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Abstract: In the current highly competitive market environment, a critical success factor for enterprises is the ability to respond 
rapidly to customer requirements (CRs). This paper proposes a novel method to rapidly respond to CRs in product optimization 
design using fuzzy clustering and conjoint analysis-quality function deployment (CA-QFD). The approach we propose has two key 
characteristics. The first is classifying original complex CR data as a standard CR dataset with the fuzzy clustering method. The second 
is a new CA-QFD transformation method that integrates conjoint analysis with traditional QFD and can accurately transform CRs into 
product design attributes. Finally, to demonstrate the validity of the proposed method, we conduct a product optimization experiment 
by forging a machine’s main hydraulic cylinder.
Keywords: rapid response to customer requirements; fuzzy clustering; requirements transformation; CA-QFD method; product 
optimization design

1  Introduction

Customer requirements (CRs) are the starting point and driv-
ing force for personalized customization on a large scale. Prod-
uct optimization design based on CRs is the inevitable choice for 
modern enterprises to adapt to market development. However, 
with the rapid development of the market, CRs have become 
more diverse, personalized, and fuzzy, and it has become in-
creasingly difficult to quantify them. This makes it difficult 
for companies to respond quickly and effectively to CRs when 
designing products. Therefore, the effective conversion of CR 
attributes into product design attributes is extremely important if 
a company’s product optimization design is to respond quickly 
to CRs.

In the last few years, scholars have had differing opinions 
on the issues of requirements transformation and dynamic re-
quirements uncertainty. Luo et al. [1] propose a product design 

approach based on QFD for determining the optimal target 
levels of engineering characteristics with reference to CRs. 
Sheng et al. [2] propose a method based on the House of Quality 
for mapping from CRs to technical weights and target values. 
Violante et al. [3] propose an approach to obtain company-spe-
cific demands and determine the right features by integrating 
QFD with the Kano model. He et al. [4] improve the traditional 
Kano model and break through the limitations of dealing with 
the ambiguity and uncertainty of human thinking in a multi- 
granularity language environment in the field of understanding 
customer needs. Wang and Tseng [5] propose a naive Bayes 
classifier-based approach, using existing customer choices data, 
for mapping CRs to specific product design variants. In order 
to better transform CRs into technical characteristics, Zaim et 
al. [6] propose a hybrid method that integrates analytic network 
process (ANP)-weighted QFD with fuzzy logic to better rank 
the technical characteristics of products. Li et al. [7] propose an 
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approach unifying rough set methodology with QFD for modeling 
relationship measures in the process of product planning. Many 
variants of CR modeling methodologies have been proposed, such 
as QFD [8], probability analysis [9,10], and cluster analysis [11]. 

In previous research, customer demand was original informa-
tion obtained directly from the client. However, original custom-
er demand data is often ambiguous and overlapping, and cannot 
be used directly. The process of transforming CRs into product 
design attributes is independent for each reference condition. 
However, in real life, the final decision of a customer on a prod-
uct is the result of comprehensive considerations and trade-offs 
for each reference condition. Targeting these problems, this pa-
per proposes a method for rapid response to customer demands 
based on fuzzy clustering and CA-QFD. First, we cluster the 
original customer demand information by fuzzy clustering, and 
filter the results by enterprise to obtain the customer demand set. 
Then, through the joint analysis phase of the constructed demand 
transformation method, we quantify the customer’s demand, 
weight it, and then transform it into a product design attribute 
through the QFD conversion stage. Finally, we optimize the 
product using a multi-objective optimization method to achieve 
rapid responses to CRs.

2  Fuzzy clustering of customer requirements

2.1  Fuzzy clustering model of CRs

Clustering classifies a target group according to the degree 
of similarity. The objects in the same class have a high degree 
of similarity, and the objects in different classes have large 
differences. In this paper, we use the fuzzy clustering method 
based on fuzzy similarity theory to cluster the original customer 
demand information. Fuzzy clustering obtains customer demand 
information as a starting point. Through the standardization of 
demand information, the optimal clustering scheme is obtained. 
The model is shown in Fig. 1.

2.1.1  Obtaining CR information	
The principles of acquiring customer demand information is 

as follows: (i) The coverage principle: for all objects listed as 
customers, to provide full coverage of all requirements. (ii) The 
suggestion principle: in the process of obtaining the demand in-
formation, to help customers clearly express their needs by using 
suggestive language. (iii) The refinement principle: customers’ 
requirements for each attribute of the product are specifically 
refined.

The method to acquire customer demand information is as 
follows: (i) External market surveys: customer surveys, tele-
phone surveys, and other methods to discover customer needs. (ii) 
Enterprise database information analysis: analysis and forecast-
ing of enterprise historical orders and customer feedback data. 
(iii) Internet mode acquisition: access to customer needs through 
the Internet platforms.

2.1.2  CR information standardization
The original demand information obtained directly from the 

client is often unclear, and demand attributes overlap and cross. 
Standardization converts the customer’s demand information 
into usable information.

2.1.3  CR fuzzy clustering
The fuzzy clustering method clusters various CRs, transform-

ing the customer’s needs from a single object into a whole com-
posed of multiple objects with high degrees of similarity. 

2.1.4  Clustering result selection
An expert evaluation of the enterprise selects the best solu-

tion from the dynamic clustering results as the customer demand 
set. 

2.2  CR clustering based on fuzzy similarity theory

Assume that n CR attributes to be clustered constitute a set  
C = {a1, a2, …, an}, where ai represents a CR attribute and C 
is a finite non-empty set. Assume that m customer objects to be 
clustered constitute a set X = {x1, x2, …, xm}, where xi represents 
a customer object and X is a finite non-empty set. Then S = (X, C ) 
is defined as the CR information system.

2.2.1  Standardizing requirement information 
The original customer demand information is divided into 

two types: ladder and equal. Ladder type information refers to 
the hierarchical relationship of demand attribute values, such as 
weight and efficiency. Equal type information means that the at-
tribute values are independent of each other, and there is no dif-
ference in their relationship level, such as the customer’s choice 
of product packaging color.

The ladder-type attributes are gathered in the front of the 
information system, the equal-type attributes are gathered in the 
back, and they are processed using standardized mathematical 
models. A mathematical model for information standardization 
is established as follows:

Obtaining CR
information

CR information
standardization

CR fuzzy
clustering

Clustering
result selection

Fig. 1. Fuzzy clustering process of CRs.
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where i = 1, 2, …, m, x′ represents original information data, and 
x represents standardized information data.

2.2.2  Establishing the fuzzy similar matrix
Attribute values that are of equal type are converted using the 

mean of the ladder type attribute set at the front of the informa-
tion system:
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where ak represents the equality type requirement attribute value 
and k = l + 1, l + 2, …, n.

In the customer set X = {x1, x2, …, xm} the fuzzy similarity 
value rij between customer xi and xj is obtained below:
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where c represents correction factor 0 ≤ rij ≤ 1.
The fuzzy similar matrix is obtained below:
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The matrix has the following characteristics: reflexivity i = 
j, rij = 1, symmetry rij = rji, and both equal the fuzzy similarity 
value between xi and rj.

2.2.3  Establishing the closure matrix
The fuzzy similarity matrix is transitive, the closure matrix 

t(R) of R is the fuzzy equivalent matrix. That is, it satisfies the 
condition of rij  rjk≤ rik, (R × R ⊆ R2). The method of obtaining 
the fuzzy equivalent matrix is to square R to obtain R × R = R2,  
and square R2, until it appears Rk ° Rk = Rk.

	 t(R) = Rk�  (6)

2.2.4  Cut-set matrix
Cut-set matrix Rλ = (λij)
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where i, j = 1, 2, …, n, the value set of λ is the value of the ele-
ment in the closure matrix t(R), and we obtain dynamic cluster-
ing results through the different values of λ. The experts’ evalua-
tion selects the optimal clustering result, and obtains the CR set 
FCR = (CR1, CR2, …, CRm), where m represents the clustering 
number of the optimal clustering result.

3  CR transformation based on CA-QFD

3.1  The description of CA-QFD

QFD is the classic method to transform CRs into product 
design attributes. However, in the traditional QFD method, 
customers evaluate each product’s needs independently in the 
customer survey. Although this is beneficial and reduces the 
complexity of the requirement quantification problem, the result 
is only the customer’s partial preference for each attribute, rather 
than their overall preference for the entire product. The reason 
is that, when customers make decisions on products, they are 
the result of a comprehensive consideration of multiple demand 
situations of the products, which involves a trade-off of require-
ments. Evaluating attributes completely independently adversely 
affects the applicability and authenticity of the final quantitative 
results of the requirements. 

Conjoint analysis uses the product model attribute considered 
in the customer’s decision-making as a factor at the customer 
survey stage, and takes the customer’s preference for the factor 
as a utility. By providing customers with product portfolios that 
include different attributes for comparison and evaluation, their 
preferences for different product attributes are obtained. Custom-
ers can comprehensively consider multiple features in product 
decision making and make up for the shortcomings of traditional 
QFD methods in requirement survey analysis.

This paper combines conjoint analysis and QFD to construct 
a new requirement transformation method, CA-QFD. The meth-
od is outlined below:

At the conjoint analysis stage:
Step 1: Determine factors and the levels of factors
Step 2: Determine the product profile and obtain the custom-

er’s evaluation results 
Step 3: Mathematically model the customer’s requirement 

weights
At the QFD stage:
Step 4: Quantify the relationship between the factors and the 

design attributes
Step 5: Calculate the design attribute weights and construct a 

QFD transformation matrix

3.2  CR attribute quantization at the conjoint analysis stage

The conjoint analysis first determines the reference factors 
when the customer selects the product, and determines the ap-
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propriate factor level for each factor. This paper takes the stan-
dard customer demand obtained by fuzzy clustering as a factor, 
and matches each factor with no more than four levels. The 
orthogonal design method of statistical package for the social 
sciences (SPSS) tools in conjoint analysis generates a represen-
tative product profile that improves the accuracy of the survey 
response and data. At the same time, using the scoring method, it 
produces a 0–100 interval ruler table where 0 means most dissat-
isfied and 100 means most satisfied.

We analyze and calculate the scores of the product profiles 
through the conjoint analysis method, and obtain the utility of 
the factor level. The mathematical model is as follows:

	 ( )k
1 1
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where Uk  (X) represents the total utility of a product profile; I 
represents the total number of factors; PWkil represents the utility 
of the level l of factor i in customer group k, Li represents the to-
tal number of levels of factor i, and Xil represents the determined 
value. 
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Each factor has a utility value at its corresponding level. 
Then, we quantify the importance of CR attributes through the 
conjoint analysis: if there is no difference between all the utility 
values of factor i, it means that factor i has little influence on 
the customer’s choice of products. Conversely, if there is a great 
difference between each utility value, it means that factor i has a 
great influence on the customers’ choice of products.

Calculate the CR weight as follows:
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where wki
CR represents the CR weight of customer i in the kth 

customer group, and max PWkil and min PWkil represent the max-
imum and minimum factor level value, respectively.

3.3  The QFD Matrix for transforming CR attributes 

We quantify the correlation degree between CR attributes and 
design attributes and the coupling degree between each design 
attribute by the scale table 0-1-3-5-7-9. Then, we complete the 
transformation by importing the quantification results into the 
QFD transformation matrix.

To obtain the QFD matrix, first quantify the incidence re-

lation between CR attributes (CRi) and design attributes ( fj ) 
through the scale table 0-1-3-5-7-9. The related intensity can be 
divided into six levels, and the values can be used to define the 
intensity, as in Table 1.

The mathematical model of the design attribute weighting is 
below:
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where wkj
DA represents the weight of design attribute j in the kth 

customer group  and rij represents the value of the related inten-
sity.

The QFD matrix of design attribute weights is given below:
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The design attribute set is F = ( f1, f2, …, fn), and the enterprise 
selects the design attributes according to importance factor b. If 
the weight value of the design attribute is greater than b, then it 
means that the attribute is sufficiently important to require a re-
sponse, so it will be chosen as the optimization objective.

4  The multi-objective product optimization 
design model 

Product optimization design for CRs is an extension of the 
multi-objective optimization problem. The mathematical model 
is given below:
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This paper uses the NSGA-II [12,13] algorithm to inde-
pendently optimize each product to obtain the Pareto optimal set 
after CRs are transformed into product optimization objectives, 

Table 1. Related intensity and the corresponding value evaluation index.

Intensity Very strong Moderately strong Strong Weak Very weak Independent

Value 9 7 5 3 1 0
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and then to obtain an optimal solution according to fuzzy set 
theory. The NSGA-II genetic algorithm is shown in Fig. 2.

The algorithm has the characteristics of strong stability and 
fast computing speed. It is used in engineering optimization de-
sign, and is an effective solution to optimization design problems 
with multiple objectives. It first sorts the initial population and 
calculates the crowded distance, then generates new individuals 
through genetic operations such as crossover and mutation. The 
new individual and the parental band are fused to form a new 
generation of temporary storage population, then the temporary 
population is sorted according to rank and crowding distance and 
an evolutionary operation is completed. When the loop reaches 
the preset number of iterations, the operation stops and obtains 
the optimal solution set of the optimization target. Finally, the 
optimal solution is filtered by the fuzzy set.

5  Case illustration

5.1  Fuzzy clustering of hydraulic cylinder CRs

According to the market requirement statistics for the main 
hydraulic cylinder of forging machines, the original requirement 
information statistic table of the 12 forging-machine manufac-
turing enterprises is obtained, as shown in Table 2.

a1 represents price, a2 represents allowable stress of hydraulic 
cylinder, a3 represents weight, a4 represents minimum service 
life, a5 represents maximum stroke, and a6 represents the hydrau-
lic cylinder usage attribute value, where 1, 2, and 3 represent the 
normal, medium, and large special types, respectively. 

Let c = 0.1, and obtain the closure matrix t(R), t(R) = R8 from 
equations (1) through (6). 

START

Whether nondominated
sorting is finished?

Gen=1

Set running parameters:
• Population size N,          
• Generation Genmax,                 
• Crossover probability Cp
• Mutation  probability Mp

Generate initial population
P0 of size N

Binary tournament selection,
Fitness sharing and niching

Crossover with 
a probability 

of Cp

Mutation with 
a probability 

of Mp

Combine the parent population       
Pt and child population Q0

Population sorting and space calculation

Create Pt+1 by adding the highest 
ranked front sets

END

Gen < Genmax

YES

NO

Rank=1

Extract the 
nondominated point

Rank=Rank+1

Fast nondominated 
sorting procedure

NO

YES

Fig. 2. The NSGA-II process.
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1.00 0.92 0.95 0.93 0.95 0.92 0.92 0.85 0.95 0.98 0.95 0.95
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0.95 0
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0.85 0.85 0.85 0.85 0.85 0.85 0.85 1.00 0.85 0.92 0.92 0.92
0.95 0.92 0.95 0.93 0.92 0.92 0.85 0.85 1.00 0.85 0.85 0.95
0.98 0.92 0.95 0.96 0.93 0.96 0.92 0.92 0.85 1.00 0.85 0.95
0.95 0.93 0.93 0.95 0.93 0.95 0.92 0.92 0.85 0.85 1.00 0.95
0.95 0.92 0.92 0.98 0.93 0.95 0.92 0.92 0.95 0.95 0.95 1.00

 

Table 2. Original requirement information statistics.

Customer a1 (10 000 yuan) a2 (Mpa) a3 (t) a4 (year) a5 (m) a6

x1 6 120 55 5.5 1.5 1

x2 22 100 49 11 1.5 2

x3 7 120 53 7 1.25 1

x4 9 115 55 6 1.5 1

x5 2.5 135 60 3 1 1

x6 16 105 51 9 1 2

x7 15 100 50 10 1.75 2

x8 35 80 40 14 2 3

x9 2 130 62 4 1.25 1

x10 8 120 54 6 1.5 1

x11 7.5 115 53 5 2 1

x12 10 110 50 8 1.5 2

According to matrix t(R), calculate the set of λ:{1.00, 0.98, 
0.96, 0.95, 0.93, 0.92, 0.85}. The results from the dynamic clus-
tering of the CRs are shown in Fig. 3.

According to the evaluation results, when λ = 0.93, rλ = 4, 
the demand importance index Fλ  is best. Therefore, the optimal 
clustering result is {x1, x3, x4, x10, x11}, {x2, x6, x7, x12}, {x5, x9}, 
{x8}. If each cluster subset is defined as a CR factor, then the 
best set of CRs is obtained from FCR = (CR1, CR2, CR3, CR4), 
where CR1 represents price factor, CR2 represents safety factor, 
CR3 represents weight factor, and CR4 represents lifetime factor. 

5.2  CR transformation

Take the CR set obtained by fuzzy clustering above as the 
factor of conjoint analysis, and then determine factor levels, as 
shown in Table 3 for the hydraulic cylinder market.

Use the conjoint analysis method to establish a total combi-
nation profile of factor levels and market samples score for each 
profile, sample size 50. The evaluation results of the profile are 
shown in Table 4.

Using formulas (8) through (10), we obtain the utility val-
ue of each factor level and the weight of CRs. The results are 
shown in Table 5.

The main hydraulic cylinder’s design attributes and forging 
machine metrics are mainly the following: f1 is power loss ΔP 
(economic attribute index); f2 is flange transition zone maximum 
equivalent stress YD/MPa (safety attribute index); f3 is friction 
torque Mf/N·cm, f4 is fatigue stress σ/MPa (lifetime attribute 
index); f5 is volume V/cm3 (weight attribute index).

Assign the CR attributes to design attributes by using the 
quantitative scale 0-1-3-5-7-9, and obtain the design attribute 
weights from formula (11). The QFD matrix is shown in Fig. 4.

For hydraulic cylinder manufacturing enterprises, the impor-
tance factor value b is 0.2. Design attributes that are bigger than 
b should be selected as the optimization objective. Therefore, the 
optimization objectives in this case are f2 and f5.

5.3  Multi-objective optimization design of hydraulic cylinder

Through the previous steps of clustering and quantifying the 
design attributes, we find the optimization objectives to be safety 
and weight. Next, we replace safety with the maximum equiva-
lent stress in the flange transition zone YD, and weight with the 
hydraulic cylinder volume V. This establishes the optimization 
objective function and constraints for the hydraulic cylinder. A 
simplified model of the hydraulic cylinder is shown in Fig. 5.
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The function of the optimization objective is illustrated as: 
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According to the design requirements, assembly process, pro-

x1 x10 x3 x11 x5 x9 x4 x2 x12 x6 x7 x8

λ = 1.00

λ = 0.98

λ = 0.96

λ = 0.95

λ = 0.93

λ = 0.92

λ = 0.85

Fig. 3. The dynamic clustering results.

Table 3. Factor and factor levels.

Factor Factor Level

CR1 Price L11 High

L12 Middle

L13 Low

CR2 Safety L21 Very important

L22 Important

CR3 Weight L31 Heavy

L32 Light

CR4 Lifetime L41 Long

L42 Short

Table 4. The evaluation results of the profile.

N/S
CR1 CR2 CR3 CR4 Score

L11 L12 L13 L21 L22 L31 L32 L41 L42 1 2 3 4 5 6 7 8 9 …

1 √ √ √ √ 80 60 90 70 50 80 70 90 60 …

… …

8 √ √ √ √ 70 50 90 50 60 70 80 90 90 …

… …

16 √ √ √ √ 90 60 80 70 90 90 50 60 40 …

… …

24 √ √ √ √ 50 90 60 90 60 80 60 50 70 …

Table 5. Weights of CRs.

CRs Level Utility Weight

CR1 L11 +0.160 0.200

L12 +0.052

L13 −0.110

CR2 L21 +0.016 0.348

L22 +0.025

CR3 L31 +0.056 0.252

L32 +0.0127

CR4 L41 −0.052 0.200

L42 +0.104
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cessing technology specification, and manufacturing experience 
of the main working hydraulic cylinder of the forging press, the 
inequality constraints of six design variables can be determined. 
The conditions of the design variables are shown in Table 6. In 
the table, YD represents the maximum equivalent stress in the 
flange transition zone, YG1 represents the allowable stress in the 
flange transition zone, YT represents the maximum calculated 
equivalent stress in the transition zone at the bottom of the cylin-

2R2
T

L
H

RD

RT

2R1

2R0 t

Fig. 5. A simplified model of the hydraulic cylinder.

Table 6. Conditions of the design variable.	�  cm

Variable Stress constraints Range

R1 –1×1020 ≤ YD – YG1 ≤ 0 130 ≤ R1 ≤ 140

H –1×1020 ≤ YT – YG2 ≤ 0 40 ≤ H ≤ 70

T –1×1020 ≤ YM –  [YM] ≤ 0 40 ≤ T ≤ 70

RT 10 ≤ RT ≤ 40

RD 0 ≤ RD ≤ 10

t 20 ≤ t ≤ 50

der, YG2 represents the allowable stress in the bottom transition 
zone, YM represents the extrusion stress on the flange bearing 
surface, and [YM] represents allowable extrusion stress [14].

Based on the optimization model discussed above, NSGA-II 
is used to optimize every variable in the hydraulic cylinder. The 
population size of NSGA-II is 500, and the crossover and muta-
tion probability are 0.8 and 0.5, respectively. Their distribution 
indexes are both 20. The maximum iterations are 1000.

All the experiments were run on a Pentium IV (2.6 GHz) with 
1 GB RAM using GNU/Linux, and took 30.9 s of CPU time. 
The result is presented and compared with the original product 
in Table 7. 

As shown, the safety and weight performance of the hydrau-
lic cylinder was optimized. The weight of the hydraulic cylinder 
was reduced by 22%, and safety was increased by 3.8%, which 
indicates that the proposed method can respond quickly to  
CRs.

6  Conclusions

This paper presents a new method to respond quickly to CRs 
for product optimization design, which starts with information 
about original CRs and ultimately obtains the optimization ob-
jective of the product.

First, the fuzzy clustering method proposed in this paper 
solves the problem of fuzzy and diverse CR classifications, and 
realizes the standardization and streamlining of the original 
CRs. This provides the conditions for the transformation of the 

CR1

CR2

CR3

CR4

Customer requirement
Design attributes

Customer requirement weights
f5f4f3f2f1

CR
kiw

Design attribute weights DA
kjw

5 9 3 5 7

7 5 0 0 1

1 5 9 3 3

1 3 0 3 9

0.200

0.348

0.252

0.200

0.176 0.241 0.165 0.173 0.245

Fig. 4. The QFD matrix.
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requirements. Second, the CA-QFD, the combination of the 
conjoint analysis and traditional QFD methods proposed in this 
paper, solves the traditional QFD method’s insufficiency in in-
dependent analysis at the customer survey stage. CA-QFD also 
realizes the decision-making for the customer to select the prod-
uct, which makes transformation results more accurate and more 
applicable. Finally, the example of the main working hydraulic 
cylinder of a forging press shows that the method proposed in 
this paper can quickly and accurately respond to CRs, obtain 
product optimization design schemes, and provide useful infor-
mation for an enterprise’s production.
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Table 7. Optimization result.

Permissible stress (Mpa) Calculated stress (Mpa) Optimized size (cm) Bulk &Weight Contrast

[YM ] YG1 YG2 TM YD YT R1 H T RD RT
Bulk 
(m3)

Weight
(t)

Safety
(Mpa)

Weight
(t)

Original design 109 131 142 139 66 67 3.5 20 7.44 58.8

Optimized result 100 160 40 100 126 140 134 69.1 40.2 1.5 26.2 5.88 45.9 −5 −12.9


