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In current wireless communication and electronic systems, digital signals and electromagnetic (EM) radi-
ation are processed by different modules. Here, we propose a mechanism to fuse the modulation of digital
signals and the manipulation of EM radiation on a single programmable metasurface (PM). The PM con-
sists of massive subwavelength-scale digital coding elements. A set of digital states of all elements forms
simultaneous digital information roles for modulation and the wave-control sequence code of the PM. By
designing digital coding sequences in the spatial and temporal domains, the digital information and far-
field patterns of the PM can be programmed simultaneously and instantly in desired ways. For the experi-
mental demonstration of the mechanism, we present a programmable wireless communication system.
The same system can realize transmissions of digital information in single-channel modes with beam-
steerable capability and multichannel modes with multiple independent information. The measured
results show the excellent performance of the programmable system. This work provides excellent pro-
spects for applications in fifth- or sixth-generation wireless communications and modern intelligent plat-
forms for unmanned aircrafts and vehicles.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Metamaterials are artificial structures consisting of massive
subwavelength particles that are capable of manipulating the
behaviors of electromagnetic (EM) waves. Many studies and explo-
rations have been conducted on many aspects of metamaterials,
including characterizations, theoretical analyses, designs, and
applications, making them an interdisciplinary subject [1–6]. Early
studies have treated metamaterials as effective media and focused
on their physical properties. Several unprecedented phenomena
(e.g., negative refraction [7] and invisibility cloaks [8]) have
exerted significant influences worldwide and laid the foundation
for early research on metamaterials. As thinner versions of
metamaterials, metasurfaces have been presented to manipulate
propagating waves [9–13] and surface waves [14–17]. Metasur-
faces are composed of elements with gradient geometries to create
gradient EM boundary conditions. However, the gradient boundary
conditions are not the necessary conditions for tailoring the
properties of EM waves. It has been shown by recently proposed
digital coding and programmable metasurfaces (PMs) [18–22] that
metasurfaces can be represented by finite types of elements and
can be further abstracted into digital symbols. The spatial distribu-
tions of these symbols form different digital codes, which also
determine the radiation properties of the PMs. Because the
elements of the programmable metasurface are reconfigurable,
the digital coding sequences can be dynamically switched. This
spatiotemporal dynamic characteristic causes a PM to be an
innovative technology in many EM fields [23–30].

The PM is also an innovative technology in the field of wireless
communications. With the increase in massive data services in
modern society, the communication spectrum becomes more
crowded, forcing people to explore higher frequency bands and
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seek new technologies to achieve greater channel capacities and
faster transmission rates. Massive multiple-input and multiple-
output (MIMO) technology has been considered one of the key
technologies in fifth-generation (5G) wireless communication
[31–36], but the high complexity of hardware hinders practical
applications of massive MIMO in many scenarios. Although several
hybrid technologies have been proposed to alleviate the complex-
ity of massive MIMO [37–40], they are still complicated for cost-
sensitive applications. As a new technology, the PM has been
explored to realize a new architecture of wireless communication
systems [41,42], in which special periodic subframes of digital
codes in the time domain were designed to modulate the spectrum
of the metasurface so that the information carried by the harmon-
ics could be delivered. Detailed characteristics and possible chal-
lenges of the time-domain periodic subframes of digital codes
have been addressed [43–46]. Another work used different far-
field patterns of a PM to transmit the information, but many recei-
vers placed at different positions were needed to recover complete
far-field patterns [47]. Recently, 16 quadrature amplitude modula-
tion (QAM) and MIMO transmissions have been realized at higher-
order harmonics based on PMs [48,49].

PMs are also used as intelligent reflective surfaces to explore
possible technologies beyond MIMO [50–58]. These works have
studied different aspects of PMs, but they could not deal with
digital modulations and wave manipulations simultaneously. In a
previous work, we simultaneously modulated the amplitude of
signals and near-field patterns based on a PM to realize multichan-
nel transmissions of near-field information [59]. However, only
amplitudes of near fields were modulated in that work, thus limit-
ing application scenarios of the metasurface-based communication
system. In addition, amplitude modulation signals have a lower
anti-jamming capacity than phase modulation signals. This paper
presents a complete design of far-field phase modulation commu-
nication based on a space–time coding metasurface, which greatly
expands application scenarios of the metasurface-based communi-
cation system.

Specifically, we establish a new metasurface-based wireless
communication system to achieve direct digital information trans-
missions in single-channel mode and multichannel modes. For the
single-channel mode, the PM produces the main EM beam, and the
digital information is transmitted and received in the main beam
region. For dual-channel modes, the PM produces two main beams,
and different digital information is transmitted and received
through the two main beams independently. Compared with exist-
ing works that used periodic subframes to modulate EM waves,
this work needs no subframes and hence greatly simplifies the
design procedures. Moreover, this work provides a more flexible
way to modulate field patterns and radiation phases simulta-
neously than existing works, which need extremely complicated
subframes, especially for two-dimensional metasurfaces, as in this
work. Based on the presented work, future wireless communica-
tion, imaging, and radar systems can be realized with greater flex-
ibility, perfectly matching the multifunctional and intelligent
trends of modern societies.
2. Materials and methods

2.1. Fundamentals of joint wave manipulations and digital
modulations

According to the Huygens–Fresnel principle, the far-field
U h;u; kð Þ radiated from the PM can be obtained by performing a
Fourier transform on the aperture field U mDx;nDy; kDtð Þ. Hence,
if the far-field is specified, the corresponding aperture field on
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the metasurface can be obtained by performing an inverse Fourier
transform:

U mDx;nDy; kDtð Þ ¼ F�1½U h;u; kð Þ� ð1Þ
where Dx and Dy are distances between adjacent elements in x and
y directions; Dt is discrete-time interval;mDx and nDy represent the
spatial position of the mth and nth digital elements; kDt represents
discrete moment; h and u are elevation and azimuth angles of the
far fields, respectively.

If we introduce a phase term ej/ to the same far-field pattern,
another aperture field can be obtained as follows:

U/ mDx;nDy; kDtð Þ ¼ F�1½ej/U h;u; kð Þ� ð2Þ
The two aperture fields produce the same far-field pattern but

with different phases of the far fields. Using a modified
Gerchberg–Saxton (GS) algorithm [26,58], two sets of phase-only
digital codes corresponding to the two specified far-field patterns
are obtained. By switching the two digital codes in a particular
time sequence, the far fields can be modulated in the time domain,
hence realizing wave modulations in the space domain and digital
signal modulations in the time domain simultaneously.

With joint modulations of digital signals and far-field EM
waves, the PM can transmit the digital signals to specified or
desired directions. Supposing that the pictures or videos to be
transmitted have been encoded to the digital signals that are fur-
ther processed by quadrature digital modulations, then the digital
signals are represented by two parallel branches: in-phase branch
(I) and quadrature branch (Q), and each branch is a series of binary
digits. For quaternary phase modulations, the instantaneous I/Q
signals have four types of combinations (00, 01, 10, 11), corre-
sponding to four types of phases. These phases can be directly real-
ized by configuring the PM with adequate digital codes. Fig. 1(a)
shows the process of metasurface-based wireless communications,
in which the I/Q signals and the corresponding digital codes on the
PM have been stored in a digital circuit board. By mapping the digi-
tal information of the pictures or videos to the I/Q signals, they can
be transmitted through the PM to the desired direction(s).

In addition to realizing digital phase modulations, the PM can
also realize beam steering when adequate digital codes are used.
Fig. 1(b) shows the schematic of wireless communication with
beam steering, which is useful in time-division multiuser schemes.
On the other hand, the PM can simultaneously produce two beams
in specified directions, hence enabling wireless communications in
multichannel modes rather than only in the single-channel mode.
Fig. 1(c) shows the schematic of communication in dual-channel
mode, in which two users receive different digital information in
two desired directions independently.

In the dual-channel mode shown in Fig. 1(c), the mapping
operation is slightly different from that of the single-channel
mode. In this case, the digital signals are represented by four par-
allel branches: the in-phase branch (I1 and I2) and the quadrature
branch (Q1 and Q2). Hence, the combinations of these four
branches are mapped to 16 digital codes of the PM, which radiate
two-directional beams with different phases. Because the
metasurface-based phase modulations are valid only in the area
of the main beams, the two data streams are spatially separated.
That is, the receivers in different directions receive different infor-
mation independently.

2.2. Joint beam steering and digital phase modulation

Detailed structures of the digital elements and the fabricated
metasurface sample are given in Fig. 2. The fabricated PM contains
400 digital elements, and each element is composed of three
metallic layers and two dielectric layers. The permittivity of the



Fig. 1. Schematic diagram of the metasurface-based communications. (a) Direct transmission of digital signals by using the digital codes of the PM in a single channel
pointing in the normal direction of the metasurface; (b) direct transmissions of digital signals with steered main beams; (c) direct transmissions of two different digital
signals in dual channels pointing in two directions independently.

Fig. 2. (a) Photo of the fabricated PM and the measuring environment; (b) detailed geometry of the digital element. DC: direct-durrent.
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first dielectric layer is 2.65 with a height of 1.6 mm, and the per-
mittivity of the second dielectric layer is 3 with a height of
0.2 mm. The top metallic layer integrates a pin diode (Skyworks
1320-079). By switching the pin diodes, the digital states of ele-
ments are dynamically changed. The middle metallic layer serves
as a reflective surface of EM waves and as the ground of direct-
current (DC) signals. Two metallic cylinders are used to load DC
voltages. The bottom metallic layer is a fan-shaped structure that
chokes radio-frequency signals, so the DC feeding line has little
effect on the radio-frequency performance of the element.

Before calculating the digital codes of the PM, the digital
element is simulated using commercial software (CST Microwave
Studio) to obtain reflection coefficients when the integrated diode
is switched off and on. In simulations, the pin diode is modeled as
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an inductance (0.75 nH) and a shunt impedance (0.5 X) when it is
turned on or an inductance (0.5 nH) and a series capacitor (0.24 pF)
when it is turned off. The simulated reflection coefficient at 10 GHz
is 0:861ej1:83p for the ‘‘on” state and 0:985ej0:8p for the ‘‘off” state.
More detailed information on the element can be found in our for-
mer work [54].

Assuming that the far-field is a plane wave U h;u; kð Þ ¼ e�jk0 �rej/,
in which k0 is the wave vector along the propagating direction of
the plane wave, r is the vector distance and / is a constant. The
results of beam steering and phase modulations are shown in
Fig. 3. In Fig. 3(a), four types of digital codes on the programmable
metasurface are designed to steer the far fields in the same direc-
tion (h ¼ 45�, u ¼ 0�), but the value of / is increased linearly from
0 to 3p=2 with an increment of p=2. Fig. 3(d) gives the calculated



Fig. 3. Results of beam steering and phase modulations. (a)–(c) Digital coding patterns for beam steering and phase modulations. The directions of beam steering are (h ¼ 45� ,
u ¼ 0�) in (a), (h ¼ 0� , u ¼ 0�) in (b), and (h ¼ �45� , u ¼ 0�) in (c). For the three sets of digital codes, the phase modulations are from 0 to 3p=2 with an increment of p=2. (d)–
(f) The corresponding far-field patterns in the UV coordinates (u ¼ sinhcosu, v ¼ sinhsinu). (g)–(i) The measured results of the far-field patterns. (j)–(l) The measured phases
of the main lobes.
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two-dimensional far-field pattern corresponding to the first digital
code, showing that the main beam appears in the specified direc-
tion. Fig. 3(g) gives the measured far-field patterns of the four dig-
ital codes, demonstrating that the far fields are steered in the same
direction for all digital codes. Fig. 3(j) records the measured phases
of the main lobes, which are in excellent agreement with the spec-
ified values.

Similar processes are performed for the direction (h ¼ 0�,
u ¼ 0�), as shown in Figs. 3(b), (e), (h), and (k), and for the direction
(h ¼ �45�, u ¼ 0�), as shown in Figs. 3(c), (f), (i), and (l). For both
cases, the directions of the measured main lobes have perfect
matches with the specified values. The gains and phases of the
main lobes corresponding to different values of / show some devi-
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ations, which mainly result from variant quantization errors of dif-
ferent digital codes, manufacturing tolerances, and uncertainties in
the models. However, these tolerances do not significantly affect
the performance of metasurface-based wireless communications,
which has been verified by later experiments.

Although all digital coding patterns on the PM are obtained at a
fixed frequency (10 GHz) and in a specified direction, the phase
modulations remain valid in the vicinity of the specified frequency
and direction, guaranteeing the robustness of the PM in simulta-
neous wave manipulations and digital modulations. Fig. 4 displays
the tested far fields in an angular scope of 10� and a frequency
range of 1 GHz. Fig. 4(a) shows the tested results when / ¼ 0,
and Figs. 4(b)–(d) show the phase differences referencing the value



Fig. 4. Tested phases of the far-field when / is set to different values. The abscissa axis is the frequency range, and the ordinate axis is the angular scope. (a) Tested phase of
the far-field when / ¼ 0; (b) phase difference between the tested results when / ¼ 0 and / ¼ p=2; (c) phase difference between the tested results when / ¼ 0 and / ¼ p;
(d) phase difference between the tested results when / ¼ 0 and / ¼ 3p=2.
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in Fig. 4(a). It is observed that the phase modulations are valid in
the vicinity of the main lobes and the specified frequency. This is
intuitive because the electromagnetic responses of the PMs are
gradual. Moreover, the phase modulations are not valid in direc-
tions far from the main lobes. This is because the phase modula-
tions are designed at the equiphase plane of the far fields. These
important characteristics ensure that the phase modulations and
wave manipulations are compatible.

In addition to the phase modulations, the PM can also modulate
amplitudes of the far fields by designing different digital codes. An
example of binary amplitude modulation is demonstrated in
Figs. 5(a)–(d). In Fig. 5(a), the far fields are steered to the normal
direction of the metasurface, while in Fig. 5(b), the far fields are
scattered randomly into space. Therefore, the field intensity of
the far fields is controlled, and then binary amplitude modulation
of the far fields is realized in the normal direction of the metasur-
face. Fig. 5(c) gives the tested amplitudes of the far fields in the
normal direction of the metasurface and in a frequency range from
9.5 to 10.5 GHz. Fig. 5(d) gives the tested far-field patterns at dif-
ferent frequencies. The tested results validate the effectiveness of
implementing binary amplitude modulations by a PM. Since phase
modulations have some advantages in resisting noise in the envi-
ronment, the digital signal modulations in the following discus-
sions are chosen as the phase modulations.

3. Results and discussion

3.1. Independent joint digital modulations and beam steering in
multiple channels

Suppose that two-directional beams are produced by using the
PM, that is, U h;u;kð Þ ¼ e�jk0 �r1 ej/1 þ e�jk0 �r2ej/2 . Correspondingly,
the digital coding patterns of the metasurface are calculated by
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F½U h;u; kð Þ�. It is clear that the radiation phases of the two beams
can be controlled independently by setting different values of /1

and /2. Figs. 6(a)–(d) present the far-field patterns calculated by
arbitrarily specifying the beam directions, with /1 and /2 set to
zero. The calculations show that the PM can steer the far fields in
the specified multiple directions.

To interpret independent phase modulations in dual beams,
four groups of /1 and /2 are specified to the far-field pattern,
which contains two main lobes pointing at (h1 ¼ 10�, u1 ¼ 0�)
and (h2 ¼ �30�, u2 ¼ 180�), respectively. For the first group, /1

remains zero and /2 increases with an increment of p=2. For the
remaining groups, the same strategy is used, and only /1 is fixed
to p=2, p, and 3p=2. The corresponding digital codes are given in
Fig. 7. Figs. 6(e)–(h) give the measured far-field patterns of the four
groups for the dual-beam case in Fig. 6(a), and Figs. 6(i)–(l) give the
measured results of the corresponding phases of the main lobes.

For all groups, the measured far fields and phases are normal-
ized to the values output in the case when /1 and /2 are set to zero.
From the measured far-field patterns, it is observed that the main
lobes swing in the vicinity of the specified directions when /1 and
/2 are set to different values. However, the phase modulations
remain valid in a certain angular range around the main lobes,
guaranteeing the robustness of the PM in simultaneous wave
manipulations and digital modulations. Variational intensities of
received signals caused by swinging of the main lobes can be com-
pensated by an automatic gain control (AGC) mechanism in the
communication system.

The results in Figs. 3 and 6 show that the beamforming and
digital modulations of the far fields can be simultaneously realized
by using the PM, laying the solid foundation of metasurface-based
wireless communication systems that are capable of transmitting
digital information in both single-channel mode and multichannel
mode.



Fig. 5. Demonstrations of amplitude modulation. (a) The case of steering far fields to the normal direction of the PM, corresponding to digital signal ‘‘1”; (b) the case of
scattering far-fields randomly into space, corresponding to digital signal ‘‘0”; (c) normalized gains of far fields in the normal direction at different frequencies; (d) radiation
patterns at different frequencies.

Fig. 6. Results of independent phase modulations of dual beams. (a)–(d) Calculated far-field patterns with two main lobes pointing in different directions. (a) (h1 ¼ 10� ,
u1 ¼ 0�), (h2 ¼ �30� , u2 ¼ 180�); (b) (h1 ¼ 33� , u1 ¼ 86�), (h2 ¼ 29� , u2 ¼ 315�); (c) (h1 ¼ 25� , u1 ¼ 26�), (h2 ¼ 28� , u2 ¼ 336�); (d) (h1 ¼ 43� , u1 ¼ 134�), (h2 ¼ 30� ,
u2 ¼ 310�). (e)–(h) The measured far-field patterns of the dual-beam case in (a) when the phases of the main lobes are independently specified. (i)–(l) The measured phases
of the corresponding main lobes of the dual-beam case in (a).
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Fig. 7. Digital codes corresponding to different values of /1 and /2. Red squares represent elements in the ‘‘off” state, and green squares represent elements in the ‘‘on” state.
For the first column, /1 remains zero and /2 increases with an increment of p=2. For the remaining columns, the same strategy is used, and only /1 is fixed to p=2, p, and
3p=2.
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3.2. Digital information transmissions based on a metasurface-based
wireless communication system

Here, we established a metasurface-based wireless communica-
tion system, and a schematic diagram and photo of the
metasurface-based wireless communication system are detailed
in Fig. 8. The whole system contains a transmitter, a receiver,
Fig. 8. (a) Schematic and (b) photograph of the metasurface-based
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and a computer. The PM is used to realize the joint modulations
of EM waves and digital signals for the transmitter. A signal pro-
cessing board (SPB, consisting of FPGA and AD9361) loads the dig-
ital information from the computer and then produces the
corresponding digital codes of the PM. These digital codes are used
to configure each element of the metasurface. SPB also produces a
single-tone carrier (1.45 GHz), which is upconverted to 10 GHz to
wireless communication system. SPB: signal processing board.
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illuminate the PM. A standard horn antenna is placed for the recei-
ver at a distance of 2.4 m to receive the signals. After downconver-
sion from 10 to 1.45 GHz, the received signals are demodulated
and decoded by SPB and finally delivered to the computer.

For single-channel wireless communications, the main lobe of
the PM is steerable. We implemented wireless communication
experiments in two different directions to verify this property, as
shown in Fig. 9. In the first experiment, a photo picture of
Guglielmo Marconi was transmitted and recovered through the
main lobe, which is pointed at (h ¼ 0�, u ¼ 0�). In the second
experiment, the main lobe was steered in another direction
(h ¼ 10�, u ¼ 0�). Figs. 9(a) and (b) give the corresponding experi-
mental results, showing good performance and verifying that the
programmable metasurface can produce a steerable channel for
wireless communications.

Fig. 10 demonstrates the experimental results of wireless com-
munications in the multichannel mode. Photographs of James
Maxwell and Heinrich Hertz were used as the information to be
transmitted. First, these photos were encoded to frames in the
media access control (MAC) layer, and each frame had 5844 bits.
Second, 24 cyclic-redundancy-parity bits were added in each frame
so that the receiver could judge the correctness of the received sig-
nals by implementing the cyclic-redundancy-check (CRC). The
smaller the value of CRC, the less error the received signals have.
Completely correct reception means that the value of CRC is zero.
Third, the frame was encoded by low-density parity-check (LDPC)
code, and another pilot sequence containing 1956 bits was added
in the frame so that the receiver’s decoder can synchronize the
received frames by performing convolutions on the pilot
sequences. Finally, the whole frame was divided into four sub-
frames. These frames were loaded into the digital circuit board
and mapped to the digital codes of the designed PM. The switching
speed of the digital codes is 10 MHz; hence, the transmission rate
of the system is 10 Mbit�s–1.

In the designed experiments, the photo picture of James
Maxwell was transmitted in one direction (h1 ¼ 10�, u1 ¼ 0�),
and the photo picture of Heinrich Hertz was transmitted to the
other direction (h2 ¼ �30�, u2 ¼ 180�). The receiver was placed
at regions of the two main lobes to receive the photos. First, the
receiver was placed around the direction (h1 ¼ 10�, u1 ¼ 0�), and
a photo of James Maxwell was recovered by the computer, as
Fig. 9. Experiments of the single-channel wireless communications. (a) The case when
(h ¼ 10� , u ¼ 0�).
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shown in Fig. 10(a). Then, the receiver was placed around the
direction (h2 ¼ �30�, u2 ¼ 180�), and the photo of James Maxwell
was recovered by the computer, as shown in Fig. 10(b). The
recorded values of CRC were zero when the receiver was placed
in the right directions, indicating that the frame error rates of the
metasurface-based wireless communication system were zero in
both channels, which further validates the effectiveness and
robustness of the presented wireless system.

More importantly, the same programmable metasurface can be
used as single-channel wireless communications in a steerable
way, dual-channel wireless communications in two arbitrary
directions, and other multichannel wireless communications.
4. Conclusions

We presented a mechanism to fuse digital phase modulations
and far-field manipulations simultaneously in programmable ways
and practically established metasurface-based wireless communi-
cation systems to realize transmissions of digital information in
single-channel mode and multichannel mode. The experiments
validated the excellent performance of the wireless systems.

The novelty of the proposed metasurface-based wireless com-
munication system includes the following: ① The modulations of
EM waves and digital information are fused by the digital codes
of the PM; ② the processes of the metasurface-based digital mod-
ulations are completely digitalized without involving any analog
signals, and hence the digital-analog converters and mixers are
not required; and ③ both single-channel and multichannel modes
of the wireless communications are realized in the same PM plat-
form, which can also be used for other multichannel cases. The EM
wave, which is used to illuminate the PM, is a single-frequency
wave produced by a separate radio-frequency link. This architec-
ture enables deep digitalization and integration of metasurface-
based EM systems and makes the systems more flexible and easier
to implement. Since modern electronic and information systems
are evolving toward intellectualization and multifunction integra-
tion, the presented wireless system prototype will serve as a pro-
grammable platform for integrating intelligent and
multifunctional functions such as wireless communications, radar,
and imaging.
the main lobe points at (h ¼ 0� , u ¼ 0�); (b) the case when the main lobe points at



Fig. 10. Experiments of multichannel wireless communications. (a) Photograph of James Maxwell transmitted and recovered in the first channel in the direction (h1 ¼ 10� ,
u1 ¼ 0�); (b) photograph of Heinrich Hertz transmitted and recovered in the second channel in the direction (h2 ¼ �30� , u2 ¼ 180�). MAC: media access control; CRC: cyclic-
redundancy-check; LDPC: low-density parity-check.
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