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The aging timescale of particles is a key parameter in determining their impacts on air quality, human
health, and climate. In this study, a one-year simulation of the age distributions of the primary and
secondary inorganic fine particulate matter (PM2.5) components was conducted over China using an
age-resolved Community Multiscale Air Quality (CMAQ) model. The results indicate that primary
PM2.5 (PPM) and ammonium mainly originate from fresh local emissions, with approximately 60%–80%
concentrated in 0–24 h age bins in most of China throughout the year. The average age is about
15–25 h in most regions in summer, but increases to 40–50 h in southern region of China and the
Sichuan Basin (SCB) in winter. Sulfate is more aged than PPM, indicating an enhanced contribution from
regional transport. Aged sulfate with atmospheric age > 48 h account for 30%–50% of total sulfate in most
regions and seasons, and the concentrations in the > 96 h age bin can reach up to 15 lg�m�3 in SCB during
winter. Dramatic seasonal variations occur in the Yangtze River Delta, Pearl River Delta, and SCB, with
highest average age of 60–70 h in winter and lowest of 40–45 h in summer. The average age of nitrate
is 20–30 h in summer and increases to 40–50 h in winter. The enhanced deposition rate of nitric acid
vapor combined with the faster chemical reaction rate of nitrogen oxides leads to a lower atmospheric
age in summer. Additionally, on pollution days, the contributions of old age bins (> 24 h) increase notably
for both PPM and secondary inorganic aerosols in most cities and seasons, suggesting that regional trans-
port plays a vital role during haze events. The age information of PM2.5, provided by the age-resolved
CMAQ model, can help policymakers design effective emergent emission control measures to eliminate
severe haze episodes.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Particulate matter with an aerodynamic diameter � 2.5 lm
(PM2.5) is the fifth leadingmortality risk factor, according to the glo-
bal burden of disease in 2015 [1]. It can also alter the climate
directly by absorbing and scattering solar radiation and indirectly
by modifying the microphysical properties of clouds [2]. PM2.5 sus-
pended in the atmosphere is a mixture of many components that
are either directly emitted (such as elemental carbon (EC) and pri-
mary organic aerosols (POA)) or formed through atmospheric
chemical processes (such as sulfate, nitrate, ammonium, and sec-
ondary organic aerosols (SOA)). During the lifetime of the particles
in the atmosphere, their composition, morphology, and optical
properties changewith atmospheric aging processes, such as chem-
ical transformation, condensation, coagulation, and deposition [3].
At a certain location and time, PM2.5 is composed of particles that
have been remained in the atmosphere for different amounts of
time. The atmospheric age of particles is defined as the total time
that has passed since they (or their precursors) were emitted into
the atmosphere [4]. Unlike the particles’ lifetime, atmospheric age
is the instantaneous age of a specific species at a certain location
and time. Therefore, it is more relevant to the evolution of the phys-
ical and chemical properties of particles rather than the global
mean budget. Studying the atmospheric age and age distribution
of particles can help us enhance our understanding of the character-
istics of PM2.5 and assess its associated health and climate impacts.
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China has experienced severe haze pollution characterized by
extremely high PM2.5 loading in recent decades [5,6]. The Chinese
government has made great efforts to combat air pollution, includ-
ing promulgating the Air Pollution Prevention and Control Action
Plan in 2013. Recent studies have reported a remarkable decrease
in PM2.5 concentrations and associated health benefits since 2013
[7]. However, annual PM2.5 concentrations in China are still a few
times greater than the Guidance Value of the World Health Organi-
zation, especially in populous regions such as the North China Plain
(NCP), Yangtze River Delta (YRD), and Sichuan Basin (SCB) [8,9].
Therefore, a comprehensive understanding of the formation pro-
cesses and the source contributions of PM2.5 is essential for policy-
makers to design effective emission control measures. Previous
studies have used the receptor model and chemical transport
model (CTM) to investigate the source contributions of emission
sectors and regions to PM2.5 [5,10–14]. However, the time informa-
tion of particles when they or their precursors are emitted into the
atmosphere remains unclear [15].

The atmospheric age of PM2.5 can reflect the source–receptor
relationship of air pollutants, which provides additional time infor-
mation on emission sources [4]. For policymakers, knowing such
information on air pollutants can help determine the ‘optimal’ time
to conduct emission control measures. A few studies have
attempted to estimate the photochemical age of gaseous pollutants
based on the reaction rates of non-methane hydrocarbons
(NMHCs) or nitrogen oxides (NOx = NO + NO2) with hydroxyl
(OH) radical [16–18]. This algorithm provides a measure of the
extent of a chemical reaction but cannot reflect the actual age of
air pollutants (the time since emission). Other researchers used
the trajectory model to track the age distribution of particles by
adding non-reactive tracers [19,20]. This approach has been fur-
ther extended to calculate the atmospheric age of NMHCs by
implementing a simple chemical scheme that considers the reac-
tions with OH radicals [21]. However, the age distribution calcu-
lated by the trajectory model is inaccurate because of the simple
treatment of atmospheric chemistry, especially for secondary spe-
cies. Moreover, the trajectory model does not account for the mix-
ing of air pollutants from different ages and neglects the
contribution from background concentrations.

Three-dimensional CTM can simulate the evolution and distri-
bution of chemicals in the atmosphere at global or regional scales,
which provides a good basis for estimating the age distribution of
air pollutants. Han and Zender [22] estimated the age of dust aero-
sols using the mass–age tracking (MAT) method in the National
Center for Atmospheric Research (NCAR) Community Atmosphere
Model version 3 (CAM3). In the MAT algorithm, an additional tra-
cer, the mass–age, was introduced to conserve the aerosol mass
and age information. The age of the dust aerosols was then diag-
nosed by dividing the mass–age by mass. Unfortunately, this
method is inadequate for calculating the age distribution of sec-
ondary aerosol species owing to the complex nonlinear chemical
process. Wagstrom and Pandis [4] used the regional CTM PMCAMx
to track the age distribution of aerosols. Particles and their precur-
sors emitted at different times were assigned to separate bins, that
is, emission time periods (ETPs), and treated as different source
categories by the Particulate Matter Source Apportionment Tech-
nology (PSAT). However, this method is not suitable for long-
term simulations because the computational time increases shar-
ply with the number of ETPs. To overcome this limitation, Ying
et al. [23] introduced a dynamic time-bin advancing technique to
track the age distribution of primary PM2.5 (PPM) and secondary
inorganic aerosols (sulfate, nitrate, and ammonium, simply SNA
hereafter) in a source-oriented the community multiscale air qual-
ity (CMAQ) model framework. Based on this technique, we further
developed a source- and age-resolved algorithm (SARA) into the
CMAQ model to track the age distribution of PM2.5, as well as its
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source sector and source region contributions during the 2013 Jan-
uary severe haze episode in China [24].

Although the above studies have investigated the age distribu-
tion of particles in different locations, these studies mostly focused
on single pollution episodes, and few have attempted to address
the seasonal variations in the age distribution of PM2.5. In this
study, the age-resolved CMAQ model was applied to track the spa-
tial and seasonal variations in the age distribution of the predomi-
nant PM2.5 components, PPM and SNA, in China in the entire year
2013. Secondary organic aerosols (SOA) are not considered because
their concentrations are generally underestimated by current air
quality models [25]. The results of this study will provide valuable
information on the age distribution of PM2.5 in different regions
and seasons, which can help policymakers design timely control
measures to effectively reduce PM2.5.
2. Methods

2.1. Model description and setups

The CMAQ model was originally developed by the US Environ-
mental Protection Agency (EPA) [26] and has been used around
the world to simulate air pollutants, including tropospheric ozone
(O3) and PM2.5, at regional and urban scales [27–29]. The CMAQ
model has also been applied in China to investigate the formation
mechanisms, source contributions, control strategies, and health
impacts of PM2.5 pollutions in various regions [30–33]. In this
study, the CMAQ model version 5.0.1 coupled with the SAPRC-07
photochemical mechanism and the 6th version of the aerosol mod-
ule (AERO6) was applied to simulate atmospheric chemistry. The
model configurations were mainly derived from Hu et al. [30], in
which several modifications were implemented in the CMAQ
model to improve the model performance for predicting secondary
inorganic and organic aerosols. The heterogeneous pathways of
secondary sulfate and nitrate formation on the particle surface
from nitrogen dioxide (NO2) and sulfur dioxide (SO2) were added
to the original CMAQ model [34], which helped correct the under-
estimation of sulfate and nitrate especially under severe haze con-
ditions [35]. In addition, detailed treatments of SOA formation
were adopted, including isoprene oxidation chemistry, in-cloud
processing of glyoxal and methylglyoxal, and aerosol
surface uptake of isoprene epoxydiol and methacrylic acid epoxide
[36–38]. More information about the above updates and their ben-
efits can be found in the cited references.

The simulation domain covers all of China and its adjacent
countries in eastern Asia, with a horizontal grid resolution of
36 km (Fig. 1). The Weather Research Forecasting (WRF) model
version 4.2 was used to generate the offline meteorological input,
with the initial and boundary conditions from the 1.0� � 1.0�
National Centers for Environmental Prediction (NCEP) Final (FNL)
operational global reanalysis data. Details of the WRF configura-
tions have been documented in previous studies [30,39] and are
not repeated here. The emission inputs for the CMAQ model in this
study include anthropogenic and natural inventory data. The
anthropogenic emissions in China were derived from the monthly
based Multi-resolution Emission Inventory for China (MEIC)
version 1.3y with 0.25� � 0.25� resolution [40], while emissions out-
side China within the model domain were obtained from the
monthly gridded Regional Emission inventory in ASia version 3.2
(REASv3.2) with 0.25� � 0.25� resolution [41]. The weekly and diur-
nal profiles used to generate hourly emissions were described in
detail by Zhang et al. [39]. Biogenic emissions were calculated using
the Model of Emissions of Gaseous and Aerosols from Nature

https://www.meicmodel.org


Fig. 1. Model domain. The blue circles indicate the locations of cities with air
quality observations. The red circles show the locations of sites from the Campaign
on Atmospheric Aerosol Research network of China (CARE-China). Five sub-regions
discussed in the text are also shown in the figure. NCP represents the North China
Plain, YRD represents the Yangtze River Delta, FWP represents the Fenwei Plain,
PRD represents the Pearl River Delta, and SCB represents the Sichuan Basin.

y https://106.37.208.233:20035/.
� https://doi.org/10.7910/DVN/VHFTLQ.
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(MEGAN) v2.10 [42] driven by meteorological fields predicted by the
WRF model. The Fire INventory from NCAR (FINN) version 1.5 with
1 km resolution [43] was applied for open biomass burning emis-
sions. The natural emissions of dust and sea salt were calculated in
line by the CMAQ model. As shown in Fig. S1 in Appendix A, emis-
sions are much higher in NCP, Fenwei Plain (FWP), YRD, and SCB.
Seasonally, SO2, NOx, and PPM emissions are higher during winter
in NCP, FWP, and SCB, but NH3 emissions are higher during summer
over most parts of China.

2.2. Description of age-resolved algorithm

The CMAQ model was modified to track the atmospheric age
distribution of primary and secondary PM2.5, using additional
tagged species and reactions. The age-resolved algorithm was
developed based on the source-oriented externally mixed aerosol
representation framework and was initially applied in the Univer-
sity of California at Davis (UCD)/California Institute of Technology
(CIT) air quality model to track the age distribution of EC in Texas,
USA [44]. Ying et al. [23] further expanded the age-resolved algo-
rithm to track the atmospheric age distribution of SNA and intro-
duced the algorithm into the CMAQ model version 5.0.1. This
algorithm, as described below, was applied in this study.

Species with different atmospheric ages were assigned to differ-
ent time bins by adding tagged species to the age-resolved CMAQ
model. Species in different age bins were assumed to have the
same physical and chemical properties. For PPM, tagged non-
reactive tracer ATCR_X0 was added to represent the freshly emitted
PPM particles with atmospheric age less than the predefined fixed
age bin advancing frequency (Ds = 12 h in this study). PPM concen-
trations from emissions at the current model time step were
always set to the first age bin (ATCR_X0) and were sequentially
moved to the next age bin (i.e., ATCR_X1, ATCR_X2, . . ., ATCR_Xn)
every 12 h (equal to the age bin advancing frequency); where n
represents the number of age bin. In this study, n was set to 9,
and a total of ten age bins were tracked. The last age bin ATCR_X9

represents PPM with an atmospheric age � 108 h. The emission
rates of PPM were the total of individual PPM components (such
as EC and primary organic carbon) and scaled by 0.001% [10].

The age distribution of SNA is more complicated to determine in
the age-resolved CMAQ model, which is calculated based on the
emissions of the corresponding gaseous precursors such as SO2,
nitrogen oxides (NOx), and ammonia (NH3). Additional tagged spe-
cies and reactions were introduced into the original SAPRC-07
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mechanism, while the aerosol and cloud modules were also
updated to include the treatments for tagged SNA species. For
example, sulfate formation through the gas-phase reaction of SO2

oxidation by OH radicals can be expanded into several similar
reactions:

SO2 X0 þ OH ! H2SO4 X0 ! SðVIÞ X0 ðReaction1Þ

SO2 X1 þ OH ! H2SO4 X1 ! SðVIÞ X1 ðReaction2Þ

..

.

SO2 Xn þ OH ! H2SO4 Xn ! SðVIÞ Xn ðReaction3Þ
where SO2 Xi, H2SO4 Xi, and SðVIÞ Xi represent the SO2, gas-phase
sulfate, and particulate sulfate in the ith age bin, respectively. Simi-
lar to PPM, the concentrations in each age bin were updated using a
dynamic age bin advancing technique. Specifically, the concentra-
tions in the ith age bin were moved to (i + 1)th age bin every 12 h.

Once the atmospheric age distribution of a specific species was
tracked in the age-resolved CMAQ model, the average atmospheric

age (s
�
) of PPM and SNA can be calculated by the average of the

concentration-weighted age in each age bin, expressed by Eq. (1).
The details can be found in Ying et al. [23].

s
� ¼

Xn

i¼0

si
� �CiPn

i¼0Ci
ð1Þ

where Ci is the concentration of specific species in the ith age bin. si
�

represents the average atmospheric age in the ith age bin, which is
equal to the middle of the corresponding time period:

si
� ¼ iþ 1

2

� �
Ds i ¼ 0;1;2; � � � ;n ð2Þ
2.3. Model evaluation data and metrics

Two observational datasets were used for the model evaluation
in this study. The first is the hourly PM2.5, obtained from the pub-
lishing website of the China Ministry of Ecology and Environment
(MEE)y. This network includes 496 monitoring stations in 74 major
cities since January 2013, as shown in Fig. 1. The second is the
monthly sulfate, nitrate, and ammonium concentrations at 18 sta-
tions across China during 2013 (see Fig. 1). These data were derived
from the extended data of Zhai et al. [45]�, which was originally
measured by ion chromatography from the Campaign on Atmo-
spheric Aerosol Research network of China (CARE-China) [46,47].
Details of the network stations, instrumentation, and methodologies
are described in the cited references.

The statistical metrics calculated for model evaluation include
the mean fractional bias (MFB), mean fractional error (MFE), nor-
malized mean bias (NMB), normalized mean error (NME), root
mean square error (RMSE), and correlation coefficient (R). More
information about the calculation of the metrics and the model
performance criteria can be found in Emery et al. [48] and is not
repeated here.

3. Results

3.1. Model evaluation

Meteorological parameters such as temperature, relative
humidity, wind speed, and wind direction predicted by the WRF

https://106.37.208.233:20035/
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model for the entire year of 2013 were evaluated against observa-
tions in China [30], and the accuracy of the model performance was
determined to be acceptable according to benchmarks suggested
by Emery et al. [49]. Hu et al. [30] also evaluated the model perfor-
mance on O3 and PM2.5, simulated by the original CMAQ model,
and found that the NMB, NME, MFB, and MFE for O3 and PM2.5

met the performance criteria in most cities for most months. In this
section, we compare the seasonal and monthly averaged PM2.5, sul-
fate, nitrate, and ammonium concentrations predicted by the age-
resolved CMAQ model with measurements.

Fig. 2 shows the regional distributions of the simulated and
observed PM2.5, sulfate, nitrate, and ammonium concentrations
during the four seasons of 2013. The corresponding model perfor-
mance statistics are presented in Table 1 [48]. The overall model
performance for PM2.5 and SNA meets the criteria for satisfactory
performance (�30% � NMB � 30%, NME � 50%, and R > 0.4 for
PM2.5, sulfate, and ammonium; �65% � NMB � 65% and
NME � 115% for nitrate) suggested by Emery et al. [48]. Negative
NMB of PM2.5 is found in spring, summer, and autumn, indicating
that the model underestimated PM2.5. Sulfate, nitrate, and ammo-
nium concentrations are overestimated in all seasons, with mean
NMB values of 24.0%, 43.9%, and 15.2%, respectively. For sulfate,
relatively poor model performance is found in autumn, with both
NMB and NME exceeding the performance criteria. The NMB and
NME of nitrate (34.3%–55.6% for NMB and 60.3%–83.0% for NME)
are relatively larger than those of sulfate, although they are all
within the performance criteria. The NMB of ammonium (8.3%–
21.7%) is considerably better than that of sulfate and the NME
(36.4%–55.0%) is similar to that of sulfate.

The predicted and observed PM2.5, sulfate, nitrate, and ammo-
nium exhibit consistent seasonal variations, with high concentra-
tions in winter and low concentrations in summer. For example,
the simulated summer SNA is 18.6 lg�m�3, contributing to a larger
fraction (46.5%) of PM2.5 than during the winter season (36.2%).
Such seasonal variation is consistent with the observations and
previous study [50] and is mainly attributed to the enhanced pho-
tochemical formation of secondary aerosols under the influence of
high O3 levels and strong solar radiation in summer [51]. The
model correctly predicts high PM2.5 and SNA concentrations in
the NCP and eastern region of China, especially in winter and
Fig. 2. Comparison of predicted (contour) and observed (dotted) PM2.5, sulfate (SO4
2�),

2013. Unit: lg�m�3.

120
autumn. PM2.5 concentrations in those areas are even higher than
200 lg�m�3 in winter, considerably higher than the Chinese Ambi-
ent Air Quality Standards (CAAQS) Grade II standard for daily aver-
age PM2.5 (75 lg�m�3). However, in winter and autumn, the model
tends to underestimate the PM2.5 concentrations in the FWP and
overestimate in the SCB, consistent with previous studies [31].
The biases are partially due to the coarse horizontal resolution
(36 km) used in this study, which cannot accurately predict wind
speed, precipitation, and other meteorological parameters in such
a complex topography [52]. Other reasons might be the uncertain-
ties in emissions and the numerical representation of heteroge-
neous reactions [30].

Fig. 3 compares the predicted monthly averaged PM2.5, sulfate,
nitrate, and ammonium concentrations with observations at indi-
vidual sites. Overall, the model agrees well with the observations
in most regions for most months, with high correlation coefficients
(R � 0.75, p < 0.001) and relatively low biases (< 5% for PM2.5, and <
45% for SNA). However, the PM2.5 concentrations are underesti-
mated by 4.3%, while the simulated SNA concentrations are overes-
timated by 16.6%–42.8%, especially for nitrate. Such different
biases are partially due to the uncertainties associated with the
model treatments. For example, current air quality models signifi-
cantly underestimate SOA in China because of limitations in under-
standing the complicated SOA formation mechanism, such as the
contribution of intermediate-volatility or semi-volatile organic
compounds [25,53]. Other possible reasons for model-to-
observation discrepancy lie in the uncertainties in the emission
inventory, the relatively coarse model grid resolution, and the
unavoidable deficiencies in simulated meteorological fields such
as wind speed [7,30]. The predicted sulfur oxidation ratio (SOR),
nitrogen oxidation ratio (NOR), and SNA to EC ratio (SNA/EC),
which are frequently used as indicators for assessing the extent
of SNA formation, are further compared with observations
(Fig. S2 in Appendix A). Generally, the correlation coefficients for
SOR and NOR are found to be 0.55 and 0.52, respectively, indicating
that the model successfully reproduces the chemical formation
process of sulfate and nitrate. Nonetheless, the model overesti-
mates SOR and NOR by 37.5% and 26.4%, respectively. The model
performance for SNA/EC is satisfactory with a relatively high corre-
lation coefficient and low bias (R = 0.54, NMB = �7.2%).
nitrate (NO3
�), and ammonium (NH4

þ) in Spring, Summer, Autumn, and Winter of



Table 1
Model performance statistics of PM2.5, sulfate (SO4

2�), nitrate (NO3
�), and ammonium (NH4

+) in different seasons of 2013.

Item Season OBS
(lg�m�3)

SIM
(lg�m�3)

MFB
(%)

MFE
(%)

NMB
(%)

NME
(%)

RMSE
(lg�m�3)

R

PM2.5 Spring 64.3 53.6 �24.8 37.2 �16.6 31.6 26.3 0.6
Summer 46.4 40.1 �23.7 41.0 �13.5 33.1 20.5 0.7
Autumn 73.2 69.8 �14.7 40.3 �4.6 37.4 38.6 0.5
Winter 113.8 117.6 �8.2 34.5 3.3 32.2 50.2 0.7

SO4
2� Spring 8.2 9.1 12.6 41.6 11.4 43.1 4.8 0.6

Summer 8.6 10.2 25.3 46.6 19.1 42.3 5.6 0.7
Autumn 7.8 10.5 36.8 58.5 34.9 61.8 6.4 0.5
Winter 13.9 18.2 23.7 45.3 30.7 48.0 9.3 0.8

NO3
� Spring 5.0 6.7 24.7 63.4 34.3 60.9 4.4 0.6

Summer 2.8 4.0 0.6 84.7 43.3 83.0 3.4 0.7
Autumn 3.8 5.9 35.5 77.8 55.6 81.3 4.5 0.7
Winter 9.5 13.5 37.2 58.4 42.2 60.3 8.0 0.8

NH4
þ Spring 4.7 5.3 14.6 45.2 12.7 43.0 2.8 0.6

Summer 4.1 4.4 22.7 56.1 8.3 46.6 2.7 0.7
Autumn 3.7 4.4 26.4 57.6 18.0 55.0 2.9 0.6
Winter 8.9 10.8 26.3 39.7 21.7 36.4 4.6 0.9

OBS: mean observation; SIM: mean simulation. The values that do not meet the performance criteria (�30% � NMB � 30%, NME � 50%, and R > 0.4 for PM2.5, sulfate, and
ammonium; �65% � NMB � 65% and NME � 115% for nitrate) suggested by Emery et al. [48] are denoted in bold.

Fig. 3. Comparison of predicted and observed monthly averaged (a) PM2.5, (b) sulfate, (c) nitrate, and (d) ammonium in 2013.
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3.2. Seasonal variations and regional distributions of atmospheric age

The spatial distributions of seasonally averaged PPM concentra-
tions in different age bins, together with the averaged wind fields,
are illustrated in Fig. 4. Overall, PPM mainly originates from fresh
local emissions, with the overwhelming majority concentrated in
the 0–12 and 12–24 h age groups in all four seasons. Freshly emit-
ted PPM is spatially limited in the source regions within 24 h and
gradually transported to downwind areas with increasing age.
Using the Nested Air Quality Prediction Model System (NAQPMS),
Chen et al. [54] also found a low aging time scale (several hours)
of black carbon in Beijing but with much higher values (> 1.2 days)
in remote regions far from the source areas. In addition, the atmo-
spheric age distributions in different regions show remarkable sea-
sonal variations. In spring, high concentrations of fresh PPM with
atmospheric age � 12 h are observed in Southeast Asia, with a
maximum exceeding 35 lg�m�3. This is mainly attributed to inten-
sive primary emissions (Fig. S1) related to open biomass burning of
agricultural waste and forest fires in these areas [55]. Relatively
high concentrations (�20 lg�m�3) of fresh PPM with age � 12 h
are also predicted in densely urbanized areas such as the NCP,
SCB, and YRD due to intensive local emissions and low wind speed.
As the atmospheric age increased, the PPM concentrations in the
emission regions decrease significantly due to horizontal and ver-
tical dispersion as well as deposition processes. The peak value in
South Asia decreases to only 5 lg�m�3 for PPM in the > 96 h age
group. In contrast, PPM concentrations in Guangxi, Guangdong,
and Yunnan Regions, and the South China Sea remain high for
the 48–96 h and > 96 h age groups, indicating the impact of
long-range transport.
Fig. 4. Seasonal mean PPM concentrations (lg�m�3) in
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In summer, high fresh PPM (� 12 h) concentrations of about
15 lg�m�3 are located in the NCP, YRD, and SCB. PPM concentra-
tions in southern China decrease rapidly after 24 h of aging, while
the concentrations within the 48–96 h age group are still relatively
high in the NCP. Due to prevailing winds from the south, freshly
emitted PPM extends from central and southern China to the
NCP and accumulated in the NCP areas because of the blocking
effect of the Taihang and Yanshan Mountains in the north and west
[56]. In autumn, the spatial distribution of freshly emitted PPM is
similar to that in summer but with relatively higher concentrations
due to increased anthropogenic emissions [57]. Under prevailing
northerly winds, PPM particles tend to spread southerly with
increasing atmospheric age. The PPM concentrations in the 48–
96 h age bin remain about 5 lg�m�3 in Yunnan Province, which
is considerably higher than the summer concentrations. In winter,
high concentrations (�35 lg�m�3) of PPM with age < 24 h are
observed in the NCP, SCB, and northeast China (NE). This is mainly
attributed to the enhanced residential emissions from coal com-
bustion for domestic heating and the unfavorable meteorological
conditions associated with low wind speed and mixing height [58].

Fig. 5 shows the regional distributions of the seasonal average
SNA concentrations in different age bins. Generally, the age distribu-
tion of the SNA exhibits significant seasonal variations. In spring, the
concentrations of SNA in the first two age bins are almost the same,
with a peak value of 25 lg�m�3 in the SCB and Hunan Province. The
concentrations of SNA decrease rapidly after 24 h and spread over a
wide area. The concentrations of aged SNA with atmospheric
age > 96 h remain relatively high (2–5 lg�m�3) in southern and cen-
tral China, which is explained by its relation to sulfate (Fig. S3 in
Appendix A). In summer, high SNA concentrations are observed in
different age bins overlapped with wind vectors.



Fig. 5. Seasonal variation of secondary inorganic aerosol (SNA) concentrations (lg�m�3) in different age bins.
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the first age bin, with a maximum concentration of 15 lg�m�3 in the
NCP, SCB, and YRD. This reduction in atmospheric age is because of
high summer temperature and solar radiation, which promotes the
atmospheric oxidation capacity and facilitates the gas-to-particle
conversion rate [59]. This is consistent with a previous study, which
shows the photochemical age in summer is only 1.2–3.5 h [60]. Sim-
ilar to PPM, SNA concentrations gradually decrease as the atmo-
spheric age increased. The aged SNA tends to be concentrated in
northern China and the Yellow Sea under prevailing southerly
winds. As such, in autumn and winter, high concentrations of SNA
can be found in the 12–24 h age bin, with a maximum of 30 and
50 lg�m�3, respectively. This is because the gas-phase reactions of
SO2 and NOx are considerably slower in these seasons (Figs. S4
and S5 in Appendix A), leading to an older atmospheric age. Addi-
tionally, fresh SNA particles are concentrated in source regions such
as the NCP, SCB, and central China owing to low wind speed and
shallow mixing layers. For older age groups, SNA can be transported
southerly under the prevailing northerly wind, and its concentra-
tions remain high in central China and the SCB.

The spatial distributions of seasonally averaged sulfate, nitrate,
and ammonium concentrations for different age groups are shown
in Figs. S3–S5. The fresh sulfate and nitrate concentrations with an
atmospheric age of 0–12 h are relatively low and spatially limited
in the source regions. Sulfate and nitrate in older age groups show
a smooth spatial distribution with weaker concentration gradients.
High concentrations of sulfate can be observed in the 12–24 h and
even 24–48 h age groups because of the long lifetime of SO2

(Fig. S6 in Appendix A) [61]. In winter, the concentrations of sulfate
with atmospheric age > 96 h are still high in the SCB, with a maxi-
mum of 15 lg�m�3. The predicted nitrate concentrations are highest
in the 12–24 h age group for all four seasons and rapidly decrease
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after 24 h. This is because the lifetime of NOx is considerably shorter
than that of SO2 (Figs. S6 and S7 in Appendix A) [23,62]. The aged
nitrate is likely due to the longer lifetime of NOz (Fig. S8 in Appendix
A), such as peroxyacetyl nitrate (PAN), which can be transported to
remote regions and release NOx [63]. Most ammonium is concen-
trated in the 0–12 h age group and limited in the source region. This
is mainly attributed to the shorter lifetime of NH3 as shown in
Fig. S9 in Appendix A, which indicates NH3 can be quickly trans-
formed to ammonium. The gas-particle partitioning of NH3 to
ammonium is limited by the availability of either NH3 or HNO3,
which can be represented by the adjusted gas ratio (adjGR) [64].
As can be seen from Fig. S10 in Appendix A, wintertime adjGR is
lower than one in most parts of eastern China, indicating that NH3

is in short and can rapidly convert to ammonium in a short time.
Based on Peking University NH3 (PKU-NH3) emission inventory
and WRF-Chem simulation, Liu et al. [65] also found NH3-limited
conditions during winter haze days due to the rapidly increased
nitrate concentrations. However, adjGR is found to be higher than
one during summer, with high values in southwestern China and
low values in the NCP. The high adjGR values in summer indicate
NH3 is abundant, which is mainly due to agricultural activities. Pre-
vious studies also showed enhanced NH3 emissions in summer,
leading to NH3-rich regimes [66].

Fig. 6 shows the spatial distribution of the average atmospheric
age of PPM, sulfate, nitrate, and ammonium in different seasons. For
PPM, a low atmospheric age is observed in the NCP, YRD, SCB, and
NE for all four seasons, which is mainly related to intensive local
emissions. The average age of PPM in the NCP and NE is about
20 h during winter, which is slightly lower than that during sum-
mer (�25 h). In contrast, in southern and central China, PPM shows
a much older age in winter than in summer, with a maximum



Fig. 6. Seasonal variation of predicted average atmospheric age (in hours) of PPM, sulfate, nitrate, and ammonium. The number in each panel indicates the domain averaged
value.
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difference greater than 48 h in Yunnan and Guangxi Provinces. As
shown in Fig. 4, this is mainly attributed to the transition in the
wind direction during different monsoon seasons. Old PPM parti-
cles are transported southerly in winter under prevailing northerly
winds, while they accumulate in the NCP and NE in summer.

The average age of sulfate is significantly higher than that of the
PPM. In spring, a low sulfate age is observed in the NCP, NE, SCB, and
central China, with a minimum of�25 h. The average age is consid-
erably higher in western China and remote oceans because of the
low emissions in these regions. In summer, the average age of sul-
fate is remarkably lower in southeastern coastal areas, such as
Guangzhou, Fujian, and Zhejiang Provinces. The low ages in these
regions are partly attributed to the strong southerly winds in sum-
mer (Fig. 4), which quickly disperse air pollutants in these regions.
Another possible reason is the enhanced gas-to-particle conversion
rate of SO2 because of the higher temperature and radiation in sum-
mer and the increased deposition removal due to increased summer
precipitation (Fig. S11 in Appendix A). In winter, the average atmo-
spheric age of sulfate exhibits a significant north-to-south gradient.
The average age is close to 25 h in the NCP and NE, while it reaches
up to 80 h in southern China. As such, the low average age in theNCP
and NE is attributed to the fresh emissions of primary sulfate from
residential heating and cooking with coal. Moreover, the gas-
phase oxidation of SO2 initiated by OH radicals is very slow in win-
ter; thus, SO2 canbe transported over a longer distance and time and
lead to a high age in southern China. The atmospheric age of nitrate
is lowest in summer and highest in winter, partly because of the
shorter atmospheric lifetime of NOx in summer than in winter
[62]. Another reason is the higher temperature in summer, which
leads to more nitrate partitioning into the gas phase. Because nitric
acid in the gas phase deposits faster than particulate nitrate [67], a
lower atmospheric age can be found in summer. Significant seasonal
variations in nitrate age are observed in southern China. In the PRD,
nitrate has an average age of about 15 h during summer, while its
average age increases to 45–50 h during winter. Moreover, ammo-
nium shows a lower atmospheric age than sulfate and nitrate due
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to the short NH3 lifetime of the order of hours [68]. The spatial dis-
tribution and seasonal variation of the atmospheric age of ammo-
nium are similar to those of the PPM. The average age of
ammonium is even lower than that of PPM in eastern China because
of the larger removal rate of dry and wet deposition (Fig. S11).

Fig. 7 shows the simulated seasonal age distribution and mean
atmospheric age averaged over five key regions (shown in Fig. 1),
including the NCP, FWP, YRD, PRD, and SCB. For PPM, sulfate, and
ammonium, the age distributions in the NCP and FWP are moder-
ately different from those in other regions, with a relatively small
seasonal difference (< 6.5 h). The average age of PPM and ammo-
nium is approximately 20–30 h in the NCP and FWP, while the sul-
fate average age is significantly larger (40–56 h). In the NCP, the
highest average age is found in autumn, while the lowest was found
inwinter. In contrast, significant seasonal variations in atmospheric
age are observed in the YRD, PRD, and SCB,with a higher average age
in winter and a lower average age in summer. For example, in the
PRD, the average age of PPM and ammonium can increase from
about 15 h in summer to about 40 h in winter. This regional differ-
ence in seasonal variation in atmospheric age is mainly attributed
to the changingwind speed and direction. In summer, the prevailing
southerly wind brings aged pollutants to the NCP, while in the win-
ter, pollutants are transported to downwind areas under the north-
erlywind. For nitrate, the contributions from old age groups (> 24 h)
in winter range from 40% to 60%, which is significantly higher than
that in summer. The average age in winter is considerably larger
than that in summer for all five regions, especially in the PRD. The
average age of nitrate is 18–30 h in summer, while it increases to
35–50 h for all regions. The higher temperature in summer favors
nitrate partitioning to the gas phase, which leads to faster deposi-
tion and reduces atmospheric age [45,67].

3.3. Atmospheric age distribution on pollution days

Fig. 8 illustrates the age distribution of PPM and SNA on pollu-
tion days (� 75 lg�m�3) and clean days (< 75 lg�m�3) in five



Fig. 7. The mass fractional contributions of different age bins to PPM, sulfate, nitrate, and ammonium over five key regions. The red star with a black dot indicates the average
atmospheric age (in hours, right y-axis).
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megacities: Beijing, Shanghai, Guangzhou, Chongqing, and Xi’an
(representing NCP, YRD, PRD, SCB, and FWP, respectively). In most
cities and seasons, the average age of PPM and SNA increases sig-
nificantly on pollution days, with a maximum increment of
approximately 24 h. Taking Beijing as an example, the average
age of PPM in winter increases from 10 h on clean days to 28 h
on pollution days. The accumulation of local emissions due to unfa-
vorable meteorological conditions and the enhanced contribution
from regional transport can both lead to increased aerosol age dur-
ing pollution days [5,58]. Fig. S12 in Appendix A further illustrates
the day-to-day variations in the age distribution of PPM, sulfate,
nitrate, and ammonium in Beijing in January (winter) and July
(summer). The contributions of 0–24 h age bins are more than
90% to the total PPM concentrations on clean days (e.g. January
1–8, and July 2–4), while the contributions from older age bins
(> 24 h) increase significantly during high concentration days
(e.g., January 28–30, and July 6–8). This is linked to the persistent
stagnation conditions associated with low wind speed and shallow
mixing height, which trap both fresh particles from local emissions
and aged particles transported from other regions for a long time.
Sulfate particles with an atmospheric age of 24–96 h account for
only 10%–20% of the total sulfate on clean days, such as July 2–5,
while their contribution increases to 60%–75% during high concen-
tration days (e.g., July 18–21). On the peak concentration day, Jan-
uary 31, sulfate particles in the 48–96 and 24–48 h age bins
account for 37% and 25% of the total sulfate respectively. For
nitrate, the contributions of > 24 h age bins usually increase signif-
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icantly during relatively high nitrate concentration days, such as
January 4–7 and July 26–27. In contrast, nitrate concentrations
increase rapidly during January 16–20, while the contributions of
aged nitrate particles (> 48 h) remain almost unchanged. Similar
to PPM, the contribution of aged ammonium particles (> 48 h)
greatly increases with the total mass concentration, with a maxi-
mum of 41.6% on the peak concentration day, January 31.

Some cities, such as Shanghai, show less difference in the age dis-
tribution of SNA between pollution days and clean days in spring
and summer. However, in winter, pollution days have more aged
particles (> 24 h) and a larger average age of both PPM and SNA.
For example, the average age of SNA increases from 30 h on clean
days to 48 h on pollution days in winter. As shown in Fig. S13 in
Appendix A, northwesterly winds from central China and NCP usu-
ally lead to increased particle concentrations in January, which is
associated with a high contribution of old age bins. PPM particles
from the 48–96 h and > 96 h age bins account for approximately
20% of the total concentrations in January, especially during high
concentration days. For example, as the PPM concentration
increases fromabout 8lg�m�3 on January 3 to 47lg�m�3 on January
7, the contribution of old age bins (> 48 h) gradually increases from
less than 1% to approximately 20%. A similar phenomenon can also
be observed for sulfate, nitrate, and ammonium. In July, most PPM
particles originate from the 0–12 h age bin due to southeasterly
wind, which brings in clean air from the ocean and is beneficial to
the removal of freshly emitted PPMparticles. The sulfate concentra-
tion in January reaches 20lg�m�3 on a fewdays,with a peak value of



Fig. 8. Comparison of PPM and SNA age distribution on clean days (C; < 75 lg�m�3) and polluted days (P;� 75 lg�m�3) in Beijing, Shanghai, Guangzhou, Chongqing, and Xi’an.
The red circle with a black dot indicates the average atmospheric age (in hours, right y-axis).

X. Xie, Q. Ying, H. Zhang et al. Engineering 28 (2023) 117–129
up to 55 lg�m�3 on January 24. Aged sulfate particles with atmo-
spheric age > 48 h contribute almost half of the total sulfate in the
entire month. On the peak value days, January 23–24, their contri-
butions can reach up to 66%. Such high fractions of aged sulfate par-
ticles aremainly attributed to the regional transport of central China
andNCP emissions under the prevailing northwesterlywind inwin-
ter [34,69]. In July, most sulfate particles are from the first two age
bins (0–12 and 12–24 h) because of the enhanced chemical conver-
sion rate and adequate ventilation in summer. However, a large con-
tribution (> 45%) of aged sulfate particles (> 48h) canoccasionally be
observed on clean days (July 12–14). For nitrate, the age distribution
shows significant day-to-day variations in January. For example, as
nitrate concentrations increase, the contributions of the 0–12 and
12–24 h age bins rapidly decrease from 97% on January 20 to 40%
on January 21. In July, nitrate concentrations are significantly lower,
with concentrations less than 1 lg�m�3 on most days. More than
90% of nitrate particles show an atmospheric age of less than 24 h.
Ammonium concentrations are predicted to be as high as 20lg�m�3

on January 23–24, but less than 6 lg�m�3 throughout July. On clean
days, most ammonium particles show an atmospheric age of less
than 24 h, while they tend to shift towards old age bins on high con-
centration days.
4. Discussion

Our study is subject to several uncertainties and limitations. First,
the age distribution of the SOA was not considered in the current
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model framework. SOA constitutes 15%–30% of the PM2.5 mass con-
centration during haze episodes in China [8,25]. However, current
models substantially underestimate SOA mass concentrations
because of a lack of knowledge regarding its sources, composition,
and formation mechanisms [53]. Second, uncertainties in the simu-
lated aerosol mass concentrationsmay affect the derived aerosol age
distribution. Although the predicted PM2.5 is consistent with obser-
vations, SNA is overestimated by 16.6%–42.8% in China, especially
nitrate (Fig. 3). Model biases are likely attributed to the uncertain-
ties associated with emissions, meteorology, grid resolution, and
model treatment, which have been extensively discussed in our pre-
vious study [30]. Third, the discrete age distribution representation
can only calculate the age distribution for limited periods. In other
words, only the species older than the highest age that can be
explicitly represented are assigned to the final age bin. In addition,
according to Eq. (2), the average atmospheric age of pollutants in
each age bin was assumed to be equal to the middle of the corre-
sponding period. This assumption can introduce uncertainties in
the estimated average atmospheric age because particle concentra-
tions change rapidly with atmospheric age. To address this issue, an
additional simulation with an age bin advancing frequency setting
of 6 h was conducted in January 2013. As shown in Fig. S14 in
Appendix A, the estimated average atmospheric age in Beijing from
simulations with a 6-hour age bin advancing interval is lower (4.6–
9.4 h) than that from simulations with a 12-hour age bin advancing
interval, although the overall temporal variation is consistent.

Despite these uncertainties, the time information of emission
sources provided by our age-resolved CMAQ model can help poli-
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cymakers design effective emission control strategies in different
regions and seasons, especially emergency response measures for
large public events such as sports games, parades, and interna-
tional conferences. Our results suggest that local emission control
of PPM could be effective within 12 h for regions with high anthro-
pogenic emissions such as NCP, SCB, and YRD. However, it should
be put in force one to two days ahead in winter and spring for
southern China such as PRD and southeastern coastal provinces.
Sulfate is significantly more aged than PPM and can be transported
over a longer distance, indicating that regional transport con-
tributes a large fraction to the rapid growth of sulfate. In winter,
regional joint controls of SO2 emissions are suggested to be put
in force at least one to two days ahead in NCP and NE; it should
be two to three days in advance in southern China due to the older
atmospheric age of sulfate. In summer, controlling the emissions of
SO2 should be put in force one to two days ahead in most parts of
China. The formation of nitrate and ammonium involves complex
multiphase chemistry, thus, controlling the emissions of their pre-
cursor gases NOx and NH3 must be considered carefully [70]. In
eastern China in winter, a typical NOx-saturated regime, cutting
NOx emissions could lead to a substantial increase in O3 and NO3

radicals, which in turn enhances the formation of secondary
PM2.5 [71]. Reducing particulate nitrate requires a very deep reduc-
tion in NOx emissions within two days, which can be challenging
[71,72]. In contrast, O3 formation sensitivity in most urban cities
shifts to either transition or NOx-limited regimes in summer [73].
Thus, reducing NOx emissions within a day is effective for mitigat-
ing both nitrate and ammonium formation. Local and regional
emission control of NH3 is suggested to be put in force one to
two days ahead in winter and within a day in summer. In addition,
the reduction intensity of NH3 is highly sensitive to ambient NH3

concentrations. In southern China such as the PRD, the formation
of nitrate and ammonium is sensitive to NH3 reduction because
of relatively low NH3 emission [74]. However, in NH3-rich regions,
such as the NCP and YRD, a large NH3 emission reduction is
required. Studies indicate that cutting NH3 emissions by 20%–
40% only leads to a 1.4–3.8 lg�m�3 reduction of PM2.5 but a
60%–100% reduction of NH3 emission could decrease PM2.5 by
8.1–26.7 lg�m�3 [75]. Nonetheless, controlling NH3 emissions
can be much more effective on haze days, because of the rapidly
increasing particulate nitrate concentrations [65].
5. Conclusions

In this study, the age-resolved CMAQmodel was applied to esti-
mate the age distribution of the primary and secondary PM2.5 com-
ponents over China in the entire year of 2013. Compared with
ground-based observations, the model can reasonably capture
the spatial and temporal variations of PM2.5, sulfate, nitrate, and
ammonium. High concentrations of fresh PPM and ammonium
with atmospheric age < 24 h are observed in source regions such
as the NCP and YRD, indicating a large contribution from local
emissions. Sulfate is considerably more aged than PPM. The con-
centrations of sulfate particles with atmospheric age > 96 h reach
up to 15 lg�m�3 in the SCB during winter. The age distribution of
PPM, ammonium, and sulfate show large seasonal variations in
the YRD, PRD, and SCB, with a higher average age in winter and
lower in summer. In contrast, small seasonal variations (< 6.5 h)
occur in the NCP and FWP, with an average age of approximately
20–30 h for PPM and ammonium, and 40–56 h for sulfate. Nitrate
is more concentrated in the 12–24 h age bin, and its age distribu-
tion shows a dramatic seasonal variation. The average age in win-
ter is about 35–50 h for eastern China, which is significantly higher
than that in summer (�18–30 h). In addition, the contribution of
old age bins (> 24 h) increases remarkably during pollution days
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in most cities and seasons for all the species, especially on the peak
value days, suggesting that regional transport plays an important
role during severe haze events. The age distribution of air pollu-
tants provided in this study can provide valuable time information
on PM2.5 emission sources, which can help policymakers design
timely control measures to effectively reduce PM2.5 levels in differ-
ent regions and seasons.
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