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Abstract: Collective intelligence (CI) has been widely studied in the past few decades. The most well-known CI algorithm is the 
ant colony optimization (ACO), which has been used to solve complex path searching problems through CI emergence. Recently, 
DeepMind announced the AlphaZero program, which has achieved superhuman performance in the games of Go, Chess, and Shogi by 
tabula rasa reinforcement learning from games of self-play. By experimenting and implementing the AlphaZero series program in the 
game of Gomoku, along with analyzing and comparing the Monte Carlo tree search (MCTS) and ACO algorithms, it was found that 
the success of AlphaZero is not only due to the deep neural network and reinforcement learning, but also due to the MCTS algorithm, 
which was discovered to be a CI emergence algorithm. Thus, we have proposed the CI evolution theory as a general framework toward 
artificial general intelligence (AGI). Combining the strengths of deep learning, reinforcement learning, and the CI algorithm, CI 
evolution theory enables individual intelligence to evolve with high efficiency and low cost through CI emergence. This CI evolution 
theory has natural applications in intelligent robots. A cloud-terminal platform has been developed to help intelligent robots evolve 
their intelligent models. As a proof of this idea, a welding parameter optimization intelligent model for a welding robot has been 
implemented on the platform.
Keywords: collective intelligence; emergence; evolution; positive feedback; ant colony optimization; Monte Carlo tree search; 
distributed AI cloud-terminal platform; intelligent robot

1  Introduction

The concept of collective intelligence (CI) originated in 1785 
with the Condorcet’s jury theorem, which states that if each 
member of a voting group has more than one half chance to 
make a correct decision, the accuracy of the majority decision in 
the group increases with the number of the group members [1]. 
In the late twentieth century, CI was applied to the machine 
learning field [2] and grew into a broader study of how to design 
collectives of intelligent agents to meet a system-wide goal [3,4]. 
This concept is related to the use of a single intelligent agent 
for reward shaping [5] and has been taken forward by many 
researchers in the game theory and engineering community [6]. 

However, while CI algorithms such as the well-known ant col-
ony optimization (ACO) focused on how to make group intel-
ligence emerge and go beyond the individual intelligence, they 
lacked a mechanism to evolve individual intelligence and could 
not be applied to a self-evolving artificial general intelligence 
(AGI) agent without significant extensions.

The long-standing goal of AGI has been to create programs 
that can learn for themselves from the first principles [7]. Re-
cently, the AlphaZero algorithm achieved superhuman perfor-
mance in the games of Go, Chess, and Shogi by using deep 
convolutional neural networks and reinforcement learning from 
games of self-play [8]. However, the reason for AlphaZero’s 
success has not fully been understood. Through analyzing and 
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testing AlphaZero, we found that the logic of CI is implied in 
this algorithm.

In this paper, we introduce the CI overview first. Next, we 
apply the AlphaZero algorithm to the game of Gomoku and 
observe the evolution power of the deep neural networks. After 
that, we compare Monte-Carlo tree search (MCTS) with ACO 
and identify MCTS as a CI algorithm. Finally, based on our anal-
ysis, we propose the CI evolution theory as a general framework 
toward AGI and apply the CI evolution theory to intelligent  
robots.

2  Collective intelligence overview

Recently, CI has been widely used in a variety of scenarios, 
such as the collaboration of the staff on a project, investment 
decisions of the board of a company and voting for presidential 
election. It seems that doing things by a group is more intelli-
gent than that by an individual. However, Gustave Le Bon [8] 
pointed out in his famous book ‘The Crowd’ that group be-
havior can be extreme. In this sense, CI cannot be achieved 
by a simple combination of individuals. Therefore, we should 
first understand the features of CI to make the best use of it in 
achieving our goal.

In the field of sociology, a group of researchers (Thomas 
W. Malone et al.) from MIT Center for Collective Intelligence 
divided the required work into four components: executor, mo-
tivation, goal, and implementation parts. They then proposed 
‘the CI genome’ based on this division [9]. Using Google and 
Wikipedia as examples, they analyzed these organizational genes 
systematically and presented the conditions for ‘CI genes’ to be 
useful. Moreover, their colleagues systematically studied the 
group performance in two different experiments and found the ‘C 
factor,’ which measures the group’s general ability [10]. This ‘C 
factor’ is correlated with the average social sensitivity of group 
members, the equality in discourse power, and the proportion of 
females in the group. Predictably, by recombining ‘CI genes’ and 
considering the ‘C factor’ in accordance with the task, one can 
get the powerful system he needs.

On the foundation of these sociological theories of CI, people 
have been able to better solve problems with the help of collec-
tive effort, especially in computer science. In 1991, M. Dorigo et 
al. [11] studied the food searching behavior of ants and proposed 
the ACO algorithm [12−14]. The basic idea of this algorithm is 
to choose the next node based on a pheromone until the proper 
solution is reached. In the ACO algorithm, the updating process 
of the information distribution of the pheromone is based on all 
searching tours in the current iteration, which can be understood 
as the emergence of the CI of ants. In this sense, the ACO algo-
rithm has been successfully used in multiple problems, e.g., the 
traveling salesman problem (TSP) [15−16], data mining, and 
optimization of proportional–integral–derivative control parame-
ters. In addition, scientists have proposed several useful CI algo-

rithms, such as the particle swarm optimization algorithm [17], 
which simulates the food hunting of birds.

Apart from CI’s success in these optimization problems, 
learning from crowds can be a solution to challenges in the 
real-world application of machine learning when big data is in-
volved. For example, labels for training in the supervised learn-
ing may be too expensive or even impossible for many applica-
tions to obtain [18]. Therefore, researchers have developed CI 
learning technology [19−22] to overcome this difficulty. In the 
next section, we will see the power of CI in dealing with large 
numbers of labels for board games. In our study, we attempt to 
solve industry problems with CI evolution theory in applications 
such as intelligent robots, and we have presented preliminary 
results for verification. We hope that our work can stimulate the 
study of CI in computer science and pave the way for connecting 
CI with deep learning and reinforcement learning.

3  Discovery of CI in AlphaZero

In this section, we review the theory applied in AlphaZe-
ro [8], as well as previous versions AlphaGo Fan [23], AlphaGo 
Lee [24], AlphaGo Master [24], and AlphaGo Zero [24]. Then, 
the theory is conceptually analyzed from the point of view of 
CI. The theory is divided into two parts: 1) the representation 
of individuals by deep neural networks and 2) the evolution of 
individuals by reinforcement learning. Note that we discuss the 
details of MCTS in the next section to highlight the significance 
of it, because this is where CI emerges. Finally, we apply Alp-
haZero to a new game called Gomoku to demonstrate the appli-
cability of AlphaZero.

3.1  Review of the main concept of AlphaZero

In the view of real-time playing, AlphaZero employs MCTS 
to search for the optimal move. Because the time for a search is 
limited, it is difficult to consider all possible moves. As a result, 
the policy network is used to reduce the width of the search, and 
the value network is applied to reduce the depth of the search. 
The policy network serves as a prior probability, which provides 
higher probability for moves that may eventually lead to a win. 
The value network is treated as an evaluation function, which 
offers the prediction of game outcome without simulating the 
game to the end.

In the view of training, the policy and value networks are 
trained by a policy iteration algorithm from reinforcement learn-
ing. MCTS is regarded as the policy improvement operator, be-
cause the probability given by the search is better than that given 
by the policy network. Hence, the search probability is the train-
ing label for the policy network. The self-play based on MCTS 
is viewed as the policy evaluation operator, where the policy 
stands for the search probability because the move is based on 
the search probability. The game outcome is the training label 
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for the value network. In the following section, CI will be uti-
lized to analyze AlphaZero from a different view.

3.2  Representation of individuals by deep neural networks

The capability of individuals limits their intelligence. If the 
individual capability is low, CI cannot be inherited by individ-
uals, even if CI emerges. In AlphaZero, the individuals are rep-
resented by deep neural networks to increase the capability of 
individuals.

In AlphaGo, the policy network is used to provide the prob-
abilities of the next move given the current state of the board, 
and the value network is used to offer the probabilities of win-
ning the game given the current state of the board. In AlphaGo 
Fan, the neural networks are separated into the policy and value 
networks. There are 13 convolutional layers for each of the two 
networks. In AlphaGo Lee, the number of filters in each convo-
lutional layer is raised from 192 to 256. From AlphaGo Master 
to AlphaZero, the policy and value networks are combined in a 
single network, and the number of convolutional layers is raised 
to 39 or 79, excluding policy and value heads. This comparison 
is summarized in Table 1. The performance of AlphaZero is dis-
tinctly better than the performance of AlphaGo Lee. In addition, 
it should be noted that the neural network in AlphaZero trained 
by supervised learning has comparable performance with Alpha-
Go Lee. This fact exhibits the contribution of the neural network 
in AlphaZero.

There are several reasons why the neural network in Alp-
haZero is superior. The first and most important one is the size 
of the network. We can find that the number of convolutional 
layers in AlphaZero is three times that in AlphaGo Lee, which 
means the number of adjustable weights in AlphaZero is also 
roughly three times that in AlphaGo Lee. This indicates that the 
capability of the network is significantly improved. Therefore, 
the network can be trained to learn the search probabilities gen-
erated by MCTS, which means the individuals can inherit the 
knowledge obtained by CI. Other reasons include: 1) the residual 
block decreases the training difficulty; and 2) the dual-network 
architecture regularizes the policy and value networks to a com-
mon representation and improves the computational efficiency.

3.3  Evolution of individuals by reinforcement learning

Once individuals have the required capability, the next ques-
tion is how to make them evolve. To make individuals continu-
ously evolve, the direction of evolution has to be determined. In 
AlphaZero, the direction is found by the individuals’ own experi-
ence, namely reinforcement learning. As a result, the individuals 
keep evolving and finally surpass the performance of their previ-
ous versions and human experts.

In the earliest version AlphaGo Fan, the policy network is 
initially trained by expert knowledge. Then, the REINFORCE 
algorithm is employed to improve the performance of the policy 
network. In other words, the reinforced network is trained by the 
outcome of the game that is played by the policy network itself. In 
the next version AlphaGo Lee, the value network is trained from 
the outcomes of the games played by AlphaGo, rather than the 
games played by the policy network. This procedure is iterated 
several times. From AlphaGo Master to AlphaZero, not only is 
the value network trained from the outcomes of games played by 
AlphaGo, but the policy network is also trained from the search 
probabilities generated by AlphaGo. It should be noted that MCTS 
is employed to generate the search probability and make the move.

From the development of AlphaGo, we can conclude that 
reinforcement learning becomes the key of evolution, and the 
quality of self-generated labels determines the level of evolution. 
For the value network, when comparing AlphaGo Fan with the 
later versions, the main difference is the outcomes of the games, 
namely the labels for the value network. In the later versions, 
the labels become more accurate because they are generated by 
AlphaGo, which uses MCTS to make the move instead of the 
reinforced policy network only. For the policy network, from 
AlphaGo Master to AlphaZero, the search probabilities generat-
ed by MCTS are employed as the labels, rather than the policy 
network’s own moves guided by the game outcomes. This com-
parison is summarized in Table 2.

The reason why the labels generated by MCTS are better 
than those generated by the policy network is briefly explained 
next. MCTS involves multiple simulations to make one move. In 
each simulation, the policy network is used for prior probability, 
and the value is used for updating action-value. We can treat the 

Table 1. Comparison of structures of AlphaGo neural networks.

AlphaGo Fan AlphaGo Lee AlphaZero

Number of convolutional layers 13 13 39 or 79

Number of filters in each layer 192 256 256

Table 2. Comparison of the source of labels.

AlphaGo Fan AlphaGo Lee AlphaZero

Policy’s label Supervised policy Supervised policy AlphaGo

Value’s label Reinforced policy AlphaGo AlphaGo



004

Theory of Collective Intelligence Evolution and Applications in Intelligent Robots

policy and value network in each simulation as an individual, 
and the search probability becomes more precise as the number 
of individuals increases. Therefore, MCTS can provide the CI, 
namely, the search probability in this case. In [24], MCTS is 
viewed as a policy evaluation operator in reinforcement learn-
ing. However, the policy that was evaluated in that case is the 
search probability instead of the policy network, which is differ-
ent from the original policy iteration algorithm. Therefore, it is 
more proper to consider MCTS as a CI algorithm than a policy 
evaluation operator. Additional information about MCTS will be 
presented further in this paper.

3.4  Results of training in Gomoku

To demonstrate the applicability of AlphaZero, we used this 
technique in a new game called Gomoku, as well as in its variant 
Renju. The training results are presented further in this section. 
Note that some improvements were made to AlphaZero to adapt 
it to the rules of Gomoku and Renju. These improvements are 
beyond the scope of this paper and will be explained in a sepa-
rate paper.

The training results of the improved AlphaZero in Gomoku 
are shown in Fig. 1. The first plot shows the performance of the 
improved AlphaZero. Note that we also implemented the Alpha-

Go Fan in Gomoku, and its performance is added for compari-
son. Elo ratings were computed from the evaluation games with 
various openings between different players using 1 second of 
thinking time per move. For AlphaZero, we used a single graphic 
processing unit for the neural network computation. The second 
plot shows the accuracy of the neural network at each iteration 
of self-play in predicting moves from the test-set. The accuracy 
measures the percentage of positions in which the neural net-
work assigns the highest probability to the move. The third plot 
shows the mean-squared error (MSE) of the neural network at 
each iteration of self-play in predicting the outcome of the test-
set games. Similarly, the training results of the improved Alp-
haZero in Renju are shown in Fig. 2.

From these figures, we can see that the performance of Al-
phaZero is better than the performance of traditional engines 
based on expert knowledge. The policy and value networks grad-
ually learn their own strategy from their own experience. This 
demonstrates that AlphaZero can be applied to more games with 
different rules. The generality of AlphaZero is inherited from the 
generality of the deep neural network representation method and 
reinforcement learning evolution approach. Moreover, the labels 
generated by MCTS provide the direction of evolution for the 
reinforcement learning. In the next section, CI will be used to 
explain the principles of MCTS.
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Fig. 1. Training results of the improved AlphaZero in Gomoku.  
(a) Performance of the improved AlphaZero in Gomoku. The performance of the corresponding policy network is indicated by gray color. (b) Prediction 

accuracy on the test-set moves. (c) MSE on the test-set game outcomes.
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 (a) Performance of the improved AlphaZero in Renju. The performance of the corresponding policy network is indicated by gray color. (b) Prediction 

accuracy on the test-set moves. (c) MSE on the test-set game outcomes.
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4  Analysis of ACO and MCTS

ACO is one of the most representative CI algorithms, and 
MCTS is known as an efficient search algorithm for the decision 
processes. In this section, the basic approaches of ACO and 
MCTS are analyzed and applied to TSP. From the test results, 
some common features of ACO and MCTS are extracted and 
analyzed.

4.1  TSP

TSP is a combinatorial optimization (CO) problem and can 
be defined as follows [25].

Let V = {a, …, z} be a set of cities, A = {(r,s):r,s∈V} be the 
edge set, and δ(r,s) = δ(s,r) be the distance of the edge (r,s)∈A. 
The TSP is the problem of finding the minimal cost of a closed 
tour that visits each city once. The case where the cities r∈V 
are given by their coordinates (xr, yr) is also called the Euclidean 
TSP.

TSP is one of the well-known non-deterministic polynomial 
difficult problems, where the computational complexity is poly-
nomial to the number of cities in the set V.

4.2  ACO

ACO [25−27] was first inspired by the foraging behavior of 
real ants to solve difficult CO problems, such as the TSP. When 
searching for food, ants initially explore the area surrounding 
their nest in a random manner. As soon as an ant finds a food 
source, it evaluates the quantity and quality of the food and car-
ries some of it back to the nest. During the return trip, the ant 
deposits a chemical pheromone trail on the ground. The quantity 
of the deposited pheromone, which may depend on the quantity 
and quality of the food, guides other ants to the food source. 
Ants communicate with others via pheromone trails, which en-
able them to find the shortest path between their nest and food 
sources.

When solving the TSP, there are two major steps in each 
ACO iteration:

Simulation: Each ant generates a complete tour by making 
actions according to the probabilistic state transition rule, which 
governs the selection of the action proportionally to the transi-
tion probability,

at ~ pk(r,s) =
0,

[τ(r,s)]·[η(r,s)]β

[τ(r,u)]·[η(r,u)]β∑ u∈Jk(r)
if s∈Jk(r)

otherwise

,
 (1)

where τ is the pheromone, η = 1/δ(r,s) is the inverse of distance 
δ(r,s), Jk(r) is the set of cities that remain to be visited by ant k  
positioned at city r, and β is the parameter of the prior probability.

Update: Once all ants have completed their tours, a global 
pheromone updating rule is applied on all edges according to

 τ(r,s) ← (1 – α)·τ(r,s) + ∑ Δτk(r,s)k=1 
m

 (2)

where

 Δτk(r,s) =
0,

Q
Lk

if (r,s)∈tourdonebyantk

otherwise

,
 (3)

α is the pheromone decay parameter, Lk is the length of the tour 
performed by ant k, and m is the number of ants. Q is the weight 
parameter of pheromone, which determines the relative impor-
tance of exploitation versus exploration.

The process is iterated until the termination condition is met. 
In this paper, hyper-parameters Q = 1.0, α = 0.1, and β = 1.0 are 
used.

4.3  MCTS

MCTS  [28−30] is a heuristic tree search method for finding 
optimal actions in a given environment. MCTS has achieved 
great success in the challenging task of Computer Go. Combin-
ing MCTS with deep neural networks and self-play reinforce-
ment learning, AlphaGo [23] and AlphaGo Zero [24] have suc-
ceeded in beating the best human players.

MCTS takes random actions as a simulation to estimate the 
value of each state in a search tree space. As more simulations 
are executed, the search tree grows larger, and the state values 
become more accurate. The tree policy used to select actions 
during the search is also improved by selecting children with 
higher values. Asymptotically, this policy converges to the op-
timal policy, and the evaluations converge to the optimal value 
function.

Fig. 3(a) shows one iteration of a general MCTS approach, 
and there are 4 steps [28] in every iteration:

Selection: Starting at the root node, a child selection tree 
policy is recursively applied to descend through the tree un-
til the leaf node is reached. The tree policy in TSP selects the 
maximum action according to a variant of the upper confidence 
bound for trees (UCT) algorithm,

 

at = argmax(Q(s,a) + u(s,a))

Q(s,a) =

u(s,a) = CpP(s,a)

L(s,a)/N(s,a)
L

1 + N(s,a)
∑bN(s,a)

 (4)

where s is the current node state, L(s,a) is the total route distance 
through edge (s,a), and N(s,a) is the number of times edge (s,a) 
has been visited so far. L is the average length of all legal closed 
routes. Cp is the hyper-parameter, which determines exploitation 
and exploration of the tree. The prior probability is denoted by 
P(s,a), which is proportional to the inverse of the distance δ(s,a),
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 P(s,a) =
∑b1/δ(s,a)
1/δ(s,a)

 (5)

Expansion: To expand the leaf node, one (or more) child 
nodes are added to expand the tree according to the available 
actions.

Simulation: A simulation is run from the new node(s) accord-
ing to the default policy to produce an outcome lt. The simula-
tion default policy chooses a legal city proportional to the prior 
probability.

Backpropagation: The simulation result is backed up through 
the selected nodes to update their statistics,

 N(s,a) ← N(s,a) +1, L(s,a) ← L(s,a) + lt  (6)

After the specified number of iterations, the final action is 
chosen by selecting the most visited root child. In this paper, hy-
per-parameter Cp = 3.0 is used.

4.3  Results and analysis

As the cities map in Euclidean TSP is an undirected graph, 
and the route is closed, the search graph can also be treated as a 
tree structure. In comparison with MCTS, ACO uses only one 

ant which starts from a fixed city in each iteration, and the fixed 
starting city is the root tree node in MCTS. The details of hy-
per-parameter settings are shown in Table 3.

These two algorithms were applied to a 30-city TSP, and a 
random search with the MCTS default policy was added for 
the comparison. TSP optimization was run 10 times using these 
three methods, and the final results are shown in Table 4 and 
Fig. 3(b).

As we can see, ACO and MCTS both show a much better 
convergence than the random search. MCTS has a better conver-
gence than ACO in the first 100 iterations; however, it stagnates 
in the latter half. One of the major reasons for this phenomenon 
is that the MCTS search structure is a tree, whereas the ACO 
search structure is a network. Thus, ACO still has better capacity 
in optimizing the local area.

Compared with ACO, MCTS has a similar mechanism of the 
optimization iteration. In an iteration, each individual needs to 
simulate according to the policy and update the global collective 
memory with the outcome. The simulation policy also evolves 
depending on the collective memory. Common features of these 
two methods can be listed as follows.

Simulation policy: In ACO, the simulation policy is given by 
the probabilistic state transition rule. In MCTS, the in-tree selec-
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Fig. 3. (a) Four steps in each iteration of the general MCTS approach, and (b) convergence history of ACO, MCTS, and Random Search.
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tion tree policy is the UCT algorithm, and the simulation policy 
is the default policy.

Collective memory sharing: In ACO, all simulation outcomes 
are updated with the pheromone, which determines the next sim-
ulation action probability. In MCTS, the simulation outcome up-
dates with Q(r,s), which influences the next selection tree policy.

Balance between exploitation and exploration: In ACO, the 
simulation selects actions proportional to the state transition 
probability. In MCTS, the UCT algorithm is applied to balance 
the exploitation and exploration. To balance between exploita-
tion and exploration, ACO has a hyper-parameter Q, while 
MCTS has a hyper-parameter Cp.

The listed features are also common features of CI emer-
gence. From the test results and contrastive analysis, although 
MCTS does not have the explicit concept of population, the 
emergence mechanism can still be seen as a CI algorithm. The 
CI emergence is also the key reason for the efficient convergence 
of ACO and MCTS.

5  Theory of the CI evolution

After a thorough study of the AlphaZero program and MCTS 
algorithm, the underlying intelligence evolution mechanism has 
been fully discovered. The success of AlphaZero relies mainly 
on two factors: 1) the use of a deep convolutional neural net-
work to represent the individual intelligent agent, and 2) the use 
of MCTS to make group intelligence emerge and exceed indi-
vidual intelligence. Deep convolutional neural networks are able 
to evolve their intelligence by training with proper target labels. 
The MCTS algorithm is able to generate proper target labels 
through the CI emergence. Combining these two factors in the 
reinforcement learning environment, a positive feedback of indi-
vidual intelligence evolution is formed.

Therefore, we propose the CI evolution theory as a general 
framework toward AGI. First, we define a deep neural network 

to represent an individual intelligence agent. Second, we use 
a CI algorithm to make group intelligence emerge and exceed 
individual intelligence. Third, we use this higher group intelli-
gence to evolve the individual intelligence agent. Last, we repeat 
the emerge-evolve steps in a reinforcement learning environment 
to form a positive feedback of individual intelligence evolution 
until the intelligence converges. The diagram of the evolution is 
shown in Fig. 4. 

We use p(k) and vp(k) to denote the individual policy and indi-
vidual value at k-th iteration, respectively. p(k) can be represent-
ed by a deep neural network. vp(k) is the criterion for measuring 
the level of individual intelligence, which can be obtained by in-
teracting with the environment by the policy p(k). For example, 
in the game of Go, the environment can be defined as playing 
a sufficient number of games with several opponents, and the 
value is 1 for winning and 0 for losing; then, vp(k) is exactly the 
winning probability using p(k). Elo rating is employed in Alp-
haZero to measure the level of individual intelligence, which is 
essentially calculated by the winning probability obtained from 
interacting with the environment. The winning probability can 
be reversely calculated by the difference between the individual 
Elo and average environment Elo. We use π(p(k)) and vπ(vp(k)) 

Table 3. Hyper-parameters in ACO and MCTS.

ACO MCTS

Search method Starting from fixed city Only 1 ant in colony
Starting from fixed city

Prior probability Transition probability η
β

η = 1/δ(r,s), β = 1.0
Prior probability P(s,a)

P(s,a) =
∑b1/δ(s,a)
1/δ(s,a)

Other parameters Pheromone weight Q = 1.0
Pheromone decay α = 0.1

UCT weight Cp = 3.0

Table 4. Results of ACO, MCTS, and random search.

Best Average

ACO 426.75 456.97

MCTS 450.74 463.51

Random search 694.79 749.25

CI 
emergence

Individual
intelligence
evolution

Individual
intelligence

Group
intelligence

Fig. 4. The block diagram of the AGI evolution.
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to denote the collective policy and collective value, respective-
ly; π(p(k)) is generated by the CI, and vπ(vp(k)) is acquired by 
interacting with the environment by the policy π(p(k)). Denot-
ing the optimal value as v*, we generally have vp(k) ≤vπ (vp(k)) 
≤ v*. In addition, we use α(k)∈ [0,1] to describe the degree of 
intelligence that individuals learn from the group, namely the 
interpolation between vp(k) and vπ(vp(k)). We also use β(k) = 
vπ(vp(k)) – vp(k)∈ [0,v* – vp(k)] to describe the additional degree 
of intelligence that the group has compared with the individuals. 
If we treat vp(k) as a state in a dynamic system and treat vπ(vp(k)) 
as a control input, the positive feedback can be formulated as the 
following discrete-time system: 

 

vp(k +1) = (1 – α(k))vp(k) + α(k)vπ(vp(k))
= vp(k) + α(k)(vπ(vp(k)) –  vp(k))
= vp(k) + α(k)β(k)

k=0
k= vp(0) + ∑ α(k)β(k)

 (7)

The goal is to obtain the optimal individual value, that is, 
lim vp(k) = lim vπ(vp(k)) = v*k→+∞ k→+∞

. The ideal case is that for any k be-
fore reaching the optimum, we have α(k) > 0 (vp(k) is monotoni-
cally increasing) and vp(0) + ∑ α(k)β(k) = v*k=0

+∞ . Certainly, other 
cases may appear in real applications. For example, there exist 
some k when α(k) < 0 or β(k) > 0, which lead to the interruption 
of the positive feedback. To ensure continuity of the positive 
feedback, theoretic support is needed, and adequate tuning of 
hyper-parameters is also required to fill the gap between theory 
and application. 

On one hand, α(k) > 0 is ensured by the training of neural 
networks. For example, the loss function l = –πT( p(k))log p(k) 
and the gradient descent algorithm are applied to train neural 
networks. According to the Gibbs inequality [33], if and only 
if p(k) = π( p(k)), l reaches the minimum. Although we have a 
theoretical guarantee, α(k) is influenced by the structure of the 
neural networks and hyper-parameters in the gradient descent 
algorithm, which may not lead to p(k) = π(p(k)); that is, α(k) = 1. 
In real application, we only need to ensure α(k) > 0 by properly 
tuning the hyper-parameters.

On the other hand，β(k) > 0 is guaranteed by the CI algo-
rithm. After the improvement of the earliest ant system [27] 
algorithm, many algorithms have the convergence proof. The 
graph-based ant system algorithm converges to the probability 
of the optimal action being 1 [32]. Two other frequently used 
algorithms, the ant colony system [25] and the max-min ant 
system [12], converge to the probability of the optimal action 
being greater than the lower bound [33]. MCTS improves from 
the earliest version to the version involving UCT. This includes 
the upper confidence bound (UCB) [34] for the selection and 
converges to the probability of the optimal action being 1 [30]. 
AlphaZero brings the predictor UCB (PUCB) algorithm into 
MCTS, and the PUCB algorithm alone without MCTS converg-
es to the probability of the optimal action being greater than the 

lower bound [35]. Although this particular MCTS in AlphaZero 
does not have the theoretical proof, it can be seen from real 
applications that β(k) > 0 is ensured, and adequate tuning of hy-
per-parameters is required to fill the gap between the theory and 
application.

Under the condition that the perfect intelligence v* is finite, 
there are two types of intelligence convergence. One is that the 
individual intelligence approaches the same limit as the group 
intelligence. This means that either the perfect intelligence is al-
ready reached, that is, lim β(k) = 0

k→+∞
, lim vp(k) = lim vπ(vp(k)) < v*k→+∞ k→+∞

,  
or the CI algorithm is not sufficient to produce higher group 
intelligence, that is, lim β(k) = 0

k→+∞
, lim vp(k) = lim vπ(vp(k)) < v*k→+∞ k→+∞

.  
The other is that the individual intelligence approaches a limit 
that is lower than the group intelligence. This means that either 
the capacity of the individual intelligence is not sufficiently large, 
or the training method is no longer effective, that is, lim α(k) = 0

k→+∞
 

and lim vp(k) = 
k→+∞

lim vπ(vp(k)) ≤ v*k→+∞
vp(0) + ∑ α(k)β(k) < k=0

+∞ .
Compared with current machine learning methods, the CI 

evolution theory has some advantages. Deep learning is power-
ful but relies on an extremely large amount of high-quality la-
beled data, which is expensive. Reinforcement learning provides 
an evolution environment for the individual intelligence agent to 
evolve by inexpensive reward signals, but the learning efficiency 
is low because of the trial-and-error nature. The CI algorithm 
is able to make group intelligence emerge from nothing, but it 
lacks a mechanism to evolve individual intelligence. Combining 
the strengths of deep learning, reinforcement learning, and the 
CI algorithm, the CI evolution theory enables individual intel-
ligence to evolve with high efficiency and low cost through CI 
emergence. Moreover, the evolution can start from ground zero, 
making the CI evolution theory a step further toward AGI.

6  Applications in intelligent robots

Traditional robots may utilize some computer vision or expert 
system technologies to realize certain kinds of intelligent behav-
ior, but they lack the learning or evolving capability to automat-
ically adapt to environment changes. For example, a welding ro-
bot is able to track the weld line through a 3D vision system and 
traditional feature-based vision algorithms. However, one has to 
adjust some critical parameters manually in a new welding envi-
ronment to make the welding robot work properly. These manual 
efforts prevent the extensive applications of robots. Therefore, 
the robot industry demands intelligent robots that can automati-
cally adapt to the environment like human beings.

Our CI evolution theory has a natural application in intelli-
gent robots, which is natively provided by a reinforcement learn-
ing environment through the closed loop of a sensor, intelligent 
agent, and actuator. An application of the theory is called the 
intelligent model. To facilitate the implementation of the intelli-
gent model, a cloud-terminal platform was developed to create 
and evolve the intelligent models for intelligent robots.
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Intelligent models for industrial applications are mainly di-
vided into three categories: visual detection, data prediction, and 
parameter optimization. Among them, parameter optimization 
has the greatest demand. Therefore, an intelligent model for 
welding parameter optimization in a welding robot was imple-
mented on the cloud-terminal platform.

With the development of science and technology in the field 
of steel welding, robotic welding has gradually replaced manual 
welding. During the welding process, the parameters of welding 
directly affect the quality of welding. Welding parameters include 
welding torch moving speed, current, voltage, welding torch an-
gle, etc. Welding parameters need to be manually adjusted and 
optimized by welding engineers according to the conditions of the 
welding plate material, weld gap width, and thickness. In order 
to meet the needs of the intelligent application of welding robots 
in industry, we propose the technology of deep learning and re-
inforcement learning, combined with the 3D vision system of 
welding robots, to optimize welding parameters based on different 
welding conditions, i.e., generate a mapping relationship from the 
welding conditions to the optimal welding parameters. The weld-
ing robot could then automatically adjust the welding parameters 
according to the different welding conditions.

Considering the simplest welding scenario, the input feature 
only retains the weld gap width, which increases uniformly from 
zero. The output parameter only controls the moving speed of 
the welding torch.

The objective of the welding parameter optimization is to 
obtain the best welding quality. Specifically, for a smaller weld 
gap width, the solder width is expected to be kept at 5 mm; for a 
larger weld gap width, the solder width is expected to be 2 mm 
larger than the weld gap width. No matter how wide the weld 
gap is, the ideal solder height is 1 mm. Fig. 5 shows the relation-
ship between the weld gap width and weld plate length. Fig. 6 
shows the relationship between the ideal solder width and weld 
gap width.

In the welding process of a weld gap, a small interval of a 

certain length is regarded as the welding point, starting from 
the beginning of the weld gap. The number of welding points is 
expressed by n. The gap width, solder width, and solder height 
of the welding point at each time step are expressed by gi, wi, 
and hi, respectively. The time step of the i-th welding point is 
expressed by ti. We define the simplified Markov decision pro-
cess model as follows. Assuming that the environmental state st 
=gi at time step t, then the action of the agent at time step t is the 
moving speed vti of the welding torch at the i-th welding point 
denoted by at = vti. Assuming that the discount factor is zero (only 
considering the immediate reward), then the difference between 
the actual welding effect and the ideal welding effect for every 
welding point is taken as a reward for this moment. 

Fig. 7 shows the training flow chart of the welding parameter 
optimization intelligent model. To train this intelligent model, 
we first go to the welding site to collect actual welding effect 
data. Then, we train the value network offline. Finally, we use 
this value network to train the policy network (welding agent). 
Fig. 8 shows the relationship between the speed of the welding 
torch and the width of the weld gap.

We deployed this intelligent model on the cloud-terminal 
platform and tested it on the welding site (Fig. 9). The model 
achieved good welding quality. It can be seen that the policy 
network we obtained for the linear widened straight weld gap 
basically meets the requirements.

For simple welding scenarios, single agent offline reinforce-
ment learning can achieve a relatively high level of intelligence, 
i.e., welding quality. If the welding conditions are complex, it 
is necessary to perform an online welding quality assessment 
first and then carry out online intelligent evolution according to 
the theory of CI evolution. This will achieve a higher level of  
intelligence.

7  Conclusion

CI emergence and deep neural network evolution are the key 
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factors that have allowed the AlphaZero program to reach super-
human performance in a number of games. To combine CI with 
deep learning and reinforcement learning, a general theory of CI 
evolution has been presented. A demo application of this theory 
in a welding robot has also been discussed. As the proposed 
theory is a general framework toward AGI, we look forward to 
using it in more applications in the future.
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