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Evaluating the impact of multi-source uncertainties in complex forecasting systems is essential to under-
standing and improving the systems. Previous studies have paid little attention to the influence of multi-
source uncertainties in complex meteorological and hydrological forecasting systems. In this study, we
developed a general ensemble framework based on Bayesian model averaging (BMA) for evaluating
the impact of multi-source uncertainties in complex forecast systems. Based on this framework, we used
eight numerical weather prediction products from the International Grand Global Ensemble (TIGGE)
dataset, four hydrological models with different structures, and 1000 sets of parameters to comprehen-
sively account for the input, structure, and parameter uncertainties. The framework’s application to the
Chitan Basin in China revealed that the numerical weather prediction input uncertainty in the forecasting
system was more significant than the hydrological model uncertainty. The hydrological model structure
uncertainty was more prominent than the parameter uncertainty. The accuracy of the numerical weather
prediction dominates the accuracy of the forecast of high flows. In addition, the structures and parame-
ters of the hydrological model and their interactions contributed to the main uncertainty of the low flow
forecasts. The streamflow was more realistically represented when the three uncertainty sources were
considered jointly. By accounting for the significant uncertainty sources in complex forecast systems,
the BMA ensemble forecasting produces more realistic and reliable predictions and reduces the influ-
ences of other incomplete considerations. The developed multi-source uncertainty assessment frame-
work improves our understanding of the complex meteorological and hydrological forecasting system.
Therefore, the framework is promising for improving the accuracy and reliability of complex forecasting
systems.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The frequent occurrence of natural disasters such as floods and
droughts has posed severe challenges to the sustainable develop-
ment of human society [1]. According to the statistics of the Emer-
gency Events Database, from 1989 to 2018, the annual economic
losses due to natural disasters worldwide were about 81.4 billion
USD, among which floods accounted for 61.9% of all of the natural
disaster events and the annual losses due to floods were about
24.52 billion USD. Early and reliable streamflow forecasting is criti-
cal for hazard prevention and mitigation, resource allocation, and
management decisions [2–4]. However, it is difficult to satisfy
the needs of efficient water resource utilization and emergency
management of extreme events, such as floods and droughts, due
to the short streamflow forecasting period based on observational
rainfall data [5,6]. The forecasting period of the hydrological fore-
cast can be extended by applying meteorological ensemble fore-
casting information to the forecast and early warning system for
hydrology and water resources, which would provide more
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response time for flood control and disaster mitigation in a basin,
further improving our ability to deal with natural disasters and
reducing the economic losses and casualties caused by flood disas-
ters [7,8]. The uncertainty of a weather forecast is considered by
means of integrating the ensemble information, which also pro-
vides a reference for the reliable probabilistic hydrological forecast
[9,10]. In addition, the integration of climate, weather, and hydro-
logical multi-scale forecasts can improve our understanding of the
evolution mechanisms of meteorological and hydrological pro-
cesses, which is also vital to improving the accuracy of hydrological
forecasts [11,12].

The complexity and nonlinearity of the meteorological and
hydrological system are such that the hydrological model can only
simplify the simulation of the complex system. The failure to per-
fectly describe the physical process inevitably causes many uncer-
tainties, affecting the reliability of the final prediction results [13].
Source analysis is an integral part of uncertainty research. Kirkby
[14] analyzed the impact of the river network’s topological struc-
ture on the watershed hydrology in the 1970s. Kitanidis and Bras
[15] summarized the uncertainty sources of conceptual models
into the parameters, structure, input of the hydrological models,
and initial state of the hydrological system. Krzysztofowicz [16]
divided the sources of uncertainty into the model operation, model
input, and hydrological model when Bayesian theory is used to
realize hydrological probability forecasting. Maskey et al. [17]
divided the sources of uncertainty into four categories: the input
uncertainty (due to imperfect input information, e.g., precipitation
and evaporation); the parameter uncertainty (e.g., the parameter
estimation error); the model uncertainty (e.g., the generalizations
and assumptions of the real system); and the natural and opera-
tional uncertainty (due to unforeseen causes, e.g., debris flows, gla-
cier lake overflow, and malfunctioning of system components).
Montanari et al. [18] asserted that the uncertainty of the hydrolog-
ical model system mainly comes from the inherent randomness,
model input, parameters, and structure. In general, for hydrological
models, it is inappropriate to group the uncertainties of the model
structure and parameters together because there is a huge gap in
their attributes. Based on previous studies, a consensus has been
reached that the input, structure, and parameter uncertainties of
the model are the main uncertainties [19], and the additional
uncertainties are mainly the arguments about the randomness of
the factors, the initial state, and uncontrollable factors, which are
difficult to quantify in hydrological forecasting.

Probabilistic forecasts and ensemble forecasts are useful means
of quantifying the uncertainty of hydrological forecasting. Consid-
ering the sources of uncertainty through ensemble forecasting is an
important way to reduce the uncertainty and improve the accuracy
and reliability of the forecast. In practical applications, a proba-
bilistic forecast combines the forecasting and management deci-
sion processes to assist managers in considering the potential
forecast risks in a specific way and to better reflect the value of
the meteorological and hydrological forecasts [20–22]. Therefore,
it is of vital practical significance for meteorological and hydrolog-
ical forecasts to quantify and reduce the uncertainty through
ensemble forecasting and probabilistic forecasting. The current
uncertainty analysis methods for hydrological forecasting can be
divided into two categories. The first approach is multi-source
uncertainty analysis, which quantifies the uncertainties from the
different sources, such as the model input, structure, and parame-
ter uncertainties, and it further achieves hydrological probability
forecasting considering the multi-source uncertainties using an
ensemble method. The most representative method is the Bayesian
total error analysis (BATEA) method, proposed by Kavetski et al.
[23]. It describes the input uncertainty by rainfall multiplier
parameters, randomizes the sensitivity parameters of the model,
and then applies the Markov chain Monte Carlo method to ran-
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domly sample the model parameters and deduce the posterior dis-
tribution of the streamflow [24,25]. Since the uncertainty of the
model structure is not well considered in this method, Ajami
et al. [26] developed an integrated Bayesian uncertainty estimator
(IBUNE) method based on the BATEA to comprehensively consider
the uncertainties of the model input, structure, and parameters, in
which the uncertainty of the model structure is estimated using
the Bayesian model averaging (BMA) method. Wu et al. [27] used
the hierarchical Bayesian method to assimilate the uncertainties
of the model, observations, and parameters of the modèle du Génie
Rural à 4 paramètres journalier (GR4J) conceptual model, and their
results revealed that the estimation precision of extreme events
was improved by assimilation of the soil moisture and observed
streamflow. Strauch et al. [28] used ensemble precipitation and
the BMA method to analyze the impact of the precipitation uncer-
tainty on the parameters and prediction uncertainty of the soil and
water assessment tool (SWAT) model. Sun et al. [29] used the BMA
method to quantify the influence of the uncertainty of the satellite
precipitation input on the hydrological simulation, and their
results revealed that the combination of the multi-satellite precip-
itation ensemble and BMA improved the forecast performance. Yin
et al. [30] used the BMA ensemble method to account for the model
parameter uncertainty in groundwater modeling, and their results
showed that explicitly quantifying the model uncertainty can pro-
vide more reliable groundwater level prediction information.

Another method is total error analysis, which quantifies the
total uncertainty of the hydrological forecasting according to the
forecasting error. The most typical method is the Bayesian fore-
casting system proposed by Krzysztofowicz [16], which determi-
nes the posterior distribution of the forecast streamflow using
the linear-normal hypothesis of the likelihood function. In fact,
most hydrological processes do not satisfy this hypothesis. In addi-
tion, the heteroscedasticity method of residual error models will
influence the uncertainty of the streamflow forecast directly [31].
There are also differences in the forecast uncertainty at different
flow levels. The linear relationship of a high flow is more signifi-
cant than that of a low flow, and the data for high flows are more
concentrated [32]. Therefore, Coccia and Todini [33] developed a
model condition processor for uncertainty assessment, which uses
truncated normal joint distributions to represent the relationship
between the forecast and the observed value at different flow
levels. Although these methods have good application prospects
in real-time flood forecasting due to their high efficiency, they can-
not separate the uncertainties from the different sources.

A hydrological forecast is influenced by various factors and has
a vast range of uncertainty sources, so the uncertainties such as the
input, model structure, and parameters should be considered com-
prehensively. At present, most studies on uncertainties have been
carried out on the input, structure, and parameter uncertainties
separately, and few studies have quantified the multi-source
uncertainty in hydrometeorological prediction [34–37]. In addi-
tion, many uncertainty studies were only carried out on the basis
of observed rainfall combined with rainfall multipliers [38,39],
and research on the uncertainty of meteorological and hydrological
forecasting is still lacking [22]. In meteorological and hydrological
forecasting, both the precipitation forecast and the hydrological
model (structure and parameters) have enormous uncertainties,
which are the main sources of error in streamflow forecasting. It
is valuable to effectively integrate the multi-source uncertainties
and to explore the influence of multi-source uncertainties in
streamflow forecasting. Such a study can enhance our awareness
of the different error sources and their influences on complex
meteorological and hydrological forecasting systems. In addition,
it can provide a predominant reference for early and reliable
streamflow forecasting. Therefore, based on the uncertainties of
the model input, structure, and parameters, in this study the
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control numerical weather prediction (NWP) products of eight
countries from the International Grand Global Ensemble (TIGGE)
center (i.e., China Meteorological Administration (CMA), Centro
de Previsão de Tempo e Estudos Climáticos (CPTEC), Canadian
Meteorological Centre (CMC), European Centre for Medium-
Range Weather Forecasts (ECMWF), Japan Meteorological Agency
(JMA), Korea Meteorological Administration (KMA), the United
Kingdom Met Office (UKMO), and National Center for Environmen-
tal Prediction (NCEP)) were used as the ensemble input. Four struc-
tural hydrological models (e.g., the Xin’anjiang (XAJ) model, GR4J
model, the simplified version of the hydrology model (SIMHYD),
and the variable infiltration capacity (VIC) model) and 1000 opti-
mal parameter sets were combined to carry out meteorological
hydrological streamflow forecasting for the Chitan watershed in
China, and the analysis of variance (ANOVA) method and the
BMA model were used to analyze the uncertainty and influence
of the meteorological–hydrological forecast from the perspectives
of the model input, parameters, and structure.

The goal of this study was to address three scientific problems.
The first was the construction of a comprehensive evaluation
framework to reasonably evaluate the multi-source uncertainty
in meteorological and hydrological forecasting. The second was
determining how to quantify the uncertainties of meteorological
and hydrological forecasting from different sources and which
uncertainties are more influential. The third was determining the
impact of multi-source uncertainty on meteorological and hydro-
logical forecasting and how to reduce it. Section 2 presents the
assessment framework for multi-source uncertainties and the case
study area. Section 3 summarizes the results and discussion, and
Section 4 presents the conclusions of the study.
2. Methodology and study area

Fig. 1 presents the assessment framework for the multi-source
uncertainties. Since the natural and operational uncertainties are
difficult to consider in hydrological forecasting, we mainly focus
on the three uncertainty sources of the meteorological input,
hydrological model structure, and parameters in a meteorological
Fig. 1. Assessment framework for multi-source uncertainties in meteorological and h
evolution optimization developed at the University of Arizona; GLUE: generalized likeli
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and hydrological forecasting system. Regarding the input uncer-
tainty, different types of models use different data sources. For
example, the lumped model requires information such as precipi-
tation and temperature data, while the distributed model also
requires land use and underlying surface information. The error
of the input information will have an impact on the model. As pre-
cipitation is the most directly influential factor [40], we focused on
analyzing the impact of the precipitation forecast ensemble (such
as the NWP products provided by the CMA, CPTEC, CMC, ECMWF,
JMA, KMA, UKMO, and NCEP).

The uncertainty of the model structure can be viewed from two
perspectives: different watershed models (e.g., distributed and
lumped models) and different processes in the same model (e.g.,
different runoff confluence equations are used in the XAJ model).
The former is described by the original model’s architecture, and
the difference in the structure is reflected in many aspects, includ-
ing the modeling principle, modeling method, and subprocess
complexity [26]. The latter pays more attention to the details of
the hydrological processes. Within the same model, different
mathematical and physical methods are used to describe the same
sub-processes, such as evapotranspiration, infiltration, runoff for-
mation, and routing [41]. In order to reflect the difference in the
results of the different models, lumped models (e.g., XAJ, GR4J,
and SIMHYD) and distributed models (e.g., VIC) are used as model
sets.

The parameter uncertainty can be influenced by the parameter
estimation algorithm, objective function, and observed discharge
error used for the calibration [42,43]. Due to the high dimensional
nonlinearity of the parameters and the influence of the estimation
methods, the concept of the equifinality phenomenon inevitably
exists in hydrological models [44]. At present, generalized likeli-
hood uncertainty estimation (GLUE) and the Bayesian method
are commonly used for parameter uncertainty estimation [45].
Since we evaluated the uncertainty from the perspective of the
ensemble, we chose GLUE as the parameter uncertainty analysis
method and analyzed the impacts of the different parameters using
Monte Carlo sampling.

Finally, we selected eight numerical prediction products, four
hydrological models with different structures, and 1000 sets of
ydrological forecasting. KGE: Kling–Gupta efficiency; SCE-UA: shuffled complex
hood uncertainty estimation; NSE: Nash–Sutcliffe efficiency; RE: relative error.
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parameters as the basic set of the three types of uncertainties and
used ANOVA and the BMA algorithm to quantitatively analyze the
uncertainties of the different ensemble scenarios. In addition, the
utility of the ensemble forecast was evaluated from both the deter-
ministic and uncertainty perspectives.

2.1. Hydrological models and parameter optimization

The multi-model set includes the XAJ, GR4J, SIMHYD, and VIC
hydrological models, which have different structures. The XAJ,
GR4J, and SIMHYD are lumped models, and the average precipita-
tion and evaporation are used as inputs. The XAJ model is mainly
composed of three layers (soil evapotranspiration, runoff yield,
and runoff separation) and linear reservoir flow routing, which
can simulate the three runoff components of surface, subsurface,
and groundwater flow [46]. In the GR4J model, the runoff yield
and flow routing are simulated using nonlinear reservoirs, and
the groundwater exchange can also be considered in the simula-
tion. The SIMHYD model contains four components, for example,
interception and evaporation loss, soil moisture, runoff separation,
and water storage modules [47]. It considers two flow yield mecha-
nisms, that is, runoff formation from the natural storage space and
runoff formation due to input in excess of the infiltration capacity.
In addition, and the lag algorithm is added to consider the flow
routing. The VIC model is a large-scale distributed hydrological
model, which mainly considers the physical exchange between
the atmosphere, vegetation, and soil based on a sub-grid [48]. In
addition, the sub-grid can also consider the spatial variability of
the underlying surface and the precipitation information. In this
study, the grid resolution was set as 0.25�, and the grid precipita-
tion, maximum temperature, and minimum temperature data
were used as the model inputs. Since the diversity of the models
is a key element for including the error in model conceptualization
and structure, we included an ensemble of multiple models with
four completely different structures, which can maximize the
probability of encompassing the most effective way to describe
the structural uncertainty [49].

The shuffled complex evolution optimization developed at the
University of Arizona (SCE-UA), a global optimization algorithm,
was used to optimize the parameters of the four hydrological mod-
els uniformly, and the Nash–Sutcliffe efficiency (NSE) and the rela-
tive error (RE) were used as the objective function. The SCE-UA
algorithm combines the deterministic and stochastic search tech-
niques and the principle of biological competitive evolution, so it
can efficiently search for complex problems with high dimensions,
nonlinearity, and discontinuity [50]. It has been widely used in
parameter optimization of hydrological models. We assumed that
the algorithm terminates the loop when one of the following two
conditions is met: ① The number of iterations reaches 20 000, or
② the objective function still cannot improve the accuracy by
0.01% after ten operations.

2.2. Generalized likelihood uncertainty estimation

Generalized likelihood uncertainty estimation is a hydrological
simulation uncertainty analysis method proposed by Beven and
Binley [44], which was developed based on the regionalized sensi-
tivity analysis (RSA) method. The specific steps of GLUE analysis
are as follows:

(1) Determine the likelihood objective function. The likeli-
hood objective function is mainly used to judge the effect of the
streamflow simulation. In this study, the NSE and RE was used as
the double likelihood objectives.

(2) Sample the parameter set and calculate the likelihood
objective function. Usually, the Monte Carlo method is used to
sample the parameter set according to the parameter range and
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prior distribution form, and then, the likelihood objective function
is calculated using the model. In this study, the SCE-UA algorithm
was used for the parameter optimization. In the optimization pro-
cess, a series of parameter sets and objective function values
involved in the iterative calculation are generated. Therefore, in
order to simplify the calculations, we directly took all of the
parameter samples and objective function values involved in the
SCE-UA algorithm’s iterative calculation as samples in order to
omit the sampling steps needed when using the Monte Carlo
method.

(3) Select effective parameter sets. The most effective param-
eter set is identified according to the sample likelihood value and
likelihood criteria. In this study, we set NSE > 0.7 and RE within
±20% as the effective result, and the corresponding parameter set
was defined as the effective parameter set.

(4) Analyze themodel parameter uncertainty. First, the NSE of
the effective parameter set is normalized, and the normalized like-
lihood value is taken as the probability weight of the parameter
set. Then, for each moment, the streamflow simulation values of
the effective parameter set are sorted from smallest to largest.
Finally, the cumulative probability is calculated using the probabil-
ity weight of each parameter set, which is taken as the cumulative
probability of the simulated flow. Then, the confidence interval of
the parameter uncertainty for the simulated flow can be obtained.

In addition, according to the probability weight of the parame-
ter sets, the Monte Carlo method is used to sample 1000 parameter
sets from the effective parameter sets as the representative set of
the model parameter uncertainty, which is used to analyze the
interaction between the model input, structure, and parameters.
2.3. ANOVA approach

The three sources of uncertainty in hydrological forecasting,
namely, the eight NWPs, four hydrological models (HMs), and
1000 parameter sets (Pars), were assessed using ANOVA, which
has been proposed in hydrological climate-impact projections
[51]. In three-way ANOVA, the total sum of squares (SST) is calcu-
lated using Eq. (1), which can be partitioned into the sum of
squares from the model input (SSTNWP), model structure (SSTHM),
model parameters (SSTPar), and interaction terms of these three
factors (SSTNWP–HM, SSTNWP–Par, SSTHM–Par, and SSTNWP–Par–HM).

SST ¼ SSTNWP þ SSTHM þ SSTPar þ SSTNWP�HM þ SSTNWP�Par

þ SSTHM�Par þ SSTNWP�Par�HM
ð1Þ
2.4. BMA method

BMA is a statistical post-processing method based on Bayesian
theory, which can consider the model uncertainty [28,52]. It can
effectively consider the uncertainty of the models and combine
the different information to maximize the integration of the fore-
cast results of the various models. The principle is as follows.

We used Y to represent the measured process and Q to repre-
sent the BMA forecast value. The set of K forecast members is
f ¼ f 1; f 2; :::; f K½ �. The probability forecast formula of the BMA
model is as follows:

p Q jYð Þ ¼
XK

k¼1
p f kjYð Þ � pk Q jf k;Yð Þ ð2Þ

where k = 1, 2, . . ., K; p f kjYð Þ is the posterior probability of member
model fk under the observed process Y, which reflects the matching
between fk and the observed process Y. In fact, p f kjYð Þ is the weight
wk of the BMA model. pk Q jf k;Yð Þ is the posterior distribution of the
forecast value Q under member model fk and observed process Y.
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The forecast values of the BMA model are the weighted average
of each member model. Both the member model and the observed
process obey a normal distribution. The forecast values of the BMA
model are as follows:

E Q jY½ � ¼
XK

k¼1
p f kjYð Þ � E g Q jf k; dk2

� �� � ¼ XK

k¼1
wkf k ð3Þ

where E is the expectations of BMA forecast; g(�) is the Gaussian dis-
tribution that is defined by mean fk and variance dk

2.
We chose the expectation maximization (EM) algorithm to

solve the BMA model [30]. The premise of the EM algorithm
requires that the data obey a normal distribution, so a Box–Cox
transformation should be carried out in the measurement and fore-
casting process before solving the BMA model [52]. The specific
solving steps and uncertainty estimation method are shown in
Fig. 2.
2.5. Evaluation metrics

2.5.1. Deterministic evaluation metrics
We selected three commonly used conventional metrics for the

deterministic evaluation: the NSE, root mean square error (RMSE),
and water RE. These metrics judge the effect of a deterministic
forecast from the perspectives of the streamflow forecast accuracy,
process, and total amount, respectively. They are defined as
follows:
NSE ¼ 1�
Pn

t¼1 Q sim;t � Qobs;t

� �2
Pn

t¼1 Qobs;t � �Qobs

� �2 ð4Þ

RE ¼
Pn

t¼1Qobs;t �
Pn

t¼1Q sim;tPn
t¼1Qobs;t

ð5Þ
Fig. 2. Flow chart of the BMA model and the uncertainty interval estimation. h represen
represents the sequence of time.

216
RMSE ¼ 1
n

Xn
t¼1

Q sim;t � Qobs;t

� �2" #1=2

ð6Þ

where Q sim;t and Qobs;t are the simulated and observed streamflow
at time t, respectively. n is the length of the series.

2.5.2. Uncertainty evaluation metrics
Xiong et al. [53] defined several metrics for model uncertainty

evaluation. In this study, the containing ratio (CR), average band-
width (B), and average deviation amplitude (D) were selected to
evaluate the effect of the uncertainty interval.

CR is defined as the ratio of the observed data contained in the
forecast uncertainty interval. The best value for CR is 100%.

B is defined as the average of the upper and lower boundary
widths of the uncertainty interval. Under the condition of a high
CR, a smaller B value is better.

B ¼ 1
n

Xn

t¼1
qu

t � ql
t

� � ð7Þ

where qu
t and ql

t represent the upper bound and lower bound of the
uncertainty interval at time t, respectively.

D is a metric for describing the deviation between the center
line of the uncertainty interval and the observed hydrograph, and
it is defined as follows:

D ¼ 1
n

Xn

t¼1

1
2

qu
t þ ql

t
� �� Qobs;t

����
���� ð8Þ
2.6. Study area and data sources

2.6.1. Study area
The Chitan Basin was chosen as the study area. It is located in

the middle and upper reaches of the Jinxi River system in Fujian
ts the BMA parameters wk and dk
2: NT is the length of the observation sequence. t
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Province, China. The basin covers an area of 4766 km2, accounting
for 66% of the Jinxi Basin. The Chitan watershed has a subtropical
climate, with an average annual precipitation of about 1800 mm,
and the total precipitation in the flood season (March to June)
accounts for about 62% of the annual precipitation. Therefore, the
Chitan Basin is vulnerable to typhoons and heavy rainfall during
the flood season. Cold and warm air masses often meet in the Chi-
tan Basin because of its special geographical location, so the daily
precipitation often exceeds 50 mm. The annual mean rainstorm
(daily precipitation > 50 mm) frequency in the basin is about 3.7
times per year, and the frequency had exhibited an increasing
trend (Fig. S1 in Appendix A). In addition, the Chitan Basin has a
faster flood flow speed and more serious flood disasters because
the basin is fan-shaped, and the terrain within the basin is very
undulatory [57]. Hence, advanced and accurate forecasts of the
streamflow in the basin are essential for disaster prevention, early
warning, and the coordinated allocation of water and power
resources in the Jinxi area.

2.6.2. Forcing data
We used the daily precipitation, evaporation, and streamflow

data recorded at stations in the Chitan Basin from 2012 to 2017.
There are 18 rainfall stations, one evaporation station and one
streamflow station in the basin, at which the evaporation is deter-
mined using a D20 evaporator pan. With a height of 10 cm and a
diameter of 20 cm, the D20 pan has been widely used in the obser-
vation ofwater surface evaporation [54]. For the XAJ, GR4J, and SIM-
HYD lumped hydrological models, the evaporation of a single gauge
is directlyusedas the substitute valueof the evaporation inputof the
model, while the precipitation at all of the stations is processed into
themeanprecipitationof thebasinusing thearithmetic average. The
VICmodel also requiresmaximumandminimum temperature data,
and we used the information of a gridded daily observation dataset
overChina (CN05.1) as a substitute [55]. This datasethas ahighqual-
ity andhas beenwidelyused in climate assessment andhydrological
modeling in China [56,57]. For the simulation of the VIC model, we
used the inverse distance weight method to unify the site and grid
data into a 0.25� computational grid.

The ensemble precipitation inputs for the hydrological models
were retrieved from the TIGGE website. The precipitation control
forecast products (i.e., CMA, CPTEC, CMC, ECMWF, JMA, KMA,
UKMO, and NCEP) from 2013 to 2017 were selected, which have
a ten-day forecast period and a spatial resolution of 0.5�. The
Universal Time Coordinate (UTC) 00:00 was selected as the starting
time of the forecast, which is equal to China standard time 8:00
(UTC +8:00). This is exactly consistent with the starting time of
China’s daily meteorological observations. The TIGGE site has been
providing data to researchers since October 2006 and is now
widely used in meteorological and hydrological studies [58,59].
At present, there are three TIGGE ensemble database hosted sites
across the world, including the NCEP in the United States, the
ECMWF in Europe, and the CMA in China, which contain numerical
forecast products from 13 member countries and all of the data are
provided free of charge. We can download the control forecast data
from ECMWF websitey.
Table 1
Performance statistics of the different hydrological models during the calibration and veri

Model Calibration period (2013–2015)

NSE RMSE RE (%

XAJ 0.82 89.40 �2.7
GR4J 0.87 77.23 �4.3
SIMHYD 0.76 104.20 5.8
VIC 0.80 94.82 �6.4

y https://apps.ecmwf.int/datasets/data/tigge/levtype=sfc/type=cf/.
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3. Results and discussion

3.1. Hydrological simulations

We selected 2012–2017 as the study period, of which 2012 was
the warm-up period, 2013–2015 was the calibration period, and
2016–2017 was the verification period. In this study, the NSE
was selected as the objective function of the optimal calibration
of the four hydrological models, and the SCE-UA algorithm was
used to calibrate the hydrological model parameters. In addition,
the RE and RMSE between the observed and simulated streamflow
were used as the evaluation metrics of the streamflow simulation
error. The evaluation results of the streamflow simulation based on
the optimal parameter set are presented in Table 1. The results
show that the GR4J and XAJ models had higher accuracies and
lower errors, and their performances were slightly better than
those of the SIMHYD and VIC models in the Chitan Basin. In addi-
tion, the scatter density map of the observed and simulated
streamflow (Fig. 3) shows that there was a good consistency
between the simulated and the observed streamflow scatter over-
all. However, we found that the hydrological models generally
underestimated the maximum streamflow on a more microscopic
scale, and GR4J and VIC also underestimated the extremely low
streamflow. Nevertheless, the comprehensive performance of the
four models in the simulation of the streamflow in the Chitan Basin
was still excellent, that is, all of the NSE values were greater than
0.8 and the RE values were within ±10% [60]. Overall, the results
show that these four models can be adapted to meteorological
and hydrological coupled forecasting in the Chitan Basin.

Table 1 shows that no one model performed significantly better
than other models in all of the periods and aspects because the dif-
ferent models inevitably contain uncertainties due to the generali-
zation of their structures. In addition, the model parameters also
exhibited the phenomenon of different parameters with the same
effect in the optimization process, and the parameter combinations
with NSE of > 0.7 and RE within ±20% exceeded 1000 sets. These
parameter values were also distributed within the entire value
range (Fig. S2 in Appendix A), especially for the SIMHYD and VIC
models, which had large parameter uncertainties. Therefore, we
further analyze the model parameters and structural uncertainties
in the following section.

3.2. Uncertainty from the hydrological model

It should be emphasized that we only discuss the uncertainty of
the hydrological model in this section. The uncertainties of the
hydrological model mainly included the parameter uncertainty
and structure uncertainty. In order to reflect the impact of the
parameter and structure uncertainties well, the deterministic input
based on the observed precipitation was used to analyze the uncer-
tainties of the parameters and structure of the hydrological model.
First, the parameter uncertainty was analyzed using the GLUE
method, and the sample library of the parameter set was obtained
during the parameter optimization and calibration using the SCE-
UA algorithm. Then, the parameter set corresponding to the result
fication periods.

Verification period (2016–2017)

) NSE RMSE RE (%)

7 0.87 115.84 �3.30
3 0.89 108.73 �4.59
0 0.82 154.96 �9.47
7 0.78 138.95 �9.55

https://apps.ecmwf.int/datasets/data/tigge/levtype=sfc/type=cf/


Fig. 3. Streamflow simulation of the four hydrological models during the calibration and verification periods. Legend colors represent scatter density.
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with NSE > 0.7 and RE within ±20% of the streamflow simulation
results was selected as the effective parameter set, and 1000 sets
of parameters were sampled using the Monte Carlo method to ana-
lyze the uncertainty of the parameters. In addition, the uncertainty
of the structure was analyzed using four hydrological models with
different structures (XAJ, GR4J, SIMHYD, and VIC), and the BMA
algorithm was used to estimate the uncertainty of the model
structure.
3.2.1. Uncertainty from hydrological model parameters
The GLUE method was used to analyze the parameter uncer-

tainties of the four hydrological models. In addition, the CR, B,
and D values of the uncertainty interval were calculated. Table 2
presents the evaluation results. In terms of CR, those of the VIC
and SIMHYD were higher than the others, and that of the GR4J
model was lower than the others. Furthermore, from the per-
spective of the B value, the SIMHYD model had the largest B
value, with a greater uncertainty. Moreover, from the perspective
of the D value, the SIMHYD and VIC models had the largest devi-
ations, and the GR4J model had the smallest deviation. Overall,
the parameter uncertainty of the SIMHYD model was relatively
high, and that of the GR4J model was relatively small. The
uncertainties of the four hydrological models were significantly
lower during the calibration period than during the verification
period. However, the superiorities of the different models were
different, and no model had obvious advantages in all aspects.
This phenomenon is consistent with the results of Clark et al.
[61], who analyzed 79 model structures and showed that a sin-
Table 2
Evaluation results of the 90% uncertainty interval for the hydrological model parameters
ensemble forecast of four hydrological models based on the BMA.

Time Source of
uncertainty

Model

Calibration
period

Parameter XAJ
GR4J
SIMHYD
VIC

Structure BMA–HM (base on optimal para
Verification

period
Parameter XAJ

GR4J
SIMHYD
VIC

Structure BMA–HM (base on optimal para

218
gle model structure is unlikely to provide the best simulation for
all situations. This also demonstrates the necessity of performing
ensemble forecasting by combining several model structures
[41].

The influence of the model parameter uncertainty on the
streamflow simulation was analyzed by comparing the flow dura-
tion curves of the observed and simulated streamflow (Fig. 4).
Fig. 4 shows that the parameter uncertainty caused a greater
uncertainty for the simulation of extreme floods with a low excee-
dance probability. In general, the GR4J and SIMHYD models, which
consider the parameter uncertainties, estimated the extreme
floods better than the XAJ and VIC models, and the parameter
uncertainty intervals of these models covered more of the
observed extreme floods than other models. However, almost all
of the parameter sets failed to estimate the maximum observed
flow, which indicates that the hydrological model has a serious
underestimation problem regarding extreme floods. Although
some underestimation was reduced through parameter optimiza-
tion, the underestimation of extreme floods was still difficult to
balance. For the low flow simulations, the GR4J model and VIC
model underestimated the low flow in most of the parameter sce-
narios. Therefore, although parameter optimization can improve
the low flow simulation, the uncertainty of the model structure
still has a significant impact on it.
3.2.2. Uncertainty from hydrological model structure
In order to effectively investigate the influence of the uncertainty

of the model structure on the streamflow stimulation, the BMA
and structure during the calibration and verification periods. BMA–HM denotes the

Uncertainty assessment

CR (%) B (m3�s�1) D (m3�s�1)

83.01 140.72 46.09
81.55 143.93 37.53
87.40 178.38 47.62
91.23 158.84 43.27

meters) 93.88 178.91 41.23
84.40 170.03 56.26
81.12 185.09 50.08
83.17 207.90 56.16
84.13 169.72 58.09

meters) 94.94 213.96 47.70



Fig. 4. Flow duration curve of the observed streamflow and the 90% uncertainty interval for the hydrological model parameters during the calibration and verification
periods. The inset plots show the flow duration curve for the low stream flow with a 75.0%–99.9% exceedance probability.
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modelwas employed in the ensemble forecasting under the optimal
parameters for the four models. Table 2 presents the evaluation
results for the 90% uncertainty interval for the hydrological model
structures. The results indicate that the CR of the BMA–HM forecast
interval exceeded 93.88%, which was significantly higher than the
CRs of the four models’ parameter uncertainties (the highest was
theVICmodel, and the CRwas 91.23% during the calibration period).
In addition, the B value from the uncertainty of the model structure
was slightly higher than that of the fourmodel parameter uncertain-
ties (the highest was the SIMHYDmodel, the B value during the cal-
Fig. 5. 95% confidence intervals for the uncertainty of the hydrological model parame
parameters) during 2017.
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ibration period was 178.38 m3�s�1). This revealed that the BMA
ensemble forecast considering the uncertainty of the model struc-
ture had a relatively better quality than the forecast considering
the parameter uncertainty, and it obtained a higher interval cover-
age under the condition of a lower uncertainty at the same time.

The streamflow series of the ensemble forecast and the uncer-
tainty interval for 2017 are shown in Fig. 5. In addition, the stream-
flow simulated by the VIC model and its parameter uncertainty
interval are also depicted for comparison. We found that the
results of the streamflow simulated using the ensemble forecast
ters (for the VIC model) and structures (for the BMA–HM based on the optimal
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considering the structural uncertainty performed better than that
of the VIC model considering the parameter uncertainty, and it
estimated the extreme streamflow better under the close interval
bandwidth of the two scenarios. This conclusion is further con-
firmed by the flow duration curve of the BMA–HM shown in
Fig. 6, which also reflects the fact that the forecast considering
the uncertainty of the model structure improves the underestima-
tion of extreme floods by the hydrological model to a certain extent
[62]. Further comparison with the GR4J simulation process in Fig. 5
revealed that the GR4J model was the best in terms of simulating
extreme floods, and the improvement of the peak forecast by con-
sidering the uncertainty of the model structure was mainly due to
the contribution of the GR4J model.

The above results are all based on analysis of the optimal model
parameter set considering the uncertainty of the model structure.
In order to obtain a universal analysis, the BMA forecast was car-
ried out independently for each of the 1000 parameter sets while
considering the uncertainty of the model structure and then con-
sidering the NSE, RE, and RMSE of the final forecast results. Fur-
thermore, the indicators corresponding to the 1000 sets of
parameters were used as a set of violin charts (Fig. 7). The results
indicate that the BMA forecast considering the uncertainty of the
Fig. 6. Flow duration curve of the observed streamflow and 90% uncertainty
interval for the hydrological model structures. The inset plots show the flow
duration curve for the low streamflow with a 75% to 99.9% exceedance probability.
(a) BMA–HM calibration; (b) BMA–HM verification.
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model structural was closest to the forecast results of the optimal
model among the four models, with a higher NSE and lower RE and
RMSE. In addition, the violin plot of the BMA–HM was flatter than
those of the other hydrological models, demonstrating that the
BMA forecast that only considered the model structural uncer-
tainty also reduced the impact of the hydrological model parame-
ter uncertainty to a certain extent [63].
3.3. Uncertainty from NWP

3.3.1. Meteorological–hydrological coupled streamflow forecasting
based on NWPs

The precipitation control forecast products of eight NWPs (CMA,
CPTEC, CMC, ECMWF, JMA, KMA, UKMO, and NCEP) obtained from
the TIGGE website were used as the input of the calibrated hydro-
logical models (XAJ, GR4J, SIMHYD, and VIC). The input variables of
the model, except for precipitation, remained unchanged. Taking a
lead-time of 1–4 days as an example, the NSE, RE, and RMSE for the
streamflow under different coupled forecast scenarios during the
calibration and verification periods were calculated. Then, the
evaluation metrics of the forecast results of the different hydrolog-
ical models based on the same NWP product were visualized as a
set of box plots (Fig. 8).

The NSE, RE, and RMSE of the streamflow forecast results shown
in Fig. 8 indicate that when the hydrological model was coupled
with the NCEP and ECMWF, it performed better in terms of the
streamflow forecast than when it was coupled with other NWP
products, and the performance of the coupled CPTEC model was
the worst. These results are consistent with the results of Shu
et al. [57], who evaluated the applicability of these eight NWP
products in Chinese mainland and reported that the ECMWF and
NCEP has a more robust performance in precipitation forecasting,
while the CPTEC had a poorer performance and the JMA underesti-
mated the heavy rainfall events. As the lead time increased, the
forecasting ability of each model decreased significantly. Among
them, the streamflow forecasting ability of the coupled CPTEC
and CMC models decreased rapidly with a relatively large decline,
while the performance of the coupled JMA model exhibited a smal-
ler change in 1–4 days in future compared to the other models.

By further analyzing the differences between the performances
of the different hydrological models in streamflow forecasting, it
was found that the VIC model and the SIMHYD model performed
better than the XAJ model and the GR4J model in most of the sce-
narios. Although the GR4J model and the XAJ model were effective
in terms of the streamflow simulation based on the observed pre-
cipitation, this does not mean that they were also advantageous in
terms of meteorological and hydrological coupled streamflow fore-
casting, which may be related to the parameter uncertainty, the
model error, and the complexity of the model structure. In addi-
tion, the forecast abilities of the different hydrological models var-
ied with the lead time, indicating that when the streamflow
forecast for a one-day lead time was carried out, the differences
between the forecast performances of the four hydrological models
under the same NWP product was not obvious. However, the dif-
ferences between the models expanded significantly as the lead
time increased, especially when coupled with the CPTEC, CMC,
and CMA models. When coupled with the JMA model, this differ-
ence had the smallest change compared to the other models. In
summary, the precipitation input had a crucial effect on the hydro-
logical forecasting. Tuo et al. [64] pointed out that the uncertainties
in hydrological simulations driven by different NWP products
propagate to processes such as erosion and contaminant transport,
and this will likely result in uncertainty in watershed water man-
agement. Therefore, the uncertainty caused by the precipitation
input must be considered in complex forecast systems.



Fig. 7. Violin charts of the NSE, RE, and RMSE of the four hydrological models and the BMA ensemble forecast. The violin diagram consists of 1000 sets of evaluation indicators
corresponding to the model parameters. (a) Calibration; (b) verification.
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3.3.2. Ensemble forecast accounting for the uncertainty from the NWP
input

Under the four hydrological models and fixed parameter sets,
the BMA algorithm was used to ensemble forecast the streamflow
process of the coupled eight numerical forecast products. In addi-
tion, the deterministic and uncertainty metrics (NSE, RE, RMSE,
CR, B, and D) of the streamflow series in the next ten days predicted
by the 1000 sets of parameters were calculated. The forecasted
streamflow during the calibration period is illustrated in Fig. 9.
Each box plot in the figure is composed of 1000 sets of forecast
metrics for the model parameters.

In terms of the deterministic evaluation of the forecast, the NSE
of the streamflow forecast results obtained using the various mod-
els is depicted in Fig. 9. Fig. 9 shows that the box plot of the
SIMHYD model was the longest, followed by the XAJ model, which
indicates that the parameter uncertainty had a greater impact on
these models. In addition, the forecast performances of the four
hydrological models decreased with increasing lead time. In gen-
eral, it can be concluded that the ensemble forecast considering
the uncertainty of the NWP input significantly improved the accu-
racy of the future streamflow forecasting compared with the
single-process forecast results (Fig. 8).

Specifically, the variation in the RE in Fig. 9 shows that most of
the relative error was still less than zero despite the greater impact
of the parameter uncertainty, and the amount of water was gener-
ally underestimated. In addition, the flow duration curve of the
streamflow series (Fig. 10) indicates that the coupled forecast also
universally underestimated the extremely high flows. For the sim-
ulation of the low flows, the underestimation of the low flows was
obvious when coupled with the VIC model. Further comparison
with the RE of the single-process forecast (Fig. 8) revealed that
the streamflow forecasted by most of the NWP products was also
severely underestimated, which indicates that most of the models
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in the ensemble forecasting underestimated the streamflow. This
general underestimation phenomenon was not significantly
improved in the BMA ensemble forecast considering the input
uncertainty. Consequently, in terms of the NSE and RMSE, the
ensemble forecasting effect based on the VIC model was better,
but it seriously underestimated the streamflow, which was closely
related to the underestimation of the numerical forecast products
(Fig. 8) and the calibration results of the VIC model itself (Fig. 4).

From the perspective of the evaluation of the forecast uncer-
tainty, as the lead time increased, the CR value of the uncertainty
interval for the four models slightly decreased (Fig. 9). For a one-
day lead time, the GR4J model had the highest CR, while the VIC
model had the highest CR for the other lead times. Notably, the B
and D values of all of the models gradually increased with increas-
ing lead time, and the uncertainty also increased significantly.
Among them, the average bandwidth of the SIMHYD model was
relatively low, and the uncertainty was also low. In summary,
the ensemble forecasts had a higher CR at low flows, but the cov-
erage of the high flows was obviously insufficient based on the rel-
atively large forecasting uncertainty. Although the different
hydrological models and parameter combinations reduced some
of the underestimations, the large input error of the NWP led to
greater uncertainty in the final streamflow forecast results.

3.4. A triple-ensemble forecast accounting for the uncertainties from
the model structure, parameters, and inputs

In this section, eight NWP products, four hydrological models,
and 1000 sets of parameters were chosen. Then, the BMA method
was used for the ensemble forecasting based on 8 � 4 � 1000 types
of streamflow series. When considering the model input, structure,
and parameter uncertainty scenarios, the accuracy evaluation
metrics (NSE, RE, and RMSE) and uncertainty evaluation metrics



Fig. 9. (a) Deterministic and (b) uncertainty assessment of the BMA ensemble forecasting considering the NWP input uncertainty for the four hydrological models during the
calibration periods for various lead times (1, 2, 3, and 4 days).

Fig. 8. Accuracy of the streamflow forecast coupled with different numerical products during the (a) calibration and (b) verification periods for various lead times (1, 2, 3, and
4 days).
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Fig. 10. Flow duration curve of the observed streamflow and 90% uncertainty interval for the NWP input with a one-day lead time. The inset plots show the flow duration
curve for the low streamflow with a 75%–99.9% exceedance probability.
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(CR, B, and D) of the forecasting streamflow in the next ten days
were calculated. The results are shown in Fig. 11.

In terms of the deterministic evaluation of the streamflow
forecasts, for 1- to 4-day lead times, the NSE values of the
BMA ensemble forecasts considering the uncertainties of the
input, structure, and parameters were all greater than 0.1, and
they were better during the calibration period than during the
verification period. Nevertheless, the performance of the BMA
ensemble forecast decreased rapidly with increasing lead time.
The NSE ranged from 0 to 0.2 in the next 6–10 days, and the
forecast accuracy slowly decreased. Compared with the forecast
results of the single-model without considering any uncertainty
Fig. 11. (a) Deterministic and (b) uncertainty assessment of the BMA triple-ensemble fo
during the calibration and verification periods for various lead times (1–10 days).
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(single coupling; Fig. 8), the ensemble forecast considering the
NWP input and the uncertainty of the hydrological model obvi-
ously improved the forecasting accuracy of the streamflow in the
next 1–10 days. In particular, in the long-term forecast period
after the next four days, the NSE of the ensemble forecast was
greater than 0, so it effectively improved the forecast quality
of the streamflow.

Similarly, from the perspective of the RE of the water volume
over the streamflow forecast, the RE values of the ensemble fore-
casts were all less than zero; the RE gradually became increasingly
negative with increasing lead time; and the underestimation phe-
nomenon became more and more serious. Furthermore, based on
recast accounting for the NWP input, model structure, and parameter uncertainties
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the RMSE of the streamflow forecast, the forecast error gradually
increased with increasing lead time. In addition, compared with
the forecast results for the single-model without considering any
uncertainty (single coupling; Fig. 8), the RMSEs of the ensemble
forecasts considering the NWP input and the hydrological model
uncertainty were reduced by approximately 20–60 m3�s�1 for each
lead time, and thus, the quality of the streamflow forecast was
effectively improved.

In terms of the uncertainty evaluation of the forecast, from the
perspective of the CR, in the next 1–4 days, the CRs of the ensemble
forecasts mostly fluctuated between 91.5% and 96.0%, and the
coverage rate rapidly decreased with increasing lead time. After
the next five days, the CR fluctuated between 90% and 92% during
the calibration period, and the coverage rate of the uncertainty
interval decreased slowly with increasing lead time. Based on the
B and D values of the streamflow forecast, both deviation and D
gradually increased with increasing lead time, and the uncertainty
also increased significantly. In general, it can be seen from the flow
duration curve of the streamflow forecasting process (Fig. 12) that
the ensemble forecast had a higher CR at low flows. However, the
coverage of the high flow was obviously insufficient, and the inter-
val width of the high flow part was evidently larger, so the fore-
casting uncertainty was relatively large.
3.5. Quantifying and reducing the uncertainties of the hydrological
forecast

3.5.1. Contributions of NWP, structure, and parameters to the
uncertainty of the hydrological forecast

In order to efficiently quantify and compare the different uncer-
tainty sources, ANOVA was conducted to describe the proportions
of the different uncertainty sources and reveal the main uncer-
Fig. 12. Flow duration curve of the observed streamflow and 90% uncertainty interval for
the flow duration curve for the low streamflow with a 75%–99.9% exceedance probabili

Fig. 13. Variance decomposition of the uncertainties in the different streamflow quantiles
the Par, HM, NWP, HM–Par, NWP–Par, NWP–HM, and NWP–Par–HM. The joint effects a
NWP–HM (input and structure), NWP–Par (input and parameter), and NWP–Par–HM (in
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tainty components of the meteorological and hydrological fore-
casting system [51]. The variance proportions of the different
scenarios in the different streamflow quantiles based on a three-
way ANOVA are shown in Fig. 13.

Fig. 13 shows that the contributions of the different uncer-
tainty sources to the total ensemble uncertainty change consid-
erably from the low quantiles to the high quantiles during the
calibration and verification periods. In the low quantiles below
35%, the NWP is the dominant source, accounting for about
80% of the total uncertainty during the calibration and verifica-
tion. In the high quantiles above 85%, the HM and Par are the
main contribution sources, followed by their interaction HM–
Par. The structural uncertainty of the hydrological model had a
significant effect on the low flow (Figs. 4 and 10). Therefore,
the ensemble forecast accounting for the structural uncertainty
had an obvious improvement effect on the low flow forecasting
(Figs. 6 and 12). In general, as the quantile increases, the influ-
ence of the NWP gradually decreases, and the influence of the
hydrological model gradually increases. This phenomenon means
that the accuracy of the NWP plays a key role in the prediction
of the high flow, while the hydrological model mainly dominates
the prediction of the low flow.
3.5.2. Accounting for uncertainties from multiple sources
simultaneously using ensemble forecasting

Based on the above analysis, the performance of the meteoro-
logical and hydrological ensemble forecasting considering the
different uncertainty sources is further summarized in this section.
The B and D values of the uncertainty interval were used as the
uncertainty indicators to quantitatively evaluate the performance
of the ensemble forecast, and the results are presented in Fig. 14.
In addition, in order to better analyze the interactions between
the NWP input, parameter, and structure for a 1-day lead time. The inset plots show
ty. (a) NWP–Par–HM calibration; (b) NWP–Par–HM verification.

for a one-day lead time. (a) Calibration; (b) verification. The uncertainty sources are
re considered for four sets of scenarios, namely, HM–Par (parameter and structure),
put, parameter, and structure).



Fig. 14. Quantitative assessment of the uncertainty intervals from the different
sources during the calibration and verification periods. (a) Average band-width B
(m3�s�1); (b) average deviation amplitude D (m3�s�1). The column length represents
the mean value of the dataset, and the line represents the standard deviation of the
dataset, where the dataset consists of the set result estimates from the other
uncertainty sources.
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the different uncertainty sources, the results of the dual and triple
source ensemble forecasts, such as HM–Par, NWP–HM, NWP–Par,
and NWP–Par–HM, were further calculated.

Under the observed precipitation conditions, the B value during
the verification period when only considers the model parameter
uncertainty was 183.2 m3�s�1, and the standard deviation of the
estimated results of the four hydrological models was
15.6 m3�s�1 (Fig. 14). Among them, the parameter uncertainty of
the SIMHYD model was the largest (Table 2), and the uncertainty
was significantly greater during the verification period than during
the calibration period. Moreover, the uncertainty bandwidth dur-
ing the verification period was 230.1 m3�s�1 when only considering
the uncertainty is the model structure, and the standard deviation
of the 1000 sets of parameter estimation results was 20.6 m3�s�1.
In addition, when considering the uncertainties of the model struc-
225
ture and parameters, the bandwidth of the verification period was
227 m3�s�1, and the average deviation amplitude was 47.4 m3�s�1,
which were both smaller than those of the HM and Par scenarios.
Thus, it can be concluded that the uncertainty of the model struc-
ture was greater than the uncertainty of the parameters, and the
BMA ensemble forecasting that considered both the structure
and the parameter uncertainties performed better than that which
only considered the parameter uncertainty. Poulin et al. [65]
reported that the uncertainty in the model structure is more
significant than the parameter uncertainty and provides more
diverse information. Therefore, hydrological models with different
levels of complexity and multiple sets of parameters should be
considered to quantify and reduce the uncertainty of the hydrolog-
ical simulation.

Under the conditions of the precipitation forecast, when only
the uncertainty of the NWP inputs was considered, the interval
bandwidth of the forecasted streamflow for a one-day lead time
during the verification period was 271.6–316.2 m3�s�1, the stan-
dard deviation of the 1000 sets of parameters and the four hydro-
logical model estimation results was 5.1–71.9 m3�s�1 (Fig. 14). In
addition, the bandwidth of the forecast uncertainty gradually
increased with increasing lead time (Fig. 9). Moreover, through
comparison of the single-source uncertainty of the model input,
parameters, and structure, it was found that the input uncertainty
of the NWP products significantly influenced the meteorological
and hydrological coupled forecasting process (Figs. 13 and 14),
and the quality of the NWP products directly determined the accu-
racy of the final streamflow forecast [66,67]. Dahri et al. [48] also
pointed out that improving the meteorological input is fundamen-
tally necessary for accurate hydrometeorological analysis. In addi-
tion, the uncertainty of the model input evidently increases with
increasing lead time, while the multi-input BMA ensemble forecast
can obviously improve the accuracy and reliability of the stream-
flow forecasting [57,68].

By comparing the results of the joint effects of the multi-source
uncertainties, it was determined that the bandwidth when consid-
ering the input and structural uncertainties during the verification
period was (284.4 ± 11.7) m3�s�1, while it was (282.3 ± 12.3) m3�s�1

when considering the input and parameter uncertainty. These two
values were slightly smaller than when the model input uncer-
tainty was considered separately. This indicates that the model
input uncertainty occupied a larger proportion of the entire model
chain, and that increasing the ensemble of the structure or param-
eter uncertainty could further reduce the forecast uncertainty.
When considering the model input, parameter, and structural
uncertainties at the same time, the interval bandwidth of the
ensemble forecast during the verification period was 285 m3�s�1,
which was smaller than the highest interval bandwidth when a
single source (input) and dual source (input + structure, input +
parameter) were considered. Therefore, these results indicate that
the BMA ensemble forecast that considers the uncertainty of the
entire process can further reduce the effect of not fully considering
the other sources of uncertainty compared to the ensemble fore-
cast that only considers a single source or dual sources.

Based on the deviation amplitudes and accuracies of the ensem-
ble forecasts, the accuracies of the single-model, single-source
ensemble, dual-source ensemble, and three-source ensemble
streamflow forecasts were further compared. We found that the
BMA ensemble forecasts that considered the uncertainty improved
the accuracy of the future streamflow forecasts more than the
single-model forecasts did. Compared with the single-source
ensemble forecast (only the input uncertainty was considered),
the standard deviation of the deviation amplitude during the cali-
bration period of the dual-source NWP–HM and NWP–Par scenar-
ios were 1.8 and 2.6 m3�s�1, respectively. While in the single-
source ensemble forecast that only considered the input
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uncertainty, the model parameter and structure had a greater
impact, and the standard deviation of the average deviation ampli-
tude during the calibration period was 2.5–16.3 m3�s�1. Thus, it can
be concluded that the influences of the other sources in the single
source process was reduced by considering the uncertainty of the
dual sources, and the credibility of the streamflow forecast was
further improved. This conclusion is similar to the findings of
Yen et al. [60], who analyzed multi-source uncertainties in water-
shed modeling and showed that the calibration can be improved by
considering the uncertainties from all of the possible sources in
complex and large-scale watershed simulations.

However, for the dual-source ensemble forecast that consid-
ered the input and parameter uncertainties, the impact of the
model structure reached 0.1 NSE in the next three days, and the
impact was also greater than that of the dual-source ensemble
forecast that considered the input and structure uncertainties
(the impact of the parameter was approximately equivalent to
0.05 NSE). In summary, by comprehensively analyzing the accu-
racy and reliability of the final streamflow forecast, it can be con-
cluded that the performance rankings of the multiple
combination scenarios are as follows: the ensemble forecasts
that consider the input and hydrological model
(structure + parameter) uncertainties; the ensemble forecasts
that consider the input and structure uncertainties; the ensemble
forecasts that consider the input and parameter uncertainties;
the ensemble forecasts that consider the input uncertainty; and
the single-model forecasts.

4. Summary and conclusions

Understanding the multi-source uncertainty of the meteorologi-
cal and hydrological forecast chain is the basis for providing accu-
rate and reliable forecast information, which can better guide
hydrological operational forecasts. In this study, a comprehensive
multi-source uncertainty assessment framework based on
Bayesian model averaging was developed. In its practical applica-
tion to the Chitan watershed in China, which is prone to floods,
we carried out meteorological and hydrological coupled stream-
flow forecasts using combinations of eight NWP products (CMA,
CPTEC, CMC, ECMWF, JMA, KMA, UKMO, and NCEP) from the TIGGE
dataset, four hydrological models, and 1000 sets of parameters. In
addition, the uncertainty and its influence on the complex predic-
tion systems were investigated from the perspectives of the model
input, parameter, and structure.

We found that the XAJ model and GR4J model had better com-
prehensive performances in the hydrological simulations, while
the SIMHYD model and VIC model had greater parameter uncer-
tainties. However, the use of a variety of evaluation metrics
revealed that the hydrological models with different structures
had different performances in simulating streamflow series, and
no one model had obvious advantages in all of the periods and
aspects. The four hydrological models selected reproduced the
streamflow series in the Chitan Basin reasonably well, which indi-
cates that they can be applied to meteorological and hydrological
coupled forecasting.

In the meteorological and hydrological coupled streamflow
forecasting, we found that the streamflow forecast performance
based on the different NWP models was consistent with the pre-
cipitation forecasting effect. For example, when the hydrological
models were coupled with the NCEP and ECMWF, the effect of
the streamflow forecasting was significantly better than those of
the other scenarios. The streamflow forecast coupled with the
CPTECmodel had a poor effect due to its poor precipitation forecast
performance. When coupled with the JMA model, which seriously
underestimates heavy rain events, the deviation of the underesti-
mation of the streamflow forecasts was also larger. Moreover, the
226
accuracy of the meteorological and hydrological coupled stream-
flow forecasts decreased gradually with increasing lead time, while
the error increased gradually, but the relative error did not
significantly change.

The uncertainty of the model input in the meteorological and
hydrological ensemble forecasting was obviously greater than the
uncertainty of the hydrological model, and the quality of the
NWP forecast basically determined the accuracy of the high-flow
forecast. Regarding the structural and parameter uncertainties of
the hydrological model, the structural uncertainty was slightly
greater than the parameter uncertainty. The structures and param-
eters of the hydrological model and their interactions contributed
to the main uncertainty of the low flow forecasts. BMA ensemble
forecasting considering the uncertainty of the model structure esti-
mated the hydrological model’s uncertainty better under the con-
dition of the deterministic input, and it reduce the influence of the
parameter uncertainty. Moreover, the BMA ensemble forecast con-
sidering the multi-source uncertainty improved the accuracy and
reliability of the streamflow forecasts more compared with the
streamflow forecast considering a single source or a single model
scenario. In general, the comprehensive performances of the vari-
ous scenarios were as follows: the ensemble forecasts that consid-
ered the input and hydrological model (structure + parameter)
uncertainties; the ensemble forecasts that considered the input
and structure uncertainties; the ensemble forecasts that consid-
ered the input and parameter uncertainties; the ensemble fore-
casts that considered the input uncertainty; and the single-model
forecasts.

The preprocessing and post-processing steps of a meteorologi-
cal and hydrological forecast system are important to improving
the streamflow forecast [69]. The results of this study show that
the uncertainty of the precipitation forecast in the meteorological
and hydrological system is significantly greater than the other
uncertainties, which also indicates that we need to prioritize the
selection of the preprocessing solutions to reduce the input errors
in order to more efficiently improve the quality of the streamflow
forecasts. However, this does not mean that the improvement of
the streamflow forecasting performance only requires the efforts
of meteorologists. We also found that the structure and parameters
of the hydrological model and their interaction are critical for low
flow forecasts, and the hydrological model with a better perfor-
mance in streamflow simulation may not perform well in meteoro-
logical and hydrological forecasting. There may be an offset or
superposition effect between the precipitation forecast error and
the hydrological model error, which will increase the uncertainty
of the prediction results. However, it is clear that when coupled
to a better hydrological model, the standard deviation caused by
the other factors will be smaller. That is, a hydrological model with
a poorer performance will increase the uncertainty of a complex
system. Therefore, the post-processing of hydrological forecasts is
particularly important in the entire complex system, which also
indicates that the improvement and optimization of meteorologi-
cal and hydrological models is also an essential step in improving
the forecasting ability of complex systems. Sharma et al. [70]
reported that preprocessing and post-processing can reduce the
forecast error in two aspects, that is, reducing the input errors
and controlling the output errors, and the coexistence of the two
schemes can maximize the accuracy and reliability of the meteoro-
logical and hydrological forecast.

Another challenge is the improvement of the prediction model
of extreme processes from a model optimization and statistical
processing perspective. We found that most of the NWP models
underestimated extreme storms, which led to serious underesti-
mation of the streamflow forecasts. Although our ensemble frame-
work improves the underestimation to a certain extent, the effect
is still not significant. This is due to the insufficient consideration
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of the physical processes in the meteorological and hydrological
models. It is also related to the deficiencies of the post-
processing methods, such as the ensemble averaging method,
which may neutralize extreme values. Therefore, the improvement
of a complex system to predict extreme processes requires the
joint effort of meteorologists and hydrologists. However, current
statistical treatment schemes are mostly based on the overall
sequence, which also proves that incorporating conventional pre-
processing and post-processing schemes can add additional uncer-
tainties to complex systems [43,69]. Therefore, we also need to
fully determine the effects of the processing schemes on complex
systems and develop more appropriate processing schemes for
typical processes in order to better improve the accuracy and reli-
ability of meteorological and hydrological systems in predicting
extreme events [33].
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