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a b s t r a c t

Due to its limited intelligence and abilities, machine learning is currently unable to handle various
situations thus cannot completely replace humans in real-world applications. Because humans exhibit
robustness and adaptability in complex scenarios, it is crucial to introduce humans into the training loop
of artificial intelligence (AI), leveraging human intelligence to further advance machine learning algo-
rithms. In this study, a real-time human-guidance-based (Hug)-deep reinforcement learning (DRL)
method is developed for policy training in an end-to-end autonomous driving case. With our newly
designed mechanism for control transfer between humans and automation, humans are able to intervene
and correct the agent’s unreasonable actions in real time when necessary during the model training pro-
cess. Based on this human-in-the-loop guidance mechanism, an improved actor-critic architecture with
modified policy and value networks is developed. The fast convergence of the proposed Hug-DRL allows
real-time human guidance actions to be fused into the agent’s training loop, further improving the effi-
ciency and performance of DRL. The developed method is validated by human-in-the-loop experiments
with 40 subjects and compared with other state-of-the-art learning approaches. The results suggest that
the proposed method can effectively enhance the training efficiency and performance of the DRL algo-
rithm under human guidance without imposing specific requirements on participants’ expertise or
experience.

� 2022 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The development of autonomous vehicles (AVs) has gained
increasing attention from both academia and industry in recent
years [1]. As a promising application domain, autonomous driving
has been boosted by ever-growing artificial intelligence (AI) tech-
nologies [2]. From the advances made in environment perception
and sensor fusion to the successes achieved in human-like decision
and planning [3], we have witnessed great innovations being
developed and applied in AVs [4]. As an alternative option to the
conventional modular solution that divides the driving system into
connected modules such as perception, localization, planning, and
control, end-to-end autonomous driving has become promising. It
now serves as a critical test-bed for developing the perception and
decision-making capabilities of AI and AVs.

Imitation learning (IL) and deep reinforcement learning (DRL)
are two main branches of learning-based approaches, especially
in the fields of end-to-end autonomous driving. IL aims to mimic
human drivers to reproduce demonstration control actions in given
states. Thanks to its intuitive and easy-to-use characteristics, IL has
been applied in AV control strategies in many specific cases,
including rural [5] and urban driving scenarios [6]. However, two
major inherent issues of IL have been exposed in practical applica-
tions. The first issue is the distributional shift, that is, imitation
errors accumulated over time lead to deviations from the training
distribution, resulting in failures in control [7]. Various methods,
including dataset aggregation (DAgger) IL [8], generative adversar-
ial IL (GAIL) [9], and their derivative methods, have been proposed
to mitigate this problem. The other issue is the limitation of
asymptotic performance. Since IL behavior is derived from the imi-
tation source (i.e., the experts who provide the demonstrations),
the performance of the learned policies is limited and is unlikely
to surpass that of the experts. DRL, which is another data-driven
self-optimization-based algorithm, shows great potential for miti-
gating the aforementioned issues [10–12]. Constructed by
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exploration–exploitation and trial-and-error mechanisms, DRL
algorithms are able to autonomously search for feasible control
actions and optimize a policy [13]. During the early stage of DRL
development, some model-free algorithms, such as deep Q-
learning (DQL) and deep deterministic policy gradient (DDPG)
[14], were popular in driving policy learning for AVs [15]. More
recently, actor-critic DRL algorithms with more complex network
structures have been developed and have achieved better control
performance in autonomous driving [16]. In particular, state-of-
the-art algorithms including soft actor-critic (SAC) [17] and twin-
delayed DDPG (TD3) [18] have been successfully implemented in
AVs in many challenging scenarios, such as complex urban driving
and high-speed drifting conditions [19].

Although many achievements have been made in DRL methods,
challenges remain. The major challenge is the computational or
learning efficiency. In most situations, the efficiency of the interac-
tions between the agent and environment is very low, and the
model training consumes a remarkable amount of computational
resources and time [20]. The learning efficiency can be even worse
when the reward signal generated by the environment is sparse.
Thus, reward-shaping methods have been proposed to improve
learning efficiency in a reward-sparse environment [21]. Another
challenge is that DRL methods (particularly with training from
scratch) exhibit limited capabilities in scene understanding under
complex environments, which inevitably deteriorates their learn-
ing performance and generalization capability. Therefore, in AV
applications, DRL-enabled strategies are still unable to surpass
and replace human drivers in handling various situations due to
the limited intelligence and ability of these strategies [22,23]. In
addition, certain emerging methods have reconsidered human
characteristics and attempted to learn from commonsense knowl-
edge and neuro-symbolics [24] to improve machine intelligence.
As humans exhibit robustness and high adaptability in context
understanding and knowledge-based reasoning, it is promising to
introduce human guidance into the training loop of data-driven
approaches, thereby leveraging human intelligence to further
advance learning-based methods for AVs.

Human intelligence can be reflected in several aspects of DRL
training, including human assessment, human demonstration,
and human intervention. Some researchers have made great efforts
to introduce human assessments into DRL training and have in fact
succeeded in related applications, such as simulation games [25]
and robotic action control [26]. However, these methods struggle
to handle many other more complex application scenarios in
which explicit assessments are unavailable. Instead, humans’
direct control over and guidance for agents could be more efficient
for algorithm training, which gives rise to the architecture of incor-
porating DRL with learning from demonstration (LfD) [27] and
learning from intervention (LfI) [28]. Within these two frame-
works, behavior cloning (BC) [29] and inverse reinforcement learn-
ing [30] have been integrated with representative algorithms, such
as DQL [31,32] and DDPG [27]. Associated implementations in
robotics were subsequently reported, demonstrating improved
performance compared with the original reinforcement learning
[33]. However, these methods are still far from mature. They either
directly replace the output actions of DRL by using human actions
or use supervised learning (SL) with human demonstrations to pre-
train the DRL agent, while the learning algorithm architecture
remains unchanged.

Recently, attempts have been made to modify the structure of
DRL. By redefining policy functions and adding BC objectives, the
newDRL schemes are able to effectively accelerate the training pro-
cess of DRL by leveraging offline human experience [34,35]. How-
ever, for offline human-guidance-based (Hug)-DRLs, it is difficult
to design a threshold beforehand for human intervention due to
the involvementofmanynon-quantitative factors. Instead, the rapid

scene-understanding and decision-making abilities of humans in
complex situations can be presented via real-time human–environ-
ment interactions and further help improve the performance of DRL
agents. Therefore, comparedwith offline humanguidance, real-time
Hug schemes would more efficiently train a DRL agent.

Nevertheless, there are still two main issues with the existing
DRL methods under real-time human guidance. First, long-term
supervision and guidance are exhausting for human participants
[36]. To adapt to a human driver’s physical reactions in the real
world, the procedure of an existing DRL algorithm must be slowed
down in a virtual environment [37]. The resulting extensive train-
ing process decreases learning and computational efficiency and
leads to negative subjective feelings among humans [32]. Second,
existing DRL methods with human guidance usually require
expert-level demonstrations to ensure the quality of the data col-
lected and achieve an ideal improvement in performance. How-
ever, costly manpower and a shortage of professionals in real-
world large-scale applications limit the usage of this type of
method [38]. Therefore, the capability of existing approaches—par-
ticularly their data-processing efficiency—should be further
improved to ensure that Hug-DRL algorithms are feasible in prac-
tice. In addition, more explorations should be conducted to lower
the requirements for human participants in Hug-DRL algorithms.

To fill the abovementioned research gap and further advance
the DRL method, the present work develops a human-in-the-loop
DRL framework that effectively leverages human intelligence in
real time during model training. A real-time Hug-DRL method is
developed and successfully applied to agent training in autono-
mous driving scenarios. Under the proposed architecture, we pro-
pose a dynamic learning process leveraging human experience
with the aim of optimizing the learning efficiency and performance
of an off-policy DRL agent. In every single learning step, an
evaluation module weights the human guidance actions and the
DRL agent’s actions according to their respective utilities. The
high-level architecture of the proposed method is illustrated in
Fig. 1, and the concept behind this prototype is extensively
applicable beyond the specific scenario of this study. The detailed
algorithms, experimental results, and methodology adopted are
reported below.

2. Enhanced DRL algorithm with real-time human guidance

In typical applications of DRL, such as autonomous driving, the
control of the DRL agent can be formulated as a Markov decision
process (MDP), which is represented by a tuple M, including the
state space S 2 Rn, action space A 2 Rm (where n and m are the
dimensional of the state space and action space, respectively; R

is the real number set), transition model T : S �A ! S, and
reward function R : S �A ! R, as follows:

M ¼ S;A; T ;Rð Þ ð1Þ

At a given time step t, the agent executes an action at 2 A in a
given state st 2 S and receives a reward signal rt ¼ Rðst ; atÞ. Then,
the environment transitions into a next-step state stþ1 2 S accord-
ing to the environmental dynamics T �jst ; atð Þ. In the autonomous
driving scenario, the transition probability model T for environ-
mental dynamics is difficult to formulate. Thus, we adopt model-
free reinforcement learning, which does not require the transition
dynamics to be modeled, to solve this problem.

In this work, a state-of-the-art off-policy actor-citric method—
namely, TD3—is used to construct the high-level architecture, as
shown in Fig. S1 in Appendix A. The TD3 algorithm chooses a deter-
ministic action throughpolicy networkl, adjusting its action–selec-
tion policy under the guidance of value network Q . The value
network approximates the value of the specific state and action
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based on the Bellman iterative equation. Next, TD3 sets two value
networks, Q1 and Q2, to mitigate the overestimation issue. To
smooth the learning process, target networks l0, Q 0

1, and Q 0
2 are

adopted. Theoverall structureused is shown inFig. S2 inAppendixA.
To realize the human-in-the-loop framework within the rein-

forcement learning algorithm, we combine LfD and LfI into a uni-
form architecture in which humans can decide when to intervene
and override the original policy action and provide their real-time
actions as demonstrations. Thus, an online switch mechanism
between agent exploration and human control is designed. Let
H stð Þ2 Rn denote a human’s policy. The human intervention guid-
ance is formulated as a random event IðstÞ with the observation of
the human driver to the current states. Then, agent action at can be
expressed as follows:

at ¼ I stð Þ � ahuman
t þ 1� I stð Þ½ � � aDRLt ð2aÞ

aDRLt ¼ clip l stjHlð Þþ clip �;�c;cð Þ;alow;ahigh
� �

; �� N 0;rð Þ ð2bÞ

where ahuman
t 2 H is the guidance action given by a human; aDRLt is

the action given by the policy network; IðstÞ is equal to 0 when there
is no human guidance or 1 when human action occurs; Hl denotes
the parameters of the policy network; alow and ahigh is the lower and
upper bounds of the action space, respectively; � is the noise subject
to a Gaussian distribution with a standard deviation of r; and c is
the clipped noise boundary. The purpose of adding Gaussian noise
is to incentivize explorations in the deterministic policy. The mecha-
nism designed by Eq. (2a) fully transfers the driving control
authority to the human participant whenever he or she feels it is
necessary to intervene in an episode during agent training.

The value network approximates the value function, which is
obtained from the expectation of future reward as follows:

Qp s; að Þ ¼ E
s�T ;a�pð�jsÞ

X1
i¼0

ci � ri

" #
ð3Þ

where c is the discount factor to evaluate the importance of future
rewards; E½�� denotes the mathematical expectation; i denotes the

index of counted time step. Let Qðs; aÞ be the simplified representa-
tion for Qpðs; aÞ. The superscript regarding the policy p is omitted
unless specified.

To solve the above expectation, the Bellman iteration is
employed, and the expected iterative target of value function y

at step t can be calculated as follows:

yt ¼ rt þ cmin
j¼1;2

Q 0
j stþ1;l0 stþ1jHl0

� ����HQ 0
j

� �
ð4Þ

whereHl0
denotes the parameters of the target policy network;HQ 0

j

denotes the parameters of the target value networks; j denotes the
index of two value networks Q1 and Q2.

The two value networks Q1 and Q2 with the same structure aim
to address the overestimation issue through clipped functionality.
In addition, target policy network l0—rather than policy network
l—is used to smooth policy updates. Then, the loss function of
the value networks in TD3 is expressed as follows:

LQj HQj

� �
¼ E

st ;at ;rt ;stþ1ð Þ�D

���yt � Qj st ; at jHQj

� ���� ������2� �
ð5Þ

where E denotes the expected value; HQj denotes the parameters
of the value networks; and D denotes the experience replay buffer,
which consists of the current state, the action, the reward, and the
state of the next step.

The policy network that determines the control action is
intended to optimize the value of the value network—that is, to
improve the control performance in the designated autonomous
driving scenario in this study. Thus, the loss function of the policy
network in the TD3 algorithm is designed as follows:

Ll Hlð Þ ¼ �E Q1 st; aDRLt

� �	 

¼ � E

st�D
Q1 st;l stjHlð Þð Þ½ � ð6Þ

Eq. (6) indicates that the expectation for the policy is to maxi-
mize the value of the value network, which corresponds to mini-
mizing the loss function of the policy network. The unbiased
estimation of aDRLt is equal to that of lðst jHlÞ, since the noise in
Eq. (2b) is of a zero-mean distribution.

Fig. 1. The high-level architecture of the proposed Hug-DRL method with real-time human guidance. By introducing human guidance actions into both real-time
manipulation and the offline learning process, the training performance is expected to be significantly improved. t: the time step; aDRLt : the DRL policy’s action; ahuman

t : the
human guidance action; at: the eventual action to interact with the environment; st: the current state variable; stþ1: the next-step state variable; rt: the reward signal.
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When human guidance ahuman
t occurs, the loss function of the

TD3 algorithm should be revised accordingly to incorporate it with
human experience. Thus, the value network in Eq. (5) can be
rewritten as follows:

LQj HQj

� �
¼ E

st ;at ;rt ;stþ1ð Þ�D
yt � Qj st ; ahuman

t jHQj

� �� �2
� �

ð7Þ

In fact, the mechanism shown in Eq. (7) modified from Eq. (4) is
sufficient for establishing a Hug-DRL scheme [34,35], which has
been validated and reported in existing studies [32]. However,
merely modifying the value network without updating the loss
function of the policy network would affect the prospective perfor-
mance of human guidance, as stated in Refs. [34,35], because the
value network is updated based on fst ; ahuman

t g, whereas the policy
network still relies on st ;l st jHlð Þf g. This would lead to inconsis-
tency in the updating direction of the actor and critic networks.
The detailed rationale behind this phenomenon will be analyzed
in detail in Section 6.

To address the abovementioned inconsistency issue, we modify
the loss function of the policy network shown in Eq. (6) by adding a
human guidance term I:

Ll Hlð Þ ¼ E
st ;at ;I stð Þ½ ��D

�Q1 st; atð Þ þ I stð Þ �xI � at � l st jHlð Þ½ �2
n o

ð8Þ

where xI is a factor for adjusting the weight of the human super-
vision loss; aDRLt in Eq. (6) can then be simply replaced with at ,
which covers both human actions and DRL policy actions. In this
way, the updated direction is aligned with fst ; ahuman

t g when
human guidance occurs. Although this generic human-guided
framework has recently been proposed in some state-of-the-art
methods, there are several drawbacks in their settings; thus, fur-
ther investigation and refinement are needed. For example, the
conversion between the original objective and the human guid-
ance term is conducted rigidly, and the weighting factor of the
human guidance term is manually set and fixed [29,34]. However,
one concern is that the weighting factor xI is crucial for the over-
all learning performance of a DRL algorithm, as it determines the
degree of reliance of the learning process on human guidance.
Thus, it is reasonable to design an adaptive assignment mecha-
nism for factor xI that is associated with the trustworthiness of
human actions. To do this, we introduce the Q-advantage as an
appropriate evaluation metric, and the proposed weighting factor
can be modified as follows:

xI ¼ kk � max exp Q1 st ; atð Þ � Q1 st;l st jHlð Þð Þð Þ;1½ � � 1f g ð9Þ

where k is a hyperparameter that is slightly smaller than 1, and k is
the index of the learning episode. The temporal decay factor kk indi-
cates that the trustworthiness of human guidance decreases when
the policy function gradually matures. The clip function ensures
that the policy function only learns from ‘‘good” human guidance
actions, and the exponential function amplifies the advantages
brought by those ‘‘good” human guidance actions.

Intuitively, the adaptive weighting factor proposed above
adjusts the trustworthiness of the human experience by quantita-
tively evaluating the potential advantages of the human’s actions
compared with those of the original policy. This mechanism forms
the dynamic loss function of the policy network instead of a fixed
learning mechanismwith manually tuned weighting factors, as has
been reported in existing methods [34]. Since the factor aptly dis-
tinguishes among the varying performances of different human
guidance actions, the requirements for the quality of human
demonstration—that is, humans’ proficiency and skills—can be
eased. Moreover, although the weighting mechanism involves dif-
ferentiable information with respect to both the critic and actor

networks, the calculation of the weighting vector does not partici-
pate in the gradient back-propagation updating of the neural net-
works. Therefore, it will not disturb the network training process.
To the best of our knowledge, this is the first time that an updating
mechanism that is adaptive to trustworthiness in human experi-
ence has been proposed in LfD/LfI-based reinforcement learning
approaches. We will demonstrate its effectiveness and advantages
over state-of-the-art techniques in Section 5.

Based on Eq. (9), the batch gradient of the policy network can be
given by

rHlL Hlð Þ ¼ 1
N

XN
t¼1

�raQ1 s; að Þjs¼st ;a¼l stð ÞrHll sð Þjs¼st

� �n

þ rHl xI � ka� l sð Þk2
� �

js¼st ;a¼at

� �
� IðstÞ

o ð10Þ

where N is the batch size sample from experience replay buffer D.
Although the proposed objective function of the policy network

looks similar to the control authority transfer mechanism of real-
time human guidance shown in Eq. (2), the principles of these
two stages—namely, real-time human intervention and off-policy
learning—are different in the proposed method. More specifically,
for real-time human intervention, the rigid control transfer illus-
trated by Eq. (2) enables the human’s full takeover when human
action occurs. For off-policy learning, we assign weighted trust-
worthiness to human guidance without fully discarding the agent’s
autonomous learning, as shown in Eqs. (8)–(10), allowing the
learning process to be more robust.

Lastly, the originally stored tuple of the experience replay buffer
is changed, and the human guidance component is then included
as follows:

D ¼ st ; at ; rt; stþ1; I stð Þf g ð11Þ

In this way, a refactored DRL algorithm with real-time human
guidance is obtained. The hyperparameters used and the algorithm
procedure are provided in Table S1 and Note S1 in Appendix A,
respectively.

3. Experimental design

3.1. Experiment overview

To investigate the feasibility and effectiveness of the proposed
improved DRL with human guidance, a series of experiments with
40 human participants was conducted in designed autonomous
driving scenarios on a human-in-the-loop driving simulator. In
particular, the experimental descriptions were shown in Fig. 2,
and the six scenarios utilized were provided in Fig. 3; one was
for the training process of the proposed method (associated with
Experiments A–E) (Table 1), and the other five were designed for
testing and evaluating the performance of the designed algorithm,
as illustrated in Experiment F (Table 1). The training scenario con-
sidered a challenging driving task—namely, continuous lane
changing and overtaking, where the reward from the environment
encouraged non-collision and smooth driving behaviors. To suc-
cessfully complete the designed tasks, in all scenarios, the ego
vehicle was required to start from the spawn position, stay on
the road, avoid collision with any obstacles, and eventually reach
the finishing line. If the ego vehicle collided with the road bound-
ary or other traffic participants, the episode was immediately ter-
minated and a new episode was started with new spawned
vehicles to continue the training process. The types, positions,
and speeds of surrounding objects varied in the testing scenarios
to improve the training performance of the policies under various
situations with higher requirements.
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To validate the improvement in the training performance,
Experiment A was conducted by comparing the proposed method
with other Hug-DRL approaches. First, we implemented all related
baseline DRL algorithms with the same form of real-time human
guidance for convenience during the comparison. More specifi-
cally, the three baseline DRL approaches were: intervention-
aided DRL (IA-RL), with a fixed weighting factor xI for human
guidance in the policy function of DRL [29,35]; human intervention
DRL (HI-RL), with a shaped value function but without modifica-
tion of the policy function [32]; and the vanilla DRL method (the
standard TD3 algorithm without human guidance). All policy net-
works in these methods were pre-initialized by SL to enable faster
convergence. Details on the implementation of the abovemen-
tioned approaches are provided in Section 4.

To investigate the effects of different human factors on the DRL
training, we conducted Experiments B and C to respectively
address two key elements: the human intervention mode and
the task proficiency. Experiment B was conducted to explore how
different intervention modes—that is, continuous and intermittent
modes, as illustrated in Fig. 2(c)—affected the DRL training perfor-
mance. The continuous mode requires more frequent human
supervision and intervention than the intermittent mode, and it
allows human participants to disengage from the supervision loop
for a while. The contrast was expected to reveal the impacts of
human participation frequency on learning efficiency and subjec-
tive human fatigue. Subjects with higher proficiency or qualifica-
tions regarding a specific task are usually expected to generate
better demonstrations. Experiment C was designed to investigate
this expectation and to study the correlations between human task
proficiency/qualifications and DRL performance improvement, as
shown in Fig. 2(d).

Despite the pre-initialization, the three experiments still started
with a train-from-scratch DRL agent, denoted as ‘‘cold-start for ini-
tial training” in Fig. 2(b). However, in real-world applications such
as automated driving, even if the DRL agent has been sufficiently
trained beforehand, an online fine-tuning process is needed to fur-
ther improve and ensure policy performance after deployment.

Thus, Experiment D was designed to explore the varying effects
and performance of the policies pre-trained under different algo-
rithms throughout the fine-tuning process, as denoted by ‘‘pre-
trained for fine-tuning” in Fig. 2(b). Here, ‘‘pre-trained” refers to
the well-trained DRL policy rather than to the pre-initialization
conducted by SL.

We also carried out an ablation study in Experiment E to inves-
tigate the effect of pre-initialization and reward shaping on DRL
performance.

The abovementioned experimental arrangements (Experiments
A–E) were intended to demonstrate the superiority of the proposed
method over other state-of-the-art Hug-DRLs with respect to train-
ing efficiency and performance improvement. However, it is also
necessary to test the performance of different policies in autono-
mous driving tasks under various scenarios. In addition, as imitation
learning holds a great advantage in training efficiency due to non-
interactive data generation, it would be interesting to compare the
performances of the IL and DRL paradigms in testing. Thus, in
Experiment F, we compared the driving policies obtained from the
proposed Hug-DRL, the selected DRL baseline methods, and the IL
methods (i.e., BC and DAgger), as illustrated in Fig. 2(e). Different
performance metrics under autonomous driving, including the
task-completion rate and vehicle dynamic states, were evaluated.
Table 1 provides an overview of all the experiments involved in
the comparison. The statistical results are presented as the mean
(M) and the standard deviation (SD). The experimental results are
reported below, and the detailed methodology and experimental
setup can be found in Section 4 and in Appendix A.

3.2. Experimental scenarios

The human-in-the-loop driving simulator shown in Fig. 2(a) was
the experimental platform used for a range of experiments in this
study. Technical details and the specifications of the hardware and
software are reported in Note S2 and Table S2 in Appendix A.

In total, six scenarios indexed from 0 to 5 were utilized in this
study. The visualized scenarios are reported in Fig. 3. The ego

Fig. 2. Experimental setup. (a) The experimental platform used in this study was a human-in-the-loop driving simulator. Key components included a steering wheel, a real-
time computation platform, three monitors, and simulated driving scenarios. (b) There were two different initial conditions of the DRL agent during training: ‘‘cold-start” and
‘‘pre-trained.” The cold-start condition was used in the initial training of the DRL agent, and the pre-trained policy condition was used for evaluating the fine-tuning
performance of the DRL agent. (c) Two different modes of human intervention and guidance—namely, the continuous and intermittent modes—were studied in the
experiments. (d) The human task proficiency and driving qualifications were selected as two human factors studied in this work. Their impacts on the training performance of
the proposed Hug-DRL method were analyzed through experiments. (e) Various driving scenarios were designed in the experiments to test the control performance of the
autonomous driving policies obtained by different DRL methods. W/o: without.
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vehicle (i.e., the autonomous driving agent to be trained) and the
surrounding vehicles and pedestrians were all spawned in a two-
lane road with a width of 7 m. Scenario 0 was used for DRL training;
the relative velocity between the ego vehicle and the three sur-
rounding vehicles ðvego � v1Þ was set to 5 m�s�1, and two pedestri-
ans with random departure points in specific areas were set to
cross the street. Scenarios 1–5were used to evaluate the robustness
and adaptiveness of the learned policies under different methods.
More specifically, in Scenario 1, all surrounding traffic participants
were removed to examine whether the obtained policies could
achieve steady driving performance on a freeway. In Scenario 2,
we changed the positions of all obstacle vehicles and pedestrians,
andwe set the relative velocity between the egovehicle andobstacle
vehicles ðvego � v2Þ to 3 m�s�1, in order to generate a representative
lane-change task under urban conditions for the ego vehicle. In Sce-
nario 3, the coordinates of the surrounding vehicles were further
changed to form an urban lane-keeping scenario. For Scenario 4,
the relativevelocitiesbetween theegovehicle and the threeobstacle
vehicleswere changed to vego � v3

� �
=2 m�s�1, vego � v4

� �
=4 m�s�1,

and ðvego � v5Þ = 3 m�s�1, respectively, and pedestrians were
removed to simulate a highway driving scenario. In Scenario 5, we
added pedestrians with different characteristics and inserted vari-
ous vehicle types, including motorcycles and buses, into the traffic
scenario. In all scenarios, we were able to adjust random seeds dur-

ing the training and testing sessions, which would lead to repro-
ducible comparisons across different policies.

3.3. Experimental design

3.3.1. The initial training condition
Two initial conditions were used for the model training:
Cold-start for initial training. The initial condition of training

starting from scratch was denoted as ‘‘cold-start.” Under this con-
dition, the DRL agent had no prior knowledge about the environ-
ment, except for the pre-initialized training.

Pre-trained for fine-tuning. Under this condition, the initial
training with the cold-start was completed by the agent under
the standard DRL algorithm, and the agent was generally capable
of executing the expected tasks. However, the behavior of the
agent could still be undesirable in some situations; thus, the
parameters of the algorithms were fine-tuned during this phase
to further improve the agent’s performance.

3.3.2. Human intervention activation and termination
During the experiments, the participants were not required to

intervene in the DRL training at any specific time. Instead, they
were required to initiate the intervention by operating the steering
wheel and providing guidance to the agent whenever they felt it

Fig. 3. Schematic diagram of the scenarios for training and testing the autonomous driving agent. (a) Scenario 0, it serves as a simple situation with all surrounding vehicles
being set as stationary states. In this scenario, which was utilized only for the training stage, two pedestrians were spawned at random positions in some episodes.
(b) Scenario 1, it was used to test the steady driving performance of the agent on the freeway, with the removal of all surrounding traffic participants. It was used to evaluate
the anti-overfitting performance of the generated driving policy. (c–f) Scenarios 2–5, they were used to test the adaptiveness of the obtained policy in unseen situations
shielded from the training stage. Moving pedestrians, motorcycles, and buses were added into the traffic scenarios. Since the interactive relationships between the ego vehicle
and the traffic participants were changed, the expected trajectories of the ego vehicle were expected to differ from those in the training process. These driving conditions were
set to evaluate the scene-understanding ability and the adaptiveness and robustness of the autonomous driving agent.
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was necessary. The goal of their guidance tasks was to keep the
agent on the road and try to avoid any collision with the road
boundary or other surrounding obstacle vehicles. Once the human
participants felt that the agent was heading in the correct direction
and behaving reasonably, the participants could disengage. The
detailed activation and termination mechanisms set in the experi-
ments are explained below.

Intervention activation. If a steering angle of the handwheel
exceeding five degrees was detected, then the human intervention
signal was activated and the entire control authority was trans-
ferred to the human.

Intervention termination. If variation in the steering angle of
the handwheel was undetected after 0.2 s, then the human inter-
vention was terminated and full control authority was transferred
back to the DRL agent.

3.3.3. The two human guidance modes
Two human guidance modes were used:
Intermittent guidance. In this mode, the participants were

required to provide guidance intermittently. The entire training
for a DRL agent in the designated scenario comprised 500 episodes,
and human interventions were dispersed throughout the entire
training process. More specifically, the participants were allowed
to participate in only 30 episodes per 100 episodes, and the
participants determined whether to intervene and when to provide
guidance. For the rest of the time, the monitors were shut off to
disengage the participants from the driving scenarios.

Continuous guidance. In this mode, the participants were
required to continuously observe the driving scenario and provide
guidance when they felt it was needed throughout the entire train-
ing session.

3.3.4. Human subjects’ proficiency and qualifications
Human task proficiency was considered in this study. The pro-

ficiency of the participants was defined as follows:
Proficient subjects. Before the experiment, the participants

were first asked to naturally operate the steering wheel in a traffic

scenario on the driving simulator for 30 min to become proficient
in the experimental scenario and device operation.

Non-proficient subjects. The participants were not asked to
engage in the training session before participating in the
experiment.

In addition toproficiency, drivingqualificationswere considered.
Qualified subjects. Participants with a valid driving license

were considered to be qualified subjects.
Unqualified subjects. Participants without a valid driving

license were regarded as unqualified subjects.

3.3.5. Experimental tasks
In this work, multiple experimental tasks were designed.
Experiment A. The purpose of this experiment was to test the

performance of the proposed Hug-DRL method and compare its
performance with that of the selected baseline approaches. In total,
ten participants with a valid driving license were included in this
experiment. Before the experiment, the participants were asked
to complete a 30 min training session on the driving simulator to
become proficient in the experimental scenario and device opera-
tion. During the experiment, each participant was asked to provide
intermittent guidance for the proposed Hug-DRL method and base-
line methods—that is, IA-RL and HI-RL. However, the participants
were not informed about the different algorithms used in the tests.
In addition, the vanilla-DRL method was used to conduct agent
training ten times without human guidance. The initial condition
of the training was set as cold-start, and the driving scenario was
set as the abovementioned Scenario 0. In addition, each participant
was required to complete a questionnaire after their tests to pro-
vide their subjective opinion on the workload level, which was
rated on a scale from 1 (very low) to 5 (very high).

Experiment B. The purpose of this experiment was to study the
impact of the human guidance modes on the agent’s performance
improvement for the proposed Hug-DRLmethod. The same ten par-
ticipants recruited in Experiment A were included in this
experiment. Before the Experiment B, the participants were asked
to complete an additional 30 min training session on the driving
simulator to become proficient in the experimental scenario and

Table 1
Illustration of the six experiments.

Experiment Method Proficient human
participant

Qualified human
participant

Pre-initializing
trick

Reward shaping
scheme

Model initial
condition

Training/
testing

A Hug-DRL Both Both Y 0 Cold-start Training
IA-RL Both Both Y 0 Cold-start Training
HI-RL Both Both Y 0 Cold-start Training
Vanilla-
DRL

N/A N/A Y 0 Cold-start Training

B Hug-DRL Y Y Y 1 Cold-start Training
N Y Y 1 Cold-start Training

C Hug-DRL Y Y Y 1 Cold-start Training
Y N Y 1 Cold-start Training

D Hug-DRL Y Y N/A 0 Pre-trained Training
IA-RL Y Y N/A 0 Pre-trained Training
HI-RL Y Y N/A 0 Pre-trained Training

E Hug-DRL Y Y Y 0 Cold-start Training
Y Y N 0 Cold-start Training
Y Y Y 0 Cold-start Training
Y Y Y 1 Cold-start Training
Y Y Y 2 Cold-start Training

F Hug-DRL N/A N/A N/A N/A N/A Testing
IA-RL N/A N/A N/A N/A N/A Testing
HI-RL N/A N/A N/A N/A N/A Testing
Vanilla-
DRL

N/A N/A N/A N/A N/A Testing

BC-IL N/A N/A N/A N/A N/A Testing
DAgger-IL N/A N/A N/A N/A N/A Testing

IA-RL: intervention-aided DRL; HI-RL: human intervention DRL; 0: no shaping; 1, 2: two different reward-shaping techniques and detailed descriptions of the reward-shaping
techniques are provided in Section 4; Y: yes; N: no; N/A: not applicable.
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device operation. During the experiment, each participant was
asked to provide continuous guidance to the driving agent for the
proposed Hug-DRL method. The initial condition of the training
was set as cold-start, and the driving scenario was set as the above-
mentioned Scenario 0. In addition, each participant was required to
complete a questionnaire after their tests to provide their subjective
opinion on the workload level, which was rated on a scale from 1
(very low) to 5 (very high).

Experiment C. The purpose of this experiment was to study the
impact of human proficiency and driving qualifications on the per-
formance improvement of the proposed Hug-DRL method. Ten
new subjects were recruited to participate in this experiment.
Among them, five subjects holding valid driving licenses were con-
sidered to be qualified participants, and the other five participants
without a driving license were considered to be unqualified partici-
pants. The participants were not provided with a training session
before participating in the agent training experiment. During the
experiment, each participant was asked to provide continuous
guidance to the driving agent for the proposed Hug-DRL method.
The initial condition of the training was set as cold-start, and the
driving scenario was set as the abovementioned Scenario 0.

Experiment D. The purpose of this experiment was to study the
online fine-tuning ability of the proposed Hug-DRL method and
compare its fine-tuning ability to that of the selected baselinemeth-
ods. In this experiment, the initial conditionof the trainingwas set as
fine-tuning rather than cold-start. Fifteen new participants were
recruited for this experiment. Before the experiment, the partici-
pantswere providedwith a 10 min training session to become accli-
mated to the environment and the devices. The entire fine-tuning
phase comprised 30 episodes in total. During the experiment, the
subjects were allowed to intervene in the agent training only in
the first ten episodes, providing guidancewhen needed. For the next
20 episodes, the participants were disengaged from the tasks. How-
ever, the agent’s actions were continually recorded to assess its per-
formance. Each participant was asked to engage in this experiment
under the proposed Hug-DRL method and the baseline methods—
that is, IA-RL and HI-RL. Before the experiment, the participants
were not informed about the different algorithms used in the tests.
The driving scenario of this experiment was set to Scenario 0.

Experiment E. The purpose of this experiment was to test the
impacts of the adopted pre-initialized training and the reward-
shaping techniques on training performance. In ablation Group 1,
five participants were required to complete the task in Experiment
A, and the Hug-DRL agent used was not pre-trained by SL. The
results were compared with those of the pre-trained Hug-DRL
obtained in the training process. A similar setup was used in abla-
tion Group 2, and the adopted Hug-DRL agents were equipped with
three different types of reward schemes: no reward shaping,
reward-shaping Route 1, and reward-shaping Route 2. In each sub-
group experiment, five participants were asked to complete the
task of Experiment A. The details of the different reward-shaping
schemes are explained later in Eqs. (21) and (22).

Experiment F. The purpose of this experiment was to test and
compare the performance of the autonomous driving agent trained
by different methods under various scenarios. We first completed
the training process of two IL-based policies—that is, BC and
DAgger. The human participants were asked to operate the steering
wheel, controlling the IL agent to complete the same overtaking
maneuvers as the DRL agents (collision avoidance with surround-
ing traffic participants). For BC, the agent was fully controlled by
the human participants, and there was no agent to interact with
the humans through the transfer of control authority. Gaussian
noise was injected into the agent’s actions for the purpose of data
augmentation. The collected data were used for offline SL to imi-
tate human driving behaviors. For DAgger, the agent learned to
improve its control capability from the human guidance. In one

episode, whenever a human participant felt the need to intervene,
he or she obtained partial control authority, and only his or her
guidance actions were recorded to train the DAgger agent in real
time. Since the agent was refined through the training episodes,
DAgger was expected to collect more data and obtain a more
robust policy than BC. The tested methods included Hug-DRL, IA-
RL, HI-RL, vanilla-DRL, Dagger, and BC. The driving scenarios used
in this experiment included the designed Scenarios 1–5.

3.4. Baseline algorithms

The following five baseline algorithms were compared:
Baseline A: IA-RL. In this method, human guidance was intro-

duced into the agent-training process. The human actions directly
replaced the output actions of the DRL, and the loss function of the
policy network was modified to fully adapt to human actions when
guidance occurred. In addition, the algorithm penalized the DRL
agent in human-intervened events, which prevented the agent
from getting trapped in catastrophic states. This method was
derived from and named after existing work reported in Refs.
[29,32] and was further modified in the present work to adapt to
the off-policy actor-critic DRL algorithms. The detailed algorithm
for this approach can be found in Note S3 in Appendix A, and the
hyperparameters are listed in Tables S1 and S3 in Appendix A.

Baseline B: HI-RL. In this method, human guidance was intro-
duced into the agent-training process; however, human actions
were used to directly replace the output actions of the DRL agent
without modifying the architecture of the neural networks. As a
result, human actions affected only the update of the value network.
In addition, the algorithm penalized the DRL agent in human-
intervened events, which prevented the agent from getting trapped
in catastrophic states. This baseline approach, which was derived
from and named after the work reported in Ref. [32], was further
modified to adapt the actor-critic DRL algorithm in our work. The
detailed algorithm can be found in Note S4 in Appendix A, and the
hyperparameters are listed in Tables S1 and S3.

Baseline C: vanilla-DRL. This standard DRL method (the TD3
algorithm) was used as a baseline approach in this work. The
detailed algorithm can be found in Note S5 in Appendix A, and
the hyperparameters are listed in Tables S1 and S3.

Baseline D: BC. BC with data augmentation was also adopted as
a baseline method. In this study, a deep neural network with the BC
method was used to develop an autonomous driving policy for
comparison with other DRL-based approaches. The detailed mech-
anism of this method is introduced in Fig. S3 in Appendix A, and the
detailed procedures of data collection and model training under BC
are introduced in Note S6 in Appendix A. The hyperparameters and
the network architecture are listed in Tables S1 and S3, respectively.

Baseline E: DAgger. This is an IL method with real-time Hug.
Under this approach, human participants serve as experts to super-
vise and provide necessary guidance to an actor agent that learns
from human demonstrations and improves its performance
through training. The detailed mechanism of DAgger is illustrated
in Fig. S4 in Appendix A. The detailed procedures of data collection
and model training are introduced in Note S6 in Appendix A. The
hyperparameters and the network architecture are listed in Tables
S1 and S3, respectively.

4. Implementation and human-in-the-loop testing under
autonomous driving tasks

4.1. Algorithm implementation for autonomous driving

The proposed Hug-DRL method is developed based on TD3 with
the introduction of real-time human guidance. For the DRL
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algorithm, appropriate selections of the state and action space, as
well as the elaborated reward function design, are significant for
efficient model training and performance achievement. In this
work, the target tasks for the autonomous driving agent are set
as completing lane changing and overtaking under various
designed scenarios. To better demonstrate the feasibility, effective-
ness, and superiority of the proposed method, a challenging end-
to-end paradigm is selected as the autonomous driving configura-
tion for the proof of concept. More specifically, non-omniscient
state information is provided to the policy, and the state represen-
tation is selected for semantic images of the driving scene through
a single channel representing the category of 45 � 80 pixels:

st ¼ PijjP 2 ½0;1�
� �

45�80 ð12Þ

where Pij is the channel value of pixel i� j normalized into [0, 1].
The semantic images are obtained from the sensing information
provided by the simulator. A typical state variable is provided in
Fig. S5 in Appendix A.

The steering angle of the handwheel is selected as the one-
dimensional (1D) action variable, and the action space can be
expressed as follows:

at ¼ at ja 2 0;1½ �f g ð13Þ

where a is the steering wheel angle normalized into [0, 1], where
the range [0, 0.5) denotes the left-turn command and (0.5, 1.0]
denotes the right-turn command. The extreme rotation angle of
the steering wheel is set to ±135�.

The reward function should consider the requirements of real-
world vehicle applications, including driving safety and smooth-
ness. The basic reward function is designed as a weighted sum of
the metrics, which is given by

rt ¼ s1cside;t þ s2cfront;t þ s3csmo;t þ s4cfail;t ð14Þ

where cside;t denotes the cost of avoiding a collision with the road-
side boundary; cfront;t is the cost of collision avoidance with an
obstacle vehicle to the front; csmo;t is the cost of maintaining vehicle
smoothness; cfail;t is the cost of a failure that terminates the episode;
s1–s4 are the weights of each metric.

The cost of a roadside collision is defined by a two-norm expres-
sion as follows:

cside;t ¼ �
��1� f sig min dleft;t; dright;t

	 
� ��� ����
2

ð15Þ

where dleft and dright are the distances to the left and right roadside
boundaries, respectively; f sig is the sigmoid-like normalization
function transforming the physical value into [0, 1].

The cost of avoiding an obstacle to the front is defined by a two-
norm expression:

cfront;t ¼
�

��1� f sig dfrontð Þ
�� ����

2
; if a front obstacle exists

0; otherwise

(
ð16Þ

where dfront is the distance to the front-obstacle vehicle in the cur-
rent lane.

The cost of maintaining smoothness is

csmo;t ¼ � dat

dt
þ at � 0:5ð Þ

 �
ð17Þ

The cost of failure can be expressed as follows:

cfail;t ¼
�1 if fail
0 otherwise

�
ð18Þ

The above reward signals stipulate practical constraints. How-
ever, the feedback is still sparse and does not boost exploration
behaviors, which means that the DRL could easily become trapped
in the local optima. The reward-shaping technique is an effective

tool to prevent this issue. Reward shaping transforms the original
rewards by constructing an additional function with the aim of
improving performance. We describe the three kinds of reward-
shaping methods utilized in this paper and conduct an ablation
study to explore their utilities in Experiment E.

First, human-intervention penalty-based reward shaping is
introduced. The shaping function F 1 is based on a typical interven-
tion penalty function F : S � S ! R, written as follows:

F 1
t st�1; stð Þ ¼ �10 � I stð Þ ¼ 1½ � ^ I st�1ð Þ ¼ 0½ �f g ð19Þ

Recall that human interventions aim to correct the DRL
agent’s behavior and avoid catastrophic states. Hence, this equa-
tion suggests that a penalty signal is added to the original
reward when a human decides to intervene at a specific state.
To pursue high cumulative rewards, the DRL agent should avoid
human intervention by decreasing visits to harmful states. The
intervention penalty is triggered only at the first time step when
a human intervention event occurs. The rationale behind this is
that, once human manipulation begins, the intervention usually
lasts for at least several time steps, but only the first interven-
tion time step can be confirmed as a participant-judged ‘‘harm-
ful” state/behavior.

Another form of reward shaping relies on a potential function,
which is well known for its straightforward and efficient imple-
mentation [39]. A typical potential-based reward-shaping function
F : S �A� S ! R can be written as follows:

F st ; at ; stþ1ð Þ ¼ c/ stþ1ð Þ � / stð Þ 8st 2 S ð20Þ

where / : S ! A is a value function, which ideally should be equal
to Ea�p �jsð Þ Q s; að Þ½ �. Since the accurate values of Q are intractable
before training convergence, prior knowledge regarding the task
requirement becomes a heuristic function / to incentivize the DRL’s
exploration. Accordingly, the function F 2 is defined to be associated
with the longitudinal distance from the spawn point, which can be
calculated as follows:

F 2
t ¼ Py;t st ; atð Þ � Py;spawn ð21Þ

where Py;t and Py;spawn are the current and initial positions of the
agent in the longitudinal direction, respectively. This indicates that
the agent is encouraged to move forward and explore further, keep-
ing itself away from the spawn position.

The last reward-shaping method is a state-of-the-art technique
named Never Give Up (NGU) [40]. Its main idea is also to encour-
age exploration and prevent frequent visits of previously observed
state values.

F 3
t ¼ repisodet

�min max 1þ kf stþ1jwð Þ � f stþ1ð Þk � E f stþ1jwð Þ½ �
r f stþ1jwð Þ½ � ;1

� �
; L

� �
ð22Þ

where f �jwð Þ and f ð�Þ are embedded neural networks with fixed
weights w and adjustable weights, respectively; The norm k � k is
used to calculate the similarity between the embedded state fea-
ture; r denotes the SD operation; and L is a regularization hyperpa-
rameter. The overall idea of employing f ð�Þ is to assign higher
additional rewards to unvisited states, particularly during the train-

ing process (see Ref. [40] for details). repisodet also encourages explo-
ration in unvisited states, particularly during the current episode.
The utilized hyperparameters are provided in Table S3.

Thus, the overall reward function can be obtained by adding the
terms F 1

t , F 2
t , and F 3

t to the original function rt . Finally, the termi-
nation of an episode with successful task completion occurs when
the last obstacle vehicle is passed and the finishing line is reached
without any collisions. With the above steps, the detailed
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implementation of the standard DRL in the designed driving sce-
nario is completed.

For the proposed Hug-DRL, real-time human guidance is
achieved by operating the steering wheel in the experiments.
Therefore, the steering angle of the handwheel is used as the
human intervention signal, and a threshold filtering unexpected
disturbance is required. Here, the event of human intervention
and guidance is

IðstÞ ¼
1; if

dat

dt
> e1

 �
\ not q

0; otherwise

8<
: ð23Þ

where e1 is the threshold, set as 0.02; q denotes the detection
mechanism of human intervention termination, which is defined
as follows:

q ¼
YtþtN

t

dat

dt
< e2

 �
ð24Þ

where e2 is the threshold, set to 0.01; tN is the time-step threshold
for determining the intervention termination, and it is set to 0.2 s,
as mentioned above.

For the proposed Hug-DRL method, when human participants
engage in or disengage from the training process, the control
authority of the agent is transferred between the human and the
DRL algorithm in real time. The detailed mechanism of control
transfer is illustrated in Eq. (2).

4.2. Participants in the human-in-the-loop tests

In total, 40 participants (26 males and 14 females) ranging in
age from 21 to 34 (Mage = 27.43, SDage = 3.02) (where Mage is mean
value of age and SDage is standard deviation of age) were recruited
for the experiments. The study protocol and consent form were
approved by the Nanyang Technological University Institutional
Review Board, protocol number IRB-2018-11-025. All research
was performed according to relevant guidelines/regulations.
Informed consent was obtained from all participants. All partici-
pants had no previous knowledge of the research topic and had
never previously experienced real-time intervention or guidance
during model training in a driving scenario. Before the experi-
ments, the participants were informed that the DRL agent would
receive their guidance and improve its performance over the
course of the training process.

4.3. Statistical analysis approach

4.3.1. Statistical methods
A statistical analysis of the experimental data was conducted for

the designed experiments in MATLAB (R2020a, MathWorks, USA)
using the Statistics and Machine Learning Toolbox and in Microsoft
Excel. The data generally obeyed a normal distribution; thus, the dif-
ference in the mean values between two groups was determined
usingpaired t-tests (with the threshold levela=0.05), and thediffer-
ence for multiple groups was determined using one-way analysis of
variance (ANOVA). To investigate the statistical significance of the
difference between groups in Fig. 4, non-parametric tests, including
the Mann–Whitney U-test and the Kruskal–Wallis test, were
adopted with the threshold selection of a = 0.05.

4.3.2. Definition of evaluation metrics
The following metrics were adopted in this study to evaluate

the agent’s performance. The reward, which reflected the agent’s
performance, was chosen as the first metric. For both the step
reward and the episodic reward, the mean and SD values were cal-
culated and used when evaluating and comparing the agent’s per-
formance across different methods and different conditions

throughout the paper. The length of the episode, which was
obtained by calculating the number of steps in one episode, was
also selected as an evaluation metric to reflect the current perfor-
mance and learning ability of the agent. Another adopted metric
was the intervention rate, which reflected the frequency of human
intervention and guidance. The intervention rate could be repre-
sented in two ways: count by episode and count by step. The for-
mer was calculated based on the total number of steps guided by a
human in a specific episodic interval, and the latter was calculated
based on the number of episodes in which a human intervened.
The success rate was defined as the percentage of successful epi-
sodes within the total number of episodes throughout the testing
process. The vehicle dynamic states, including the lateral accelera-
tion and the yaw rate, were selected to evaluate the dynamic per-
formance and stability of the agent vehicle.

5. Results

5.1. The improved training performance of the proposed Hug-DRL
method

The results shown in Fig. 4, which were obtained from Experi-
ment A, validate the performance improvement brought by the
proposed Hug-DRL method compared with the other state-of-
the-art Hug algorithms—namely, IA-RL and HI-RL—and compared
with vanilla-DRL without human guidance (a pure TD3 algorithm).
During the experiments, the time-step reward and duration of each
episode were recorded and assessed for each participant in order to
evaluate the training performance throughout an entire training
session under each method. Both the episodic reward and the
length of the episode were evaluated, as reflected in Figs. 4(a)
and (b). The results indicated that the Hug-DRL method was
advantageous over all other baseline methods with respect to
asymptotic rewards and training efficiency. The statistical results
shown in Fig. 4(c) demonstrate that the average reward obtained
with the proposed method during the entire training process was
the highest (Mr = �0.649, SDr = 0.036) (where Mr and SDr are the
mean value and standard deviation of the average reward, respec-
tively), followed by that obtained with the HI-RL method
(Mr = �0.813, SDr = 0.434), the IA-RL method (Mr = �0.954,
SDr = 0.456), and then the vanilla-DRL method (Mr = �1.139,
SDr = 0.567). In addition, the differences between the methods
were tested according to the one-way ANOVA presented in
Table S4 in Appendix A. The length of the episode, which accurately
described task-completion ability, was also compared for the three
methods. Based on the results shown in Fig. 4(d), the mean value of
the proposed method (Ml = 93.1, SDl = 2.4) (where Ml and SDl are
the mean value and standard deviation of the length of the episode,
respectively) was advantageous over that of the IA-RL method
(Ml = 83.2, SDl = 12.7), the HI-RL method (Ml = 75.8, SDl = 5.5),
and the vanilla-DRL method (Ml = 44.3, SDl = 16.8). Their differ-
ences were statistically significant, with F(4, 36) = 36.91, as
reflected by the ANOVA presented in Table S5 in Appendix A. In
terms of asymptotic rewards, compared with vanilla-DRL, the per-
formance improvements under Hug-DRL, IA-RL, and HI-RL were
34.4%, 10.1%, and 20.9%, respectively. To evaluate the computa-
tional efficiency, we took the asymptotic performance as the
evaluation parameter and compared the proposed Hug-DRL with
other baseline methods. More specifically, to reach the same
asymptotic average reward achieved by IA-RL, Hug-DRL only
needed 171 episodes, improving the efficiency by 192.4%. Further-
more, Hug-DRL was able to reach the same asymptotic length real-
ized by IA-RL in 276 episodes, improving the efficiency by 81.1%. In
comparison with vanilla-DRL, the improvements provided by Hug-
DRL were 276.0% and 963.8%, in terms of the asymptotic average
reward and asymptotic length of the episode, respectively. Taken
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together, these results demonstrate the effectiveness of human
guidance in improving DRL performance.

5.2. The effects of different human guidance modes on training
performance

We conducted two groups of tests, requiring each human sub-
ject to participate in the DRL training using intermittent and con-
tinuous intervention modes (refer to Section 4 for a detailed
explanation). Example data on the episodic rewards throughout
the training session for the continuous and intermittent guidance
modes obtained from a representative participant are shown in
Figs. 5(a) and (b). The results show that both the continuous and
intermittent modes led to a consistently increasing trend for the
episodic reward during training. Although the episodic reward
increased earlier in the former mode, as the human intervened
more frequently in the initial training phase, the final rewards
achieved were at the same level for both modes. The human inter-
vention rates during the entire training session for the continuous
and intermittent guidance modes were further investigated, as
shown in Figs. 5(c) and (d). The mean values of the intervention
rates (count by step) across participants for the continuous and
intermittent modes were Mi = 25.0%, SDi = 8.3%, and Mi = 14.9%,
SDi = 2.8%, respectively (where Mi and SDi are the mean value
and standard deviation of the mean value of the intervention rate,
respectively). Moreover, we split one training process into three
separate sections—namely, the human-guided section, the non-

guided section, and the overall section—and the achieved rewards
were examined for each section in detail for the two intervention
modes separately. As illustrated in Fig. 5(e), within the human
intervention sections, the mean values of the training rewards for
the continuous and intermittent modes were Mr = �0.03,
SDr = 0.41, andMr = 0.07, SDr = 0.25, respectively, but no significant
difference was found between the two (p = 0.85). Similarly, for the
non-intervention sections, although the average reward of the con-
tinuous mode (Mr = �0.26, SDr = 0.18) was higher than that of the
intermittent mode (Mr = �0.42, SDr = 0.14), no significant differ-
ence was found (p = 0.064). These results indicated that, in terms
of the final DRL performance improvement, there was no signifi-
cant difference between the continuous and intermittent modes
of human guidance. However, from the perspective of human
workload, the intermittent mode was advantageous over the con-
tinuous mode, according to our subjective survey administered to
participants (Fig. S6 and Table S6 in Appendix A).

5.3. Effects of human proficiency/qualifications on training
performance

Task proficiency or qualifications are other human factors that
may have affected DRL training performance under human guid-
ance. Experiment C was conducted to examine the correlations
between the improvement of DRL performance and task profi-
ciency/qualifications. As shown in Figs. 5(f) and (g), the agent train-
ing rewards achieved by proficient/non-proficient and qualified/

Fig. 4. Results of the initial training performance under four different methods. (a) Results of the episodic training reward under different methods, the mean and SD values of
the episodic training reward were calculated based on the values of the obtained rewards per episode across all subjects under each method; (b) results of the episodic length
under the three methods, the mean and SD values of the episodic step length were calculated based on the values of the episodic length achieved per episode across all
subjects under each method; (c) results of the average reward during an entire training session under different methods, the statistical values of the training reward were
calculated based on the average value of the obtained rewards during the overall training process across all subjects under each method; (d) results of the average episodic
length during the entire training session under different methods, the statistical values of the episodic length were calculated based on the average value of the achieved
episodic length during the overall training process across all subjects under each method. p: the value indicating the probabilistic significance in the t-test.
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unqualified participants were illustrated and compared. In the
intervention sections, proficient participants guided the DRL agent
to gain a higher reward (Mr =�0.03, SDr = 0.41) than non-proficient
participants (Mr = �0.46, SDr = 0.42). For the non-intervention sec-
tions, the values of the average rewards under the guidance of pro-
ficient and non-proficient subjects wereMr = �0.26, SDr = 0.18, and
Mr = �0.49, SDr = 0.18, respectively. In the overall training sessions,
although there was a slight difference between the two groups with

respect to the training reward (i.e., Mr = �0.21, SDr = 0.14 for the
proficient group and Mr = �0.48, SDr = 0.17 for the non-proficient
group), no significant difference was found between the two based
on a within-group comparison (p = 0.11). Tables S7 and S8 in
Appendix A present a non-parametric ANOVA of the performance
resulting from the standard DRL method and from proficient/non-
proficient participants of the proposed Hug-DRL method. In addi-
tion, no significant difference was found between the results of

Fig. 5. Results of the impacts of human factors on DRL training performance. (a) Example data of the episodic rewards over the entire training session for the continuous
guidance mode obtained by a representative subject. The human-guided episodes were mainly distributed in the first half of the training process, and the guidance actions
were relatively continuous. (b) Example data of the episodic reward over the entire training session for the intermittent guidance mode obtained by a representative subject.
The human-guided episodes were sparsely distributed throughout the entire training session. (c) The human intervention rates during the entire training sessions for the
continuous guidance mode. Here, two indicators—namely, ‘‘count by step” and ‘‘count by episode”—were adopted to evaluate the human intervention rate. The former was
calculated based on the total number of steps guided by a human in a specific episodic interval, whereas the latter was calculated based on the number of episodes intervened
in by a human. (d) Human intervention rates during the entire training session for the intermittent guidance mode. (e) Box plots of the training rewards achieved under the
intermittent and continuous guidance modes. Under each mode, the training rewards were further analyzed separately based on the human-guided episodes, non-guided
episodes, and the entire process. (f) Box plots of the training rewards achieved under the guidance provided by proficient and non-proficient participants. (g) Box plots of the
training rewards achieved under the guidance provided by qualified and unqualified participants.
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qualified and unqualified participants. These comparison results
indicate that the proposed real-time human guidance-based
method has no specific requirement for task proficiency, experi-
ence, or qualifications of the participating human subjects.

5.4. The improved online fine-tuning performance of the Hug-DRL

As validated by the above exploration, the proposed real-time
human guidance approach was capable of effectively improving

DRL performance under the initial condition of a ‘‘cold-start.” Sub-
sequently, it was very interesting to conduct Experiment D to
explore the online fine-tuning ability of the proposed method,
which further improved the agent’s performance. The online train-
ing performance is demonstrated in Fig. 6. As shown in the repre-
sentative examples in Fig. 6(a), in the experiments, the participants
were asked to provide guidance whenever they felt it was neces-
sary within the first ten training episodes of the fine-tuning phase,
helping the agent to further improve the driving policy online.

Fig. 6. Results of the online training performance of the DRL agent under the proposed method. (a) Schematic diagram of the agent performance during the online training
progress under the proposed Hug-DRL method. The entire online training progress was divided into two stages: Stage 1, a ten-episode human-guided fine-tuning stage; and
Stage 2, a 20-episode non-guided post-fine-tuning stage. During fine-tuning, some undesirable actions of the agent were further optimized by human guidance. As a result,
the performance of the DRL agent was further improved, which was reflected by the generated smooth path in the post-fine-tuning stage. (b) The results of the episodic
reward during the online training process under the proposed and two baseline approaches. Before fine-tuning, the DRL agent was pre-trained in the training Scenario 0, and
the average reward achieved after the pre-training session was set as the base level for comparison in the fine-tuning stage. (c) Distribution of the episodic length obtained
under the proposed Hug-DRL method across participants during the post-fine-tuning stage. (d) Distribution of the episodic duration obtained under the baseline IA-RL
method across participants during the post-fine-tuning stage. (e) Distribution of the episodic duration obtained under the baseline HI-RL method across participants during
the post-fine-tuning stage.
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Afterward, the DRL agent continued the remaining 20 episodes
until the end of the online training session. In this experiment,
the proposed Hug-DRL method was compared with the other
two Hug approaches—namely, IA-RL and HI-RL. Based on the per-
formance shown in Fig. 6(b), in the fine-tuning stage, the proposed
method and the baseline methods achieved similar episodic
rewards (proposed method: Mr = 1.02, SDr = 0.36; IA-RL:
Mr = 1.06, SDr = 0.08; HI-RL: Mr = 1.03, SDr = 0.10). However, in
the session after human-guided fine-tuning, the average reward
of the proposed method (Mr = 0.92, SDr = 0.35) was higher than
that of IA-RL (Mr = 0.76, SDr = 0.50) and much higher than that
of HI-RL (Mr = 0.19, SDr = 1.01). Moreover, the results shown in
Figs. 6(c) and (e) show that the distribution of the episodic length
obtained after fine-tuning under the proposed Hug-DRL method
was more concentrated than that under the two baseline methods.
The mechanism for the better performance of Hug-DRL and IA-RL
compared with that of HI-RL after fine-tuning was also analyzed,
as illustrated in Fig. S7 in Appendix A. In short, although the eval-
uation curve of the value network was updated by the human
guidance action during fine-tuning, the policy network of HI-RL fell
into the local optima trap during the post-fine-tuning stage, failing
to converge to the global optima (Figs. S7(a)–(c)). Hug-DRL and IA-
RL could successfully solve this issue (Figs. S7(d)–(f)), and Hug-DRL
achieved a better performance than IA-RL. Overall, the above
results indicate that the proposed method has a higher ability to
fine-tune the DRL agent online than the other state-of-the-art
Hug-DRL methods. More detailed illustrations regarding this
observation are provided in Section 6.

5.5. Testing the autonomous driving policy trained by Hug-DRL under
various scenarios

To construct and optimize the configuration of the DRL-based
policy, an ablation test was carried out in Experiment E to analyze
the significance of the pre-initialization and reward-shaping tech-
niques. According to the results shown in Fig. S8(a) in Appendix A,
we confirmed that the removal of the pre-initialization process led
to deterioration in the training performance of the DRL agent
(length of episode: Ml = 93.1, SDl = 2.44 for the pre-initialization
scheme, Ml = 84.8, SDl = 4.8 for the no-initialization scheme,
p < 0.001). We also found that different reward-shaping mecha-
nisms had varying effects on performance, based on the results
in Figs. S8(b)–(f).

Finally, to further validate feasibility and effectiveness, in Exper-
iment F, the trained model for the proposed method was tested in
various autonomous driving scenarios (introduced in Fig. 3 in
detail) and compared with five other baseline methods: IA-RL, HI-
RL, vanilla-DRL, BC (Fig. S3), and DAgger (Fig. S4). Various testing
scenarios were designed to examine the abilities of the learned pol-
icy, including environmental understanding and generalization.

The success rate of task completion and the vehicle dynamic
states (i.e., the yaw rate and lateral acceleration) were selected
as evaluation parameters to assess the control performance of
the autonomous driving agent. The heat map provided in
Fig. 7(a) shows that the agent trained by Hug-DRL successfully
completed tasks in all untrained scenarios, while agents under all
baseline methods could complete only parts of the testing scenar-
ios. More specifically, the success rates of the baseline methods
were 84.6% for vanilla-DRL and DAgger, 76.9% for HI-RL, 73.1%
for BC, and 65.3% for IA-RL. In addition, the yaw rate and lateral
acceleration of the agent for each method under Scenario 1 were
recorded and assessed, as shown in Fig. 7(b). Hug-DRL led to the
smoothest driving behavior, with an acceleration of 0.37 m�s�2,
and HI-RL resulted in the most unstable driving behavior
(1.85 m�s�2). The performances of the other baseline methods were
roughly similar.

In addition to performing the above investigations, it was of
interest to explore the decision-making mechanism of Hug-DRL.
One representative example of a testing scenario with a trained
Hug-DRL agent is shown in Fig. 7(c), which provides a schematic
diagram of the scenario, the lateral position of the ego vehicle over
time, the values given the current state and action, and the action
of the agent. As shown in Fig. 7(c), approaching two motorcycles
would cause a two-fold decrease in the Q value in the current state
if the current action were maintained, indicating a higher potential
risk. Correspondingly, the ego agent would change its action to
avoid the objects and drive slightly to the left. Subsequently, the
collision risk with the front bus increased, as reflected by the
remarkably decreased Q value, and the DRL agent promptly
decided to change lanes. These results show the effects of varying
surrounding traffic participants on the decision-making process of
the DRL agent, and the intention and reasonable actions of the
agent are reflected in the results of the value evaluation function.

6. Discussion

The existing training process of DRL-based policy is very time-
consuming and demands many computing resources, especially
when dealing with complex tasks with high-dimensional data for
scene representation. To address these limitations and further
improve DRL algorithms by leveraging human intelligence, a novel
human-in-the-loop DRL framework with human real-time guid-
ance is proposed and investigated from different perspectives in
this study. In addition to the proposed Hug-DRL approach, two
baseline methods with different real-time human guidance
mechanisms are implemented and compared, along with non-
human-involved algorithms. As reflected by the results shown in
Fig. 3, all human-involved DRL methods were found to be advanta-
geous over the vanilla-DRL method in terms of training efficiency
and reward achieved, demonstrating the necessity and significance
of real-time human supervision and guidance in the initial training
stage.

The reason why the introduction of real-time human guidance
can effectively improve DRL performance should be discussed.
For actor-critic DRL algorithms, actions are determined by the pol-
icy function, where the update optimizes the value function, as
expressed in Eq. (6). Thus, the updating rate of the policy network
is constrained by the convergence rate of the value function, which
relies on a relatively low-efficiency exploration mechanism. In con-
trast, from the perspective of human beings, who hold prior knowl-
edge and a better understanding of the situation and the required
task, this learning is clumsy, because the agent has to experience
numerous failures during explorations before gradually reaching
feasible solutions. This constitutes the ‘‘cold-start” problem.
However, in all human-involved DRL methods, random and unrea-
sonable actions are replaced with appropriate human guidance
actions. Consequently, more reasonable combinations of states
and actions are being fed to the value network, effectively improv-
ing the distribution of the value function and its convergence
toward the optimal point in a shorter time. Therefore, the updating
of the value network becomes more efficient, accelerating the
entire training process.

With regard to the three human-involved DRL approaches, the
proposed Hug-DRL approach achieves the best training efficacy
and asymptotic performance; IA-RL performs second best, and
HI-RL performs the worst. The underlying reason for these results
is the human guidance term of Hug-DRL and IA-RL (Eq. (8)). More
specifically, in addition to the action replacement scheme in HI-RL,
the human guidance term directly encourages the policy network
to output human-like actions, which accelerates the value
function’s evaluation of acceptable policies. The subsequent
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problem becomes how to balance human guidance and the policy
gradient-based updating principle. The competing methods either
shield the gradient term whenever humans provide guidance or
pre-set a fixed ratio between two terms. These methods fail to con-
sider the effect of different human participants and the ever-
improving ability of the DRL agent. In the proposed Hug-DRL
method, the weighting assignment mechanism adaptively adjusts
the dynamic trustworthiness of the DRL policy against different
human guidance in the training process. In comparison with the
stiff conversion mechanism of the IA-RL baseline method, Hug-
DRL leverages human experience more reasonably and scores
higher, as shown in Fig. 4.

In addition to demonstrating performance improvement during
the training-from-scratch process, Hug-DRL proved beneficial with
respect to its online fine-tuning ability. For learning-based
approaches, including DRL, even if the models are well trained,
their performance is compromised in real-world implementations
due to unpredictable and uncertain environments. Thus, an online
fine-tuning process after deployment is of great importance for
DRL applications in the real world. In this study, we evaluated
the fine-tuning performance of all three methods—that is, Hug-
DRL, IA-RL, and HI-RL—involving human guidance. As shown in
the subplots of Figs. 6(b)–(e), the performance improvement of
HI-RL vanished throughout the fine-tuning. However, our approach
successfully maintained the improved performance throughout the
post-fine-tuning phase, indicating its higher ability. This phe-

nomenon may be explained by the consistency of the updates
between the policy and value networks under human guidance.
For the HI-RL model that receives human guidance, its policy net-
work is updated according to the objective function with
fs;l sjHlð Þg in Eq. (6). However, the value network is constructed
according to fs; ahumang, as expressed by Eq. (7). In general, a human
guidance action generates a higher true value, but the action is not
correctly evaluated by the value network before fine-tuning. As
online fine-tuning progresses, the value network realizes the defi-
ciency and gradually updates its output. However, the policy func-
tion sometimes struggles to catch up with the pace of the policy
network’s update. As a result, even if the policy network has
already converged toward a local optimum in the initial training
phase, the change of a single point on the value function distribu-
tion that benefited from human guidance does not optimize the
gradient descent-based policy function. Accordingly, the policy still
updates the function around the original local optima and thus fails
to further improve itself in the expected direction. The inconsis-
tency between the policy and value networks can be observed from
the results shown in Fig. S7. Notably, this inconsistency problem
rarely occurs in the training-from-scratch process due to the high
adaptivity of the value network.

To solve the inconsistency issue described above, modified pol-
icy functions were proposed in Hug-DRL and IA-RL. By dragging the
policy’s outputs, the effect of the policy-gradient-based update was
weakened in the human-guided steps, which avoided the issue of

Fig. 7. Results of the agent’s performance under various driving scenarios. The agent’s policy was trained by the six methods, separately. The five scenarios—that is, Scenarios
1–5—were unavailable in the training process and were only used for the performance testing. (a) Success rates of the agent trained by different methods across the five
testing scenarios, where the ego vehicle was spawned in different positions to calculate the success rate in one scenario; (b) plots of the mean of the agent’s indicators under
different scenarios, where two indicators (the mean of the absolute value of the yaw rate and the mean of the absolute value of the lateral acceleration) were recorded as
indicators; (c) illustration of a representative testing scenario with an agent that was trained beforehand using the Hug-DRL; in the testing scenario, the agent was required to
surpass two motorcycles and a bus successively; (d) averaged Q value of the DRL agent in the testing scenario (c), the value declined when the DRL agent approached the
surrounding obstacles; (e) variation of the control action—that is, the steering wheel angle of the DRL agent in the testing scenario (c); negative values represent left steering
and positive values correspond to right steering actions.
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the local optima trap. Thereafter, the policy could continue the
noise-based exploration and gradient-based update in a space clo-
ser to the global optima. Theoretically, the inconsistency issue that
occurred in HI-RL could be addressed by Hug-DRL and IA-RL. How-
ever, we found from the experimental results that IA-RL failed to
achieve the expected competitive performance, mainly due to the
different forms of human guidance. In general, the reinforcement
learning agent achieves an asymptotic performance by means of
large-scale batch training with the experience replay buffer. How-
ever, fine-tuning is essentially a learning process with small-scale
samples. Thus, it is very difficult for IA-RL to find an appropriate
learning rate in this situation, resulting in an unstable fine-
tuning performance. The weighting factor in the proposed Hug-
DRL can automatically adjust the learning rate and mitigate this
issue, hence achieving the best performance, as shown in Fig. 6.

In addition to the training performance discussed above, the
ability and superiority of the proposed method were validated in
testing scenarios in comparison with other baseline approaches.
More specifically, we tested the effectiveness, adaptiveness, and
robustness of the proposed Hug-DRL method under various driving
tasks and compared the method with all related DRL baseline
methods, as well as BC and DAgger. The results regarding the suc-
cess rate across various testing scenarios, as shown in Fig. 7(a),
reflect the adaptiveness of these methods. The proposed Hug-
DRL achieved the best performance of all methods across all testing
scenarios. The success rates of the IL approaches were significantly
affected by variations in the testing conditions, while the DRL
methods maintained their performance and thus demonstrated
better adaptiveness. Meanwhile, DAgger outperformed BC; its per-
formance was similar to that of vanilla-DRL but lagged behind that
of Hug-DRL. In terms of success rate, IA-RL and HI-RL performed
worse than vanilla-DRL; this result differed from the previously
observed results in the training process. A feasible explanation is
that undesirable actions by human beings interrupted the original
training distribution of the DRL and accordingly deteriorated the
robustness. Similarly, according to the results shown in Fig. 7(b),
the average yaw rate and lateral acceleration of IA-RL and HI-RL
were higher than those of vanilla-DRL, indicating their worse per-
formance in motion smoothness. Hug-DRL achieved the highest
performance, which demonstrates that, beyond accelerating the
training process, the proposed human guidance mechanism can
achieve an effective and robust control performance during the
testing process.

The proposed Hug-DRL method was also investigated from the
perspective of human factors. Real-time human guidance has pro-
ven effective for enhancing DRL performance; however, long-term
supervision may also have negative effects, such as fatigue, on
human participants. Fortunately, the results shown in Fig. 5(e)
demonstrate that the intermittent guidance mode did not signifi-
cantly deteriorate performance improvement compared with the
continuous mode. In addition, the participants’ subjective feelings
on task workload under intermittent guidance were satisfactory,
according to the survey results shown in Fig. S6. These results sug-
gest that, within the proposed human-in-the-loop DRL framework,
human participants do not necessarily remain in the control loop
constantly to supervise agent training. Intermittent guidance is a
good option that generates satisfactory results for both agent train-
ing performance and human subjective feelings.

We were also curious about whether the proposed Hug-DRL
method relied heavily on participants’ proficiency, skills, experi-
ence, or qualifications with respect to a specific task. As the DRL
performance improvement results illustrate in Fig. 5(d), there
was no significant difference between the proficient and non-
proficient participant groups. This observation can be reasonably
explained by the mechanism of the proposed algorithm. Assume
that a standard DRL agent is in a specific state, and noise-based

exploration can be effective only within a certain area close to
the current state. Thus, the distribution is modified progressively
and slowly based on the gradient update of the neural networks,
which are far from convergent. However, in the designed Hug-
DRL method, human guidance actions can facilitate the update of
the distribution to be much more efficient. Thereafter, even if the
guidance actions input from non-proficient participants are unde-
sirable, the explorations leveraging human guidance are still more
efficient than those in the standard DRL method. Video S1 in
Appendix A provides a representative example of the exploration
processes under the Hug-DRL and standard DRL methods, further
illustrating the above opinion. Similar results can also be found
in Figs. 5(f) and (g), where there are no significant differences
between the two participant groups with and without a driving
license with respect to the achieved reward. These findings provide
us with more confidence that the proposed Hug-DRL method poses
no high requirements for the quality of data associated with
humans’ experience, proficiency, or task qualifications.

7. Conclusions

In this study, a real-time Hug-DRL method was developed for
policy training in an end-to-end autonomous driving case. An
improved actor-critic architecture with a modified policy and value
networks was developed. Humans could intervene and correct the
agent’s unreasonable actions of DRL in real time during the training
process. The developed method was validated by human-in-the-
loop experiments with 40 subjects and was compared with other
state-of-the-art learning approaches.

The experimental results suggest that the proposed Hug-DRL is
advantageous over existing methods in terms of learning efficiency
and testing performance. The proposed method can effectively
improve the agent’s training performance in both the initial train-
ing and online fine-tuning stages. Intermittent human guidance
can be a good option to generate satisfactory results for DRL perfor-
mance improvement; at the same time, it exerts no substantial
burden on human workload. In particular, the proposed method
largely reduces the requirements on the human side. Participating
subjects do not need to be experts with a mastery of skilled knowl-
edge or experience in specific areas. As long as they are able to per-
form normally with common sense, the DRL can be well trained
and effectively improved, even if humans’ actions are undesirable.
These factors make the proposed approach very promising in
future real-world applications. The high-level framework, the
methodology employed, and the algorithms developed in this work
have great potential to be expanded to a wide range of AI and
human–AI interaction applications.
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