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Intelligent sensing, mechanism understanding, and the deterioration forecasting based on spatio–
temporal big data not only promote the safety of the infrastructure but also indicate the basic theory
and key technology for the infrastructure construction to turn to intelligentization. The advancement
of underground space utilization has led to the development of three characteristics (deep, big, and clus-
tered) that help shape a tridimensional urban layout. However, compared to buildings and bridges over-
ground, the diseases and degradation that occur underground are more insidious and difficult to identify.
Numerous challenges during the construction and service periods remain. To address this gap, this paper
summarizes the existing methods and evaluates their strong points and weak points based on real-world
space safety management. The key scientific issues, as well as solutions, are discussed in a unified intel-
ligent monitoring system.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Background to locate. First, service checking and maintenance are restricted by
The rapid growth of the economy has increased the need for the
utilization and development of underground space. The beginning
of the underground infrastructures in China could be dated to
1990, although this effort was mostly concentrated on subway
transportation and underground parking lots. With the improve-
ment of urbanization, urban underground space development
began to speed up. Since 2016, the area of underground space
has expanded to 844 million square meters, and China currently
has the largest underground space in the world. For example, the
under-construction Beiheng Passage Project in Shanghai is a com-
bination of the subway station, railway station, and supermarket.
The area operates in a multiple-function manner, and the compre-
hensive design has become the main trend for underground infras-
tructure. In addition, the maximum depth of the Beiheng Passage
Project could reach 48 m. This depth indicates the project is a
multi-level and tridimensional structure. In summary, the main
characteristics of the underground infrastructure are deep, big,
and clustered.

Compared to other types that afflict buildings and bridges, dis-
ease and deterioration in underground structures are more difficult
the space. Second, the complex situation underground makes it
challenging to recognize diseases and address emergencies. Dis-
eases in this context can be divided into three main categories:
progressive diseases, sudden disasters, and natural disasters. For
progressive diseases, due to complex urban geological conditions,
most of the riverside and coastal cities are built upon soft soil with
severe ground subsidence. Along with the construction and exter-
nal load disturbances, progressive diseases of urban underground
spaces occur frequently, which reduces their service life. For sud-
den disasters, such as explosions, fires, and traffic accidents, the
accident chain is difficult to determine, which increases the struc-
tural damage and deterioration of the infrastructure. Finally, natu-
ral disasters, such as typhoons, rainstorms, and earthquakes, could
easily destroy the structure. Due to space limitations, it is difficult
for the damage to be discovered in a timely way and be assessed
accurately, and these kinds of disasters always result in the loss
of life and property.
2. Problems with the current underground infrastructure

The main characteristics of underground infrastructure make it
difficult to recognize and give early warnings for damage. How-
ever, enormous losses result once those damages occur. Thus, the
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construction and service safety of underground space structures
are major issues that need to be resolved. Although the technology
of underground infrastructures is developing rapidly, the current
sensing and modeling methods cannot ensure the safety of the
infrastructure or individuals associated with it. The gaps between
the technology and real-world needs are still significant in terms
of in state sensing, patterns and damage understanding, and future
state forecasting.

2.1. Low data quality

Sensing techniques have adopted automatic equipment instead
of manual methods. Checking the state via manual percussion and
visual inspection is inconvenient and consumes too much man-
power. In an Internet of Things (IoT) environment, deploying
large-scale monitoring sensors helps to collect multiple types of
data to form a big data environment. These data include the state
of the infrastructure and some important information such as the
deformation, temperature, and inner damage of structures. How-
ever, most of the monitoring systems are built upon fiber sensor
networks, radar, and laser devices, which monitor the state of
the infrastructure by acoustics and optics. Most of them only
record a single type of performance metric and suffer from the
transmission delays and the difficulty operating in the extreme
environment, which causes the quality of multiple types of data
to vary. Being unable to obtain a complete and reliable perspective
for the whole infrastructure could lead to mistakes in the state
evaluation and dynamic modeling. The data quality of sensing
needs to be improved.

2.2. Latent disease feature

Some types of damage and diseases could be discovered via the
analysis of the raw monitoring data. Classifying the data collected
by the single type sensors via the human-designed threshold, the
maintainers could judge whether the emergency has happened.
However, in the complicated underground space, diseases and
damage could occur in inconspicuous places, even places not cov-
ered by monitoring sensors. Additionally, affected by some
extreme environments, the formalization of diseases could be con-
tributed by multiple factors, which creates significant difficulty for
the mechanism analysis and tracing of the leading source. The lack
of systematic and scientific structural catastrophes in early warn-
ing theory and safety information management methods makes
it difficult to trace the source of underground space structural dis-
eases and obtain the state of the infrastructure. To capture more
reliable warning signals and abnormal features, anomaly detection
technology has to be improved.

2.3. Dramatic changing state

Analysis of the formation of diseases helps to detect and deter-
mine anomalies. Moreover, it contributes to early warnings for the
coming damage and leaves enough time for the authorities to
manage the problem. In this process, forecasting plays a vital role.
Table 1
Research approach and related work summary.

Goal Existing problem

Holographic sensing Low data quality

State understanding Latent disease feature

Degradation forecasting Multiple affect factors
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Statistical analysis methods calculate the correlations between the
target time step with the history or employ the autoregressive
integrated moving average model (ARIMA). The relatively low rep-
resentation and modeling ability make it difficult to extract the
hidden patterns in a complicated underground space environment.
By applying the actual boundary conditions, the numerical simula-
tion models [1,2], such as the finite element method (FEM) and dis-
crete element method (DEM), calculate the weak positions of the
structure, which is reflected by the numerical results. However,
this might require plentiful field investigation results and highly
complex models [3,4]. In addition, it is invalid to employ the
original boundary conditions when emergencies occur. Under the
rapid evolution of the states and untimely collapse and cracking,
whether the emergency or the slow deterioration is hard to capture
the main factors due to the messy cause. Thus, accurate and reli-
able forecasting methods for future states are needed. Finally, a
complete system consists of the intelligent diagnosis, accurate pre-
dictions of deterioration trends, and dynamic early warnings of an
underground space structure disease or disaster.
3. Solutions

In recent years, computer science has been applied to domains
such as transportation planning, recommendation systems, and
natural language processing, which offers a new perspective for
maintaining the safety of infrastructures. Compared with these
domains, underground infrastructure has a lower data quality.
The hidden disease patterns and changeable tendencies also pre-
vent the extraction of the true factors. To address the above prob-
lems, we examined four topics: ① a unified underground space
infrastructure monitoring system based on spatio–temporal big
data analysis; ② real-time information sensing based on light fea-
ture space construction; ③ anomaly detection based on hidden
pattern understanding; and ④ future tendency forecasting based
on spatio–temporal correlations modeling. Table 1 [5–94] offers a
summary of the following parts.
4. Framework of spatio–temporal underground infrastructure
monitoring system

In this section, we discuss the framework of the intelligent
monitoring system shown in Fig. 1. The basis of the system is made
up of the data collected by the monitoring sensors and external
factors such as structure, environment, and risk category. Multiple
kinds of raw data are arranged in a structured shape, such as time
series, spatio–temporal data, and graph data. The analysis of engi-
neering big data reveals the mechanism of the diseases and discov-
ers the knowledge from two perspectives: domain knowledge-
based methods and data-driven methods. Research on the three
problems plays a vital role in this intelligent monitoring domain.
First, the problems of lost data and the limitation of the sensors’
location all result in low data quality. However, sensing the envi-
ronment of the structure and offering a digital description lay the
foundation for later analysis. Spatial inference for the whole
Solutions

Data augmentation based on feature compression [5–17]
Response reconstruction based on heterogeneous data fusion [18–41]
Anomaly detection based on clustering methods [42–50]
Disease diagnosis based on multi-view analysis [51–70]
Spatial correlation modeling based on graph neural network [71–74]
Temporal dependency extraction based on external factors [75–94]



Fig. 1. The framework of the intelligent monitoring system.
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structure could offer a complete view. Second, some damage and
diseases on the structure do not emerge immediately. Understand-
ing the mechanism behind and capturing the hidden representa-
tions helps to discover anomalies and damage, which offers the
safety diagnosis and state evaluation for the structure. Lastly, with
the complete historical data and the current state of the structure,
forecasting the future tendency and dynamic equips the system
with the early warming ability. The advanced reaction minimizes
the losses and protects life safety. By digging into the three prob-
lems above, a unified intelligent monitoring system is built. The
combination of sensing, understanding, and forecasting governs
the infrastructure comprehensively. The global center receives
heterogeneous information and offers strategies to prevent the dis-
eases and obtain a longer service period.

5. Holographic sensing based on feature compression

Advancements in sensor technology allow for a large number
of collected data to show the infrastructure’s state from several
different perspectives. However, it is challenging to incorporate
multiple types of data. First, the lost data problem hinders the
development and application of wireless sensor technology for
structure health monitoring; it is common in real-world scenarios
and impossible to remove. Second, the format of the data varies.
Different sample frequencies, phases, and time lengths all cause
challenges for the state sensing. Third, redundant information
accounts for the majority of the data. The high cost of storage
and computation leads to a low monitoring efficiency and late
state sensing. Thus, real-time information sensing based on the
light feature space construction is needed. By taking the physical
space information as input, the tensor decomposition and auto-
encoder can extract deep hidden features from the massive
heterogeneous monitoring data. The orthometric base features
could be fused with the statistical analysis. Using feature augmen-
tation methods for underground space infrastructure, the large-
scale feature sets are obtained, and the correlations could be
evaluated. Moreover, within informative base features, the physical
196
space could be reconstructed as digital, which helps to reveal the
complete infrastructure states. The framework is shown in Fig. 2.

5.1. Data augmentation

Widely developed wireless sensor technology provides the
similar functionality of traditional wired systems with a much
lower installed cost, which results in the explosive increase of
collected data. However, the lost data problem hinders the
development and application of wireless sensor technology of
structure health monitoring. The causes of missing data vary, such
as radio interaction, transmission error, sensor fault, and power
supply interruption, which all harm the data collection process to
a certain extent. It is impossible to remove this influence and tackle
the problem at its root.

Many efforts have been made in this domain. Some research
that proposed to utilize the numerical simulation models to solve
the lost data problem can be divided into model-based categories,
which requires field investigations and highly complex models
[5,6]. In addition, it is invalid to employ the initial boundary condi-
tions when emergencies occur. To overcome the above problem,
data imputation based on machine learning methods has been
widely adopted, and most of these methods reconstruct the data
by the correlations between sensors [7–9]. Bao et al. [10] proposed
a novel compressive sampling method to impute the missing val-
ues, which the monitoring sensors collected from a bridge struc-
ture. Huang et al. [11,12] utilized the intra-correlation between
sensors and the inter-correlation between strain data and temper-
ature values to recover the missing values. The spatial correlation
of different strain sensors was extracted to interpolate the missing
stress measurements [13]. This work also pointed out that the ratio
of lost data should not be more than 30 %. Chen et al. [14] made a
real-time augmentation with multi-sourced urban data. It is worth
mentioning that Tan et al. [15] employed non-matrix factorization
to extract the correlations between multiple sensors with the low-
rank assumption, and used the end-to-end stochastic gradient des-
cent framework to obtain an excellent result. They filled in the
missing values for one sensor at a time. If the number of anoma-
lous sensors is more than one, this problem can be solved by con-
ducting the filling process repeatedly. The recovery process is
defined as follows:

X � UVT X̂ ¼ UVT ð1Þ

where X represents the monitoring data, and U and V are the low-
rank matrices. With the rapid development of artificial intelligence
technology in computer science, some deep neural networks were
introduced to deal with complex and non-linear correlations. Fan
et al. [16] recovered the dynamic acceleration data by convolutional
neural network (CNN). Jiang et al. [17] made the data imputation
with the incomplete dataset by the generative adversarial network,
which resulted in a remarkable improvement compared with the
conventional imputation method. With the development of wire-
less sensor networks for long-term monitoring, more data will be
collected per day. Deep learning methods are a potential future
direction for lost data imputation.

5.2. Response reconstruction

Valid monitoring data provide foundations for mechanical
behavior analysis. We discussed how to ensure the data quality
in the last subsection. However, although the locations where
the monitoring sensors are installed are carefully selected, the
number of sensors is much smaller than the total number of
degrees of freedom (DOFs) of the structure due to the limitation



Fig. 2. Holographic sensing with feature compression.
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of the budget and the inaccessibility of some locations for mea-
surement operations [18]. However, data at locations where no
monitor sensors exist are always useful and sometimes critical.
To address the excessive volume of data and the limitation of
the sensor arrangement, some efforts have been made in response
reconstruction. The response reconstruction methods fall into two
categories: model-based methods and data-based methods. The
former one mainly is based on the transmissibility concept, which
reconstructs the response by a transformation matrix of the
function. Those methods are formulated in the time domain
[19,20], frequency domain [21,22], or wavelet domain [23–25].
The Kalman filter, a well-known state estimator providing the
unbiased minimum variance state estimation by combining the
structural model and instantaneous measurement information,
was introduced to this field based on optimal multi-type sensors
placement [26–28].

Unlike the model-based methods that are limited by their mod-
eling capacity of recovery under complex, dynamically changing
environmental and operational conditions, data-driven methods
are mainly used to reconstruct the short-term continuous lost data.
Bao et al. [29,30] proposed the compressive sensing technique to
recover and estimate the lost signals in wireless systems. Wan
and Ni [31] introduced the Bayesian multi-task learning frame-
work to reconstruct the lost temperature data and acceleration sig-
nals. Principal component analysis (PCA), singular value
decomposition (SVD), and auto-encoder (AE) are widely adopted
unsupervised machine learning methods that follow the informa-
tion compression and reconstruction workflow [32–35]. It is worth
mentioning that Tan et al. [36] not only employed a non-negative
factorization method but also bridged the mechanical analysis and
data-driven reconstruction. The framework is shown in Fig. 3. They
used an undersea tunnel structure as an example, which is formu-
lated as a matrix with I rows and J columns.

Due to the continuum body of the tunnel structure, the force
has similar mechanical behaviors on the adjacent tunnel face area,
which leads to a constraint condition to the spatial deduction
training. However, the continuous similarity is not the same in
all tunnel faces. For example, the force similarity in the arch crown
is different from the similarity in the hance. To address this prob-
lem and bridge the mechanical analysis and data-driven deduction,
the force distribution is employed to optimize the training process
of the non-negative matrix factorization (NMF). Furthermore, the
axial symmetry property of the tunnel structure could also be uti-
lized. With two constraint terms, the loss function L of the spatial
deduction is defined as follows:
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where F is the force. A is the set of non-empty units. Yi;j 2 0;1ð Þ is
the similarity measured by force analysis, and the larger value of Yi;j

indicates the closer relationship of points i and j. l1 and l2 are
hyper-parameters to balance the values of two constraints terms.
Ui;: and V :;j indicate the ith row of U and jth column of V . I and J
is the total number of i and j, respectively. The reconstruction result
is shown in Fig. 4. The circular ring in the left represents the model
of a tunnel. The colored grids indicate the locations with sensors,
and the white grids means that there are no monitor sensors. The
deeper color indicates the bigger stress. After the spatial deduction,
the states all tunnel faces are inferred, and the historical values
could also be obtained.

Recently, with the rapid growth of computer science and the
volume of data, some deep learning methods have attracted much
attention for their capability in dealing with massive amounts of
data and the end-to-end training framework. Some artificial neural
networks (ANNs) [37,38] and CNNs [39,40] are widely used to
reconstruct the response. Jiang et al. [41] employed the
sequence-to-sequence architecture cooperating with the attention
mechanism, and the experiment results were satisfactory, which
offers a new perspective for response reconstruction.
6. Anomaly detection based on hidden pattern understanding

Compared with traditional finite element-based analysis meth-
ods, the data-driven identification methods are less likely to be
affected by changes in the external environment, which leads to
the more accurate identification of the micro-damages and hidden
defects in underground space structures. Therefore, we can evalu-
ate the correlation of the structural behavior from different per-
spectives and build a feature set of early micro-damages via
metric learning and non-linear feature extraction. The method
with adaptive abnormal-behavior discovering capabilities could



Fig. 3. The framework of response reconstruction with domain knowledge (the variables are defined below).

Fig. 4. The spatial inference in a real case.
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be developed by in-depth data mining and feature extraction.
Using the dimension reduction analysis of the source data, the
problem of the few-shot abnormal data samples and hidden abnor-
mal features is solved by obtaining the different bases of the dis-
ease. Additionally, it contributes to the intelligent identification
of hidden defects and early micro-damage of the urban under-
ground space structure. The framework is shown in Fig. 5.

6.1. Anomaly detection

In terms of data transmission, the wireless system data collec-
tion quality is influenced by numerous external factors such as
the humidity, electromagnetic field environment, temperature,
and transmission power. Additionally, the data acquisition process
is subject to failures led by transmission errors. Abnormal monitor-
ing data cause difficulties for the state analysis, while the incom-
plete information cannot give an accurate evaluation of the
current status. Recently, Bao et al. [42] and Tang et al. [43] exam-
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ined data anomalies in terms of the vision perspective. They drew
pictures of the dynamic strain response to show the state of the
structure. They introduced the technology in computer vision
and cooperated to use deep neural networks, such as CNNs and
fully connected neural networks, to recognize the different pat-
terns of sensors. However, the precise information contained in
the raw time-series data would be dropped to a certain extent in
the process of transforming the picture. Chen et al. [44] detected
the anomalous trajectory online with iBOAT. These types of prob-
lems are often handled in a data-driven method, most of which fol-
lows a decomposition–reconstruction manner. Spectral analysis
techniques, such as SVD [45], PCA [46,47], and wavelet analysis
[48,49] are widely adopted. NMF decomposes the original matrix
into two small non-negative matrices. The novel data reconstruc-
tion method compresses the data to the lower dimension space
to extract hidden correlations. The element-wise distance between
the original data X and the reconstructed data U, V determines
whether it is anomalous, which is defined as follows:



Fig. 5. Anomaly detection based on hidden pattern understanding.
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n ¼ # �� X � UVT
���

���
���

���
� �

ð4Þ

where � is the threshold value that divides the data into normal and
abnormal. Numerous adjustments and searches are performed to
determine the threshold. n is the output. #(�) is a mapping function
which maps the negative values to 0, and non-negative values to 1.
The process described is training with the stochastic gradient des-
cent in an end-to-end manner. The main intention in this domain
is to obtain the common patterns hidden in the data. The generative
adversarial network (GAN) is a novel machine learning method
made up of two components, a generator and a discriminator. Dur-
ing the competition between the two modules, the generator grad-
ually obtains the common patterns of the normal data [50] while it
intends to cheat the discriminator. The GAN-based methods offer a
new perspective and solution.

6.2. Damage assessment

A primary research area in structure health monitoring is dam-
age localization and assessment. Reliably locating damage and
forecasting its tendency are important for protecting the safety of
the structure. There have been many studies on the structural
damage assessment. This problem was explored using physics-
based [51–53] and data-driven-based methods [54]. The natural
frequency, mode, curvature, and vibratory characteristics play a
vital role in the former type of methods. The analytical models
are used with simulations for calibration to obtain the physical
characteristics and structural current states. However, the rapidly
growing data volume poses a challenge for physical-based meth-
ods. Additionally, determining the physical model could be rather
difficult, as the quality of data could vary and strongly influencing.
Differently, the data-driven methods discover the hidden correla-
tions and sensitive features to assess the structural conditions.
Numerous statistical approaches were employed, such as the
state-space model [55,56], the auto-regressive model [57–59],
and the ANN [60,61]. The Mahalanobis distance was employed to
detect the outliers [62]. A fuzzy-logic model was established to
build correlations between maximum acceleration amplitudes
with nominal train speeds [63]. Clustering is also a popular unsu-
pervised learning method, which can discover abnormal data
according to the outliers [64,65]. Liu and Ni [66] assumed a
Gaussian distribution for the normalized rail bending strain.
Recently, some deep learning methods, such as one-dimentional
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(1D) CNN and DNN, were introduced to deal with the insufficiency
of statistical methods’ ability to capture the non-linear correlation
[67,68]. However, these solutions do not improve the problem
formulation or capture the high-level feature correlations of the
monitoring data and the damage. The correlations between multi-
ple kinds of monitoring data are still unknown. With a feature
combination and selection, the hidden pattern and information
could be shared and transferred properly in this domain. In this
way, the deep multi-task learning framework explores the infor-
mation sharing mechanism in the inputs and outputs [69,70],
which provides a new perspective to solve the real-world problem.

7. Future tendency forecasting based on spatio–temporal
modeling

Although the linear regression methods can calculate the corre-
lation between the degradation behavior and the respective vari-
ables by the least square method, the univariate forecasting
manner makes them ignore key information, such as the relation-
ship among the different sensors. The features contained in the
real-time monitoring data can reflect the deterioration trend of
the structure accurately. The rapidly developing spatio–temporal
neural network is suitable for establishing timing dependency.
The popular recurrent neural network could eliminate the effect
of gradient disappearance caused by the excessively long sequence
by continuously obtaining the long-short-term relationship. More-
over, the multivariate time series could be formed in a graph the-
ory manner. By constructing the adaptive adjacency matrix and
automatically optimizing it in the training process, the non-
Euclidean correlations are measured appropriately. Thus, the
long-term degradation trend of the underground space structure
can be accurately predicted. The framework is shown in Fig. 6.

7.1. Spatial dependency extraction

Exploring the spatial correlations between multiple monitoring
sensors is a new domain for capturing the dynamics of a time ser-
ies. In the underground space, whether the sensors are located in
the same infrastructure or whether the sensors are monitoring
the same mechanical property, the spatial correlation can be calcu-
lated with an optimization process or defined in a handcrafted
manner. CNNs are widely used in computer vision [71,72]. CNN
processes the relationship between neighbors through the



Fig. 6. Future tendency forecasting based on spatio–temporal data. X is the monitoring data; t indicates the time step, and p is the historical length; ct and ht represent the
hidden states.
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convolution kernel. Since the convolution kernel shares parame-
ters globally, it can extract the features in the entire picture. For
example, whether a face appears in the upper left corner or the
lower right corner of the picture, the same feature will be obtained
after the picture is processed by the same CNN convolution kernel.
If modeling the structure underground is done precisely, the corre-
lation between sensors can be extracted by the CNN. However, the
locations without sensors create a problem for the hidden pattern
capturing. To address this problem, a graph neural network, a gen-
eralization of the CNN, is fit to deal with non-Euclidean data natu-
rally, and is defined as follows:

XHGgh ¼
XK

i¼0

Â
� �i

Xhi ð5Þ

where X denotes the input value, andHG represents the convolution
operation on the graph G ¼ m; eð Þ, where m and e are the set of nodes
and edges, respectively. gh is the parameters, K indicates the num-

ber of diffusion processes, and Â indicates the normalized adjacency
matrix. Taking the randomwalk normalization as an example, given

the adjacency matrix as A, Â ¼ D�1A where Dii ¼
P

jAij. In the traffic
prediction domain, the adjacency matrix, which is used to indicate
the topological correlation, is determined by the distance between
sensors [73,74]. However, the human-designed adjacency matrix
could not describe the genuine relations properly. To address this
problem in the structure health monitoring domain, for each sensor,
we construct the adaptive adjacency matrix, which is optimized
during the training process:

A ¼ softmax ReLU E1E2
T

� �� �
ð6Þ

where the E1 and E2 are the representations for each sensor.
Although the adaptive adjacency matrix can draw the spatial corre-
lations automatically, there are still some problems, such as the
hierarchical spatial correlation extraction and the evolving depen-
dency modeling, which remains to be the future direction.

7.2. Modeling temporal dependency with external factors

Much effort has been made in the time series forecasting
domain. Predicting the variation of the structural stress with
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time from a recorded time series is a common target for struc-
tural condition monitoring and assessment, and auto-regression
(AR) and its variants have been widely applied in this regard
[75]. Singular spectrum analysis (SSA) decomposes and recon-
structs the trajectory matrix obtained from the time series, and
extracts signals representing different components [76].
Bayesian-based forecasting methods are powerful for modeling
nonlinear dynamic systems. The abilities to update the model
without reconstructing itself and accommodating both stationary
and non-stationary temporal dependency render them favorably
suitable for predicting the strain response [77–81]. The Gaussian
process denotes the variables are subject to a normal distribu-
tion, and it is widely used in the structural states forecasting
[82–86]. Some hybrid approaches take the seasonal influence
and short-term trend into consideration to capture the hidden
representations precisely [87,88]. Recently, under the trend of
informationizing and intelligentizing, some deep learning meth-
ods are adopted to deal with non-linear correlations. Apart from
the fully connected network optimized with backpropagation
[89–92], several advanced models utilizing a deep neural net-
work framework have a more powerful ability to process time
series problems. Recurrent neural network (RNN) is a deep
learning model that employs sequence data as input and extracts
series dependence. The hidden layer is used to preserve the
information passed from previous inputs, which is defined as
follows:

ht ¼ / w xt ;ht�1½ � þ bð Þ ð7Þ
where xt represents the input of time step t, and the hidden state
which preserves the previous information is ht . / represents the
activation function. w and b are the parameters and biases,
respectively.

In time series problems, the basic RNN suffers from exploding
and vanishing problems. As is shown in Fig. 7, Du et al. [93]
employed the long short-term memory (LSTM) [94], an important
variant of RNN, incorporated with external factors to make a more
accurate prediction. The design of the selective forgetting module
makes it possible to learn long and short dependencies. However,
the state a sensor monitors might not only be related to the
historical data itself but also highly correlated with the sensors
around it at the same time step. To extract the spatial and temporal



Fig. 7. Fusion prediction framework based on the RNN-like model. x ið Þ represents the raw data of ith sensor; e indicates the external factors; q is the number of forecasting
time step, and g is the total number of external factors.
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dependencies simultaneously, the graph convolution and time
series forecasting could be integrated to form a unified framework,
which has more potential to capture the dynamic of the states.
However, this solution is still under the classical framework, so it
is difficult to deal with the mutations in the value. Understanding
the meaning behind the time series may be the future direction in
this field.
8. Life prediction and preventive maintenance strategies

The service life of the structure can be evaluated from three
aspects: ① The economical service life is the period during which
structural maintenance is less economical than disassembly and
replacement; ② functional service life is the period of time that
the structure is used until it cannot meet the functional require-
ments; and ③ technical service life is the period of time when
the structure is used until a certain technical index is unqualified,
such as bearing capacity, integrity, or deformation. The residual life
prediction here refers to the technical service life of the under-
ground structure, that is, the time from the completion of the
underground structure to the time when the structure cannot be
effectively carried or experiences excessive deformation.

Before carrying out the life prediction, it is necessary to clarify
what the predetermined functions of the structure include, and
how to determine the failure of the structure function, that is,
the durability limit standard. For the assessment and prediction
of the durability of concrete structures, there are mainly the fol-
lowing criteria: ① Carbonization or chloride ion erosion takes time,
and it occurs when the concrete protective layer is completely car-
bonized; it leads to the corrosion of the reinforcement. It is a criti-
cal point of the structural life, or in the chloride ion environment,
the time when the concentration of the chloride ions on the steel
bar surface reaches the minimum concentration that causes steel
bar rust candles (which is taken as the life of the structure).
② The life criterion of cover cracking is the time required for the
rust expansion crack along with the reinforcement on the concrete
surface to become the critical point of the service life of the structure.
③ The crack width and steel corrosion limits occur when the width
of the rust expansion crack or the corrosion amount of the rein-
forcement reaches a certain limit as the critical point of the service
life. ④ The bearing capacity refers to the reduction of the bearing
capacity to a certain limit as the durability limit standard.

The life prediction of underground structures can be divided
into two categories: One is the study of material durability based
on the environment of underground structures, and the other is
the structural safety research based on material degradation,
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which does not consider the influence of underground structure
stress on material degradation. A new research idea is to propose
the force evolution model of an underground structure system in
combination with the above two types of research, so as to reflect
the interaction of various factors and the evolution of the internal
force and safety of the tunnel structure.

To make the maintenance of underground structures have a
high effect and cost ratio, active preventive maintenance should
be adopted to prolong the service life, save costs, minimize the
maintenance cost of underground structures in the whole life
cycle, and obtain the best safe operation guarantee with the best
maintenance cost. The core of the preventive maintenance concept
is to prevent problems before they occur. Preventive maintenance
is time-sensitive: if the best time is missed, its effect will be greatly
reduced. Preventive maintenance plays an important role in reduc-
ing the whole life cycle cost of underground structures and
improving the durability and service life of facilities, and also saves
resources and protects the environment.

There have been many traffic safety accidents caused by inade-
quate maintenance and management, the damage of the durability
of the structure without effective bearing, or excessive deforma-
tion, such as vehicle accidents caused by water seepage and freez-
ing in tunnels, fans falling off, and fires in tunnels. There are hidden
dangers to operational safety. We should carry out professional
and systematic preventive maintenance of tunnels as soon as pos-
sible, and this maintenance should include the following: ① regu-
lar structural inspections, where we find abnormal situations, and
determine the technical status of the structure, the functional sta-
tus of the structure, and the corresponding maintenance counter-
measures and measures; ② timely and preventive maintenance
and repair of the structure, repair the slight damage of the struc-
ture, and keep the structure in a healthy condition; and③ combine
the IoT with the traditional operation mode to deal with the main-
tenance and management of underground structure groups on a
large scale, forming the integration of inspection/monitoring. The
digitization of maintenance, realization of intelligent evaluation,
informatization of asset management, and scientific management
decision-making can effectively improve the efficiency of mainte-
nance work, delay the disease process, and prolong the service life
of structures to obtain significant economic and social benefits.
9. Conclusions

The development of the underground space is the necessary
step for future urban construction. Intelligentization plays a vital
role in enhancing the competitiveness of China, and research
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attention should be focused on basic theory and the key technol-
ogy. Combined with the IoT, novel infrastructure and computer
science, an intelligent monitoring system could be established in
a multi-source fusion manner. To construct a complete, effective,
green, and reliable system, and promote the intelligent reform of
urban infrastructure, three suggestions and future directions are
proposed: ① Develop intelligent coordinated and holographic
sensing equipment for infrastructure. With this equipment, the
deep coupling and online spatio–temporal inference framework
can obtain the entire structural state all the time. ② Promote the
integration of underground and transportation infrastructure
[95]. The full lifecycle of intelligent sensing, health diagnosis
[96], and a security warning system should be built upon the com-
bination of domain knowledge and data mining. ③ Orient toward
sustainable infrastructure development. Being friendly to the econ-
omy, environment, and safety should be the goal of infrastructure
development.
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