 0.209%�a�1 (P < 0.05) decrease in
the FoO in APL 2 over land.

Unlike APLs 1 and 2, there was a set of completely opposing
regional trends for the FoO in APL3, in which clearly identifiable
positive trends were located in SAS, the MDE, and eastern NAF,
and negative trends were located in eastern NAM, South–Central
EUR, and EC. Globally, the above regional contrasting trends deter-
mine a non-significant decline (�0.017%�a�1) over land at a global
scale.

Similar to APL 3, APL 4 reveals regional trends that were equally
opposing (compared with APLs 1 and 2) but with a reduced extent
of influence. To be specific, compared with the trend pattern of APL
3, the increasing trend of APL 4 was stronger and more extensive in
NAF, while the magnitude of the decline became more intensified
and clustered in EC. In contrast, unlike the APL 3 trend, which
had a positive sign across SAS, APL 4 had a significant reduction
in the coverage of its positive trend. A similar shift was also
observed in the MDE. Furthermore, APL 4 showed an unusually
prominent decreasing trend in central SAM. These regionally sig-
nificant trends contributed to a non-significant slight decline
(–0.007%�a�1) in APL 4 at the global scale. Remarkably, the
decreased APLs 3 and 4 and increased APL 2 in EC are also supported
by the results obtained by Zhang et al. [44] using long-term ground-
based observations; that is, the frequency of heavy haze events in EC
has significantly decreased, but the frequency of light/moderate
haze events has not shown a decreasing trend. Zhang et al. [44]
reported that the declined frequency of heavy haze events could
mainly be attributed to significantly reduced sulfur dioxide (SO2)
in EC [45–49]; however, specific chemical reaction mechanisms
(i.e., catalytic reactions on the surface of BC) at low SO2 conditions
prevent the reduction of the frequency of light/moderate haze
events. In order to implement a reduction in the frequency of light/-
moderate haze events, synergistic measures such as controlling
both SO2 and primary BC, along with sustained reductions in other
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primary gases and aerosols [44], are needed to significantly reduce
the levels of regional total aerosol loading.

The probability density function (PDF) of trends in APLs, TAOD
and size-segregated AODs, and TAOD shape-segregated AODs were
shown in Fig. 3. The PDFs calculated for each APL on all grids over
land with statistically significant trend values shows that APLs 1
and 2 exhibited two opposing single-peaked distribution modes
(peaks of 2.06%�a�1 and –2.77%�a�1, respectively), indicating a tran-
sition from light pollution to clean conditions in land air quality
(Fig. 3(a)). The interannual variation in land FoOs at different APLs
also presents this transition process in detail (Fig. S4 in Appendix
A). In contrast, the similar bimodal distributions of APLs 3 and 4 pro-
mote and offset (corresponding to the left and right peaks) to some
extent the degree of improvement in clean conditions. By compar-
ing the trend patterns of different APLs over pollution hotspot
regions, we further characterized the evolution of these regional
trends in APLs as follows: ① The decrease in the FoOs of APLs 3
and 4 in EC facilitated the increase in APLs 1 and 2; ② the increase
in the FoOs of APLs 3 and 4 in SAS resulted in the decrease in APLs 1
and 2;③ the decrease in the FoOs of APLs 2 and 3 in EUR and eastern
NAM facilitated the increase in APL 1; and④ the decrease of APL 2 in
NAF and the MDE promoted the increase in APLs 1, 3, and 4.

To determine which APL dominates the interannual variation in
regional TAOD, we explored the relationship between APLs and
TAOD by performing a correlation analysis, as shown in Fig. 2(c).
Overall, two opposing relationship patterns were found. Specifi-
cally, there was a significant negative correlation between TAOD
and APL 1 over almost all land regions, except for a dust belt (ex-
tending from the west coast of North Africa and passing across
the MDE and SAS, to northwest China), which showed an insignif-
icant correlation. However, these significant negative correlations
(insignificant correlations) were completely reversed between
TAOD and APL 2, showing a significant positive (negative) correla-
tion. At the same time, compared with the correlation patterns
between TAOD and APLs 1 and 2, the significant positive correla-
tions between TAOD and APLs 3 and 4 covered almost all regions
of the world. The above results show that the effects of the varia-
tion in FoOs at different APLs on the interannual evolution of TAOD
were complex and strongly regionally dependent. Taken together,
these effects can be briefly summarized as follows: ① Changes in
APL 1 had negligible effects on the interannual evolution of TAOD
in dust-source and high-anthropogenic-emission regions; instead,
it was mainly influenced by the FoOs for APLs 2–4. ② There were
significant regional differences in the effects of FoOs on TAOD. For
example, over the TP, the variation in TAOD was mainly regulated
by the FoOs of APLs 1–3. In NAF, it was mainly controlled by APLs
2–4. In the central SAM, it was mainly dominated by APLs1, 3, and
4. ③ APLs 2–4 exhibited different degrees of dominant driving role
in natural or anthropogenic pollution source areas and their adja-
cent regions.

3.3. Long-term trends in type-dependent AODs

Regional changes in AODs by different particle types are usually
closely related to the variations in local anthropogenic aerosols dri-
ven by the intensity of human activities and natural aerosols (e.g.,
DU and SS) driven by meteorological conditions. Thus, quantifying
the interannual evolution of AODs by different particle types can
provide a useful reference for estimating global and regional trends
in anthropogenic and natural aerosols. Fig. S5 in Appendix A and
Fig. 4(a) show the estimated annual trends in TAOD and size-
segregated AODs globally. We observed a 0.47%�a�1 decrease (i.e.,
a decline of 7.5% in the studied 16 years) in TAOD during 2003–
2018. Spatially, the regions in which the TAOD trends experienced
a significant decrease (roughly 1%–5% per year) were mainly
located in northwest and eastern NAM, central SAM, EUR, and EC,



Fig. 3. Probability density functions (PDFs) of trends in (a) APLs, (b) TAOD and size-segregated AODs, and (c) TAOD and shape-segregated AODs. The colored dotted lines
indicate the peak position of the PDF for each independent variable, while the magnitude of the corresponding value of the PDF peak is indicated by a color-coded number.
Note that only grid cells that pass the 95% significance level test are applied in these statistics.

Fig. 4. (a) Annual trends (percentage per year) in size-segregated AODs. Note that all trends are expressed as percentage changes: Slope
y
� � 100%. Only grids with trend values

above the 95% significance level from the M–K test are shown. The number in the lower left of each panel represents the trend value calculated from the time series of the
land average. Numbers marked in red indicate that the trend values are above the 95% significance level from the M–K test. (b) The R between size-segregated AODs trends
and TAOD changes. (c) RCs of size-segregated AODs to TAOD changes. Note that the RCs are only shown when the trends for TAOD and size-segregated AODs are significant
simultaneously. (i) LAOD; (ii) MAOD; and (iii) SAOD.
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whereas some significant increases (2%–4% per year) were
observed in SAS, the MDE, and central and eastern NAF, consistent
with previous studies of trends in TAOD [23,50,51]. These signifi-
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cant regional trends were also confirmed by an intercomparison
between the estimated trend values from four different AOD data-
sets (including two based on satellite retrievals: MODIS/Terra and
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MODIS/Aqua; and two based on aerosol value reanalysis: MERRA-2
and CAMS) (Fig. S6 in Appendix A). The high R between MISR and
these four different datasets further confirms the consistency
among the different AOD datasets (Fig. S7 in Appendix A).

Examination of the trends in size-segregated AODs shows a
similar distribution characteristic, but the magnitudes of these
trends were not completely consistent. Overall, the decrease in
all size-segregated AODs contributed to the decrease in TAOD
(Fig. 4(a)), with SAOD showing the most noticeable decline
of �0.74%�a�1 (P < 0.05) on a land average among all size-
segregated AODs (see also Fig. S8(a) in Appendix A). The estimated
trends in shape-segregated AODs indicate that these small-sized
aerosols with dominant driving roles tended to be spherical parti-
cles, as a highly similar spatial distribution pattern was observed
among the trends (Fig. S9(a-i) in Appendix A). Moreover, the
insignificant interannual variation of NSPAOD on land indirectly
confirms this finding (Fig. S9(a-ii)). For the LAODs, the areas with
positive trends were located primarily over central and eastern
NAF, the MDE, SAS, western NAM, and North and Central RUS.
The similar upward trend in TAOD and LAOD in the dust-source
areas suggests that large-sized aerosols are the dominant aerosol
type driving the trend of total aerosols in these regions. This
suggestion is also supported by the high R (0.8–0.9) between
TAOD and LAOD and NSPAOD in these regions (Fig. 4(b-i) and
Fig. S9(b-ii)). Compared with LAODs, the trends in MAOD showed
a similar distribution pattern in all regions except Central Africa
and the MDE, but their intensity was intensified considerably,
especially in SAS. The correlation analysis shows that the dominant
role of medium-sized aerosols on the interannual variability of
TAOD was significantly dispersed in space compared with that of
large-sized aerosols. In contrast, we found that the trend in SAODs
remains highly consistent with that in TAODs in terms of both spa-
tial pattern and magnitude (Fig. 4(a-iii) and Fig. S5), particularly in
anthropogenic-aerosol-dominant regions, which suggests that
small-sized aerosols emitted by anthropogenic activities are the
most dominant aerosol type driving the variation in land TAOD.
The almost complete overlapping PDFs between TAOD and SAOD
and SPAOD suggest that small-sized and spherical aerosol particles
were the dominant aerosol type driving the significant decrease in
TAOD over land between 2003 and 2018, rather than aerosol types
such as mineral dust associated with NSPAOD, LAOD, and MAOD
(Figs. 3(b) and (c)). In addition, the decrease of TAOD is weakened
by the rightward shift of the PDF of the trend in LAOD due to the
increase in dust aerosols emitted from the majority of dust-
source areas. Small-sized spherical aerosol particles show signifi-
cant decreasing trends to varying degrees, which are mainly
related to the continuous decrease in anthropogenic aerosols (from
EAS, eastern NAM, and EUR) [22,23,47,52] and natural dust aero-
sols (from the Taklamakan and Gobi Deserts) in the upstream
regions in the past decade [53–55].

3.4. RC of type-dependent AODs to TAOD trends

3.4.1. Land RC maps
Using Eq. (3), the annual RCs of each type-segregated AOD were

separately calculated for each 0.5� � 0.5� grid box for the whole of
the 2003–2018 period; the results are shown in Fig. 4(c) and
Fig. S9(c). During the period 2003–2018, the RCs of LAOD and
MAOD were similar in spatial distribution, with approximately
10%–30%, except for NAF (RCs of about 50%–60% and 20%–40%
for LAOD and MAOD). In contrast, the RCs of SAOD reached the
maximum in NAM and EUR with values of about 80%–90%, fol-
lowed by SAS, EC, and SAM with values about 50%–70%; the lowest
values were in NAF and the MDE, at about 30%–40%. The similar
distribution of RCs for size-segregated AODs in SAS and EC suggests
that the trends of TAOD in these two regions were controlled by
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complex aerosol sources [56,57], with both anthropogenic and nat-
ural aerosols playing different roles, although the former was more
dominant. This suggestion is further confirmed by the significant
positive correlation between the MISR-derived TAOD and the
anthropogenic and natural aerosols extracted from the CAMS
reanalysis (Fig. S10 in Appendix A). The RCs of the shape-
segregated AOD demonstrate that the trend in TAOD was mainly
driven by SPAOD, while the contribution of NSPAOD was almost
negligible or even played a negative role, for example in SAS and
Central RUS (Fig. S9(c)).

3.4.2. Regional trends and NRCs
Fig. 5 presents the trends in TAOD and type-segregated AOD

over land and the 14 SRs, and the NRCs of these type-separated
AODs to TAOD trends. These statistics were based on a time series
of regional averages. Globally, the significant decrease in TAOD
over land was mainly attributed to the decrease in small-sized
and spherical aerosol particles with NRCs of 82.6% and 90.4%,
respectively. This finding suggests that the driving role of
small-sized and spherical aerosols is dominant, as these NRSs are
significantly higher than their proportion in the multi-year average
of TAOD (Fig. 1(b)). The Rs between SAOD and SPAOD and anthro-
pogenic fine-mode AOD (ANT_FM_AOD) were spatially highly
similar to those between TAOD and ANT_FM_AOD (Fig. S10(a)),
indicating that small-sized and spherical aerosols are mainly com-
posed of SU, OM, and BC produced by anthropogenic and biomass-
burning emissions. To elucidate the role of aerosol components, we
further decomposed the regional NRCs of the five composition-
dependent AODs from the CAMS reanalysis, as shown in Fig. S11
in Appendix A. The results show that SU and OM together explain
almost 74.0% of the global variability in land TAOD, whereas natu-
ral aerosols (DU and SS) account for slightly less than 20.0%.
Regionally, the NRCs of OM are overwhelmingly dominant in
EAS, SAS, and SAM, with NRCs of 58.8%, 50.4% and 77.9%, respec-
tively. In contrast, the dominant role of SU is more prevalent in
NAM (63.9%) and EUR (52.0%). The dominant driving role of
anthropogenic aerosols in the interannual variability of regional
TAOD has also been widely confirmed by previous studies. For
example, Che et al. [23] showed, based on statistical models, that
SU precursor (SO2) and carbonaceous aerosols are the dominant
emission drivers explaining the inter-decadal variability of TAOD
over typical anthropogenic-aerosol-dominant and biomass-
burning-dominant regions, respectively. In addition, Che et al.
[23] revealed the non-negligible contribution of meteorological
factors to inter-decadal changes in regional aerosol loading.
Although it is undoubtedly crucial to explore the complex mecha-
nisms of the meteorological factors influencing aerosol types, this
goes beyond the scope of this study.

Among the 14 SRs, TAOD showed a significant positive trend
(0.96%�a�1, P < 0.05) only in SAS (Fig. 5(a)). The significant increases
in all size-segregated AODs and SPAOD were responsible for this
trend. Regional NRCs suggest that LAOD, MAOD, SAOD, and SPAOD
explained 28.8%, 20.5%, 50.8%, and 88.3% of the TAOD trend in SAS,
respectively. In contrast, TAOD exhibited a significant negative
trend in EAS, EUR, and CAS, with a trend intensity of –1.49%,
–1.65%, and –0.69% per year, respectively. Of these, the decrease
of TAOD in EUR (CAS) was closely related to the decreases in MAOD
(SAOD), SAOD (SPAOD), and SPAOD (NSPAOD), with NRCs of 3.9%
(77.8%), 88.9% (84.8%), and 96.4% (15.2%), respectively. In contrast,
the significant reduction of all type-separated AODs contributed
significantly to the decrease of TAOD in EAS. In terms of NRCs for
size-segregated AODs, the maximum NRCs occurred at SAOD
(68.2%), followed by MAOD (17.4%), and the minimum occurred
at LAOD (14.4%). For the NRCs of shape-segregated AODs, SPAOD
and NSPAOD contributed 89.7% and 10.3% of the decreasing trend
of TAOD in EAS, respectively.



Fig. 5. (a) Regional annual trends (i.e., Sen’s slope; percentage per year) in TAOD and type-dependent AODs calculated from the time series of regional annual averages during
2003–2018. An asterisk above each bar indicates that the trend value is above the 95% significance level from the M–K test. (b) Regional NRCs (%) of type-dependent AODs to
TAOD changes. An asterisk above each bar indicates that the NRC is above the 95% significance level from the two-tailed Student’s t-tests.
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4. Conclusions

This study investigated the decadal-scale trends in type-
dependent AODs related to aerosol particle properties using long-
term (2003–2018) aerosol optical component dataset retrievals
from MISR over land and 14 SRs. Subsequently, we further ana-
lyzed the relationships between TAOD trends and type-
dependent AOD changes and quantified the RC of each type-
dependent AOD to TAOD trends. On average, LAOD, MAOD, SAOD,
SPAOD, and NSPAOD contributed 32.2%, 10.3%, 57.5%, 89.6%, and
10.4%, respectively, to the land TAOD. Trend analyses showed that
TAOD experienced a global 0.47%�a�1 decrease (P < 0.05) over land
from 2003 to 2018. Spatially, these significant negative trends
were mainly located in northwest and eastern NAM, Central
SAM, EUR, and EC and adjacent seas, consistent with previous stud-
ies of trends in TAOD. Examination of the trends in size-segregated
AODs further revealed that this significant reduction is mainly
attributed to the continued reduction in SAOD (�0.74%�a�1) and
SPAOD (�0.46%�a�1). In addition to diagnosing these trends, the
RC of each type-segregated AOD to the trend in TAOD was inde-
pendently quantified. We found that TAOD changes are primarily
controlled by changes in SAOD and SPAOD, which contributed
82.6% and 90.4% of the trends in land TAOD during 2003–2018,
respectively, indicating the non-negligible globally dominant role
of small-sized and spherical aerosols. The CAMS reanalysis
revealed that these dominant aerosol types are mainly composed
of SU, OM, and BC from anthropogenic and biomass-burning
emissions.

When TAODs were categorized into the four APLs, their FoOs
tended to decrease progressively with increasing aerosol burdens.
Globally, the multi-year averaged FoOs for APLs 1–4 over land
were 63.1%, 26.9%, 8.5%, and 1.6%, respectively. Globally, we
observed a 0.238% (0.209%)�a�1 (P < 0.05) increase (decrease) in
FoO in APL 1 (APL 2) over land during 2003–2018. In addition,
the PDF distribution of the FoOs at different APLs revealed that
air quality improved dramatically in most land areas during
2003–2018, except in SAS. Overall, APLs experienced a shift from
a lightly polluted to clean condition. Furthermore, we found that
the effects of FoOs at different APLs on the interannual variability
of TAOD are complex and strongly regionally dependent. In gen-
eral, changes in APL 1 had negligible effects on the interannual evo-
lution of TAOD in dust-source and high-anthropogenic-emission
regions; instead, it was mainly influenced by the FoOs for APLs
2–4.

Our study indicates that small-sized and spherical aerosols
composed of anthropogenic aerosols play a dominant role in deter-
mining interannual variability in land TAOD. However, there are
some limitations in this study. For example, the influence of the
uncertainty in particle types derived from the MISR sensor on
the quantification results is not clear. Limited by the sampling fre-
quency, MISR does not have the ability to provide daily global cov-
erage, which may constrain the representativeness of the daily
average AOD retrieved from MISR, as atmospheric aerosols usually
have noticeable diurnal variability [58,59]. To address this limita-
tion, future work needs to rely on geostationary satellites to
improve the characterization of the diurnal variability of regional
TAOD. Moreover, whether the significant contribution of small-
sized and spherical aerosol particles to the decreasing trend in
TAOD over land is attributable to the concentration of aerosols or
to the degree of extinction needs to be further explored. Regard-
less, satellite retrievals of the optical properties of type-
dependent aerosols contribute to a more systematic and in-depth
understanding of aerosol changes on global and regional scales,
especially to their particle size and morphology, as these properties
are often closely associated with changes in both anthropogenic
and natural aerosols. More importantly, compared with most pre-
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vious trend studies using isolated TAOD, the dominant driving role
of small-sized and spherical aerosol particles that was revealed in
this study provides new insights into our knowledge of global
aerosol evolution patterns. Given the dominant driving role of
anthropogenic aerosols in TAOD variability, future studies should
pay more attention to the influence of changes in the chemical
components of anthropogenic aerosols and their microphysical
properties on inter-decadal changes in TAOD.
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