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Abstract: With the increase in environmental protection awareness, there has been a gradual increase in the demand for improving 
product recovery performance. Based on the traditional modular design method, this study integrates the idea of active recovery of 
products with the idea of modular design and proposes modularization criteria for the active recovery of products. It considers the 
active recovery, internal polymerization degree, and external coupling degree as the optimization targets for modular division. This 
paper proposes a clonal multi-objective optimization algorithm based on the mutation operation, optimized by removing antibodies that 
are more crowded. Finally, this method is applied to an internal combustion engine to compare its performance with that of a traditional 
non-optimized algorithm. The results prove the superiority of the improved immune algorithm.
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1  Introduction

Since the reform and opening up of the economy, the Chinese 
manufacturing industry has been developing at a high speed, and 
it has achieved significant improvements on the technological 
front. The level of China’s manufacturing industry is currently 
the fourth largest in the world after the United States, Germany, 
and Japan, and the export volume of the Chinese manufacturing 
industry accounts for approximately 20  % of the world, ranking 
it first in the world. At the same time, 50  % of the national fi-
nancial revenue comes from the manufacturing industry [1]. Al-
though China’s manufacturing industry is developing rapidly, it 
is still far behind the above three countries in terms of recycling 
of scrap products. The objective for China’s manufacturing in-
dustry is to realize both a prosperous economy and a green envi-
ronment: “We want golden & silver mountains as well as green 

hills and clear water.” At present, when there is considerable 
advocacy for green development, the recycling of products has 
become a problem that China’s manufacturing industry cannot 
ignore. The recycling of products not only reduces the damage 
to the environment but also recycles useful parts, thereby reduc-
ing the cost of production. To achieve this objective, we should 
consider not only the production process of a product during the 
initial stage of design but also its active end-of-life recovery. 
Thus, we introduce the idea of modular design, which involves 
combining a number of parts into a module and then combining 
that module with other modules to form a system. Based on the 
different methods of module division, the system can meet the 
different needs of the market. Through the idea of modular divi-
sion, we can integrate the idea of product recycling into product 
design and take into account the recovery and utilization of the 
product when the product is designed and produced. Therefore, 
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the modular design method for active recovery-oriented products 
can effectively solve the problem of product handling during end 
of life, and deal with waste products reasonably to achieve green 
production.

Recently, many domestic and foreign experts and scholars 
have studied the recycling process of products nearing end of 
life. Li Fangyi and others [2] applied modularization technol-
ogy to the development of green products, improving product 
maintainability, disassembly, recyclability, and performance. 
Gu and others [3] proposed the various phases of a product’s 
life cycle and the corresponding design goals, and based on this, 
the modular design idea was extended to the full life cycle. Lu 
Yunwei [4] proposed the application of the same ratio to the 
modular classification of a product family, and combined it with 
the maintenance cycle, recovery relationship, and the possible 
green benefits of reuse. By analyzing the theory of disassembly 
and recovery in the life cycle of a product, Zeng Beichang [5] 
proposed a method of building a model through the modular 
dismantling of mixed model products. There have also been rich 
theoretical studies on the end of product life cycle for disassem-
bly [6–10].

For products in their end-of-life period, recycling is the top 
priority. However, the recovery of products involves disassem-
bly, recycling of available components, and the treatment of 
harmful components. It is difficult to quantify this as an inherent 
function. Some of the existing methods aim to solve the recy-
cling problem during the end of the product life cycle; however, 
the efficiency of recovery with such methods is low. In the pro-
posed product design method, we consider the active recovery 
of the product; combine the modular design idea with the idea of 
active recycling of the product; quantify the property of active 
recovery; consider the active recovery, internal polymerization 
degree, and external coupling degree as the optimization targets; 
and obtain a more reasonable product modularization. Finally, 
taking the traditional internal combustion engine as an example, 
the practicability of the method is verified.

2  Modular model based on active recovery of 
product during end of life

2.1  Definition of modular design for active recovery-oriented 
products

The modular design of products, in simple terms, involves 
combining the product design, product attributes, functions, and 
other factors into the modular design, so that multiple parts of 
the product are divided into different modules [11]. The modular 
design for active recovery considers the active recovery and re-
use of products in the modular design, so that the product can be 
completely recovered and reused at the end of life, thus solving 
the problems of environmental pollution and energy consump-
tion to a great extent, in order to realize green production.

2.2  Modularization criteria for active recovery-oriented 
products

The process of active recovery of a product is complicated. 
The three main aspects of the process are as follows: ① reuse 
and remanufacture of components; ② recovery of materials 
that can be used; and ③ treatment of non-recyclable waste. The 
division of a product into modules during the design stage (con-
sidering active recovery) must follow the following four basic 
principles.

2.2.1  Easy disassembly criterion
Generally, the process of disassembling a product is not 

smooth because the disassembly problem is not considered 
during the initial design. This causes the parts to be damaged or 
unable to be disassembled during the disassembly process. In 
order to solve this problem, an easy dismantling criterion is pro-
posed by defining the disassembly process factor Id (i, j):

 
 

+ WdbIdb(i, j)
Idc(i, j)

Id(i, j) = Wdc

∑
h=1

n

n
  (1)

where Wdb is the weight value of the spatial constraint relation; 
Wdc is the weight of the disassembly relationship; Wdc + Wdb =1; 
Idc (i, j) is the spatial constraint relation value; Idb (i, j) is the as-
sembly relation value; h is the serial number of the connection 
point; and n is the number of connected relations.

2.2.2  Active recovery processing criterion
In the initial stage of product design, we should consider the 

reuse of components, the recovery of parts, and the processing 
methods for parts that cannot be recycled after the product is 
abandoned. In general, the treatment methods include methods 
such as centralized incineration and others. Through the process 
of module partition, we can take the above factors into account 
using the active recovery processing criterion. The interactive 
factor that defines active recyclability is 

 
min( , )( , )
max( , )

i j
RP

i j

RP RPI i j
RP RP

=  (2)

where RPi and RPj are the recovery values of parts i and j, re-
spectively.

2.2.3  Economic criterion
According to the economic criterion, the product needs to 

be divided into modules based on an evaluation of the recov-
ery value of the product in advance, so that the product can be 
recovered more reasonably and effectively when the parts are 
recovered, thus reducing the amount of labor and improving the 
recovery income. The economic criterion for active recovery, IV 
(i, j), is given as 

 max (Vi, Vj) 

min (Vi, Vj) IV (i, j) = 
  (3)
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where IV (i, j) is the product value ratio between two products; and 
Vi and Vj are the recovery values for parts i and j, respectively.

2.2.4  Environmental norms
One of the important benefits of the active recovery of a 

product is the reduction in waste of resources and the production 
of harmful substances so that the impact of the product on the 
environment is minimized. Therefore, we introduce the ecolog-
ical index (EI) of active recovery to evaluate the recovery value 
of the material in terms of the module value. The material is di-
vided into parts that should be recovered actively and parts that 
can be discarded. The definition of the environmental interaction 
factor, Ie (i, j), is as follows: 

 
min( , )

( , )
max( , )

i i j j
e

i i j j

EI W EI W
I i j

EI W EI W
=  (4)

where Ie (i, j) represents the EI ratio between modules i and j; EIi 
and EIj represent the recovery indices of parts i and j; and Wi and 
Wj represent the weights of i and j, respectively.

The above four principles of active recovery modularization 
are analyzed. By using the relevant definition of active recovery, 
the attributes of any two parts are quantized and analyzed, and 
the attribute values of active recovery are obtained: 

 ( , ) RP RP d d v v e eI i j I I I Iλ λ λ λ= + + +  (5)

where λRP, λd, λv, λe are the weighting factors of the correspond-
ing criteria, and different weighting factors can be given as per 
the requirements during design.

3  Module division for active recovery-oriented 
products

3.1  Optimization goal of module division

3.1.1  Establishing the interrelated matrix between parts
In a product, there are functional and structural relationships 

between different parts and components. We use a fuzzy rela-
tionship to express the similarity between two parts, and the 
range of values is [0,1].

The comprehensive interrelated matrix is given by

 

1 1 2

1 21 1 1 1

1 2

1 2

1 ,1 1,1 1,1 1,

1 ,1 1 ,1 1 , 1 ,

,1 ,1 , ,

,1 ,1 , ,

q NM

N N N q N NM

p p p q p NM

N N N q N NM M M M M

M

j M

i i i j i M

M M M j M M

ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ

 

   

 

   

 

   

 

  (6)

where ξip, jq
 is the comprehensive association degree between part 

p in module Mi and part q in module Mj.

3.1.2  Internal polymerization degree of product parts
The degree of internal polymerization is defined as an index 

of similarity between different parts of the same module. A 
greater internal polymerization degree indicates greater similari-
ty between the components in the module. Therefore, it is better 
to have a higher degree of internal polymerization. The degree 
of internal polymerization is often used as a criterion for module 
partition; therefore, a mathematical model is created for the rela-
tive polymerization degree between components.

The internal polymerization degree can be represented by 
the comprehensive correlation matrix of the parts. According to 
incidence matrix (6), the aggregation index of the cluster i in the 
product module is

 p q

1 1

i i
1 q=p+1 1 q=p+1

/ 1
i i i iN N N N

i
p p

O ε
− −

= =

= ∑ ∑ ∑ ∑   (7)
            
The internal polymerization degree of all modules in the 

product is

 p q

1 1

i i
i 1 1 q=p+1 1 q=p+1

/ 1
i i i iN N N NM

i
p p

O ε
− −

= = =

= ∑ ∑ ∑ ∑ ∑（ ）  (8)
           

where N represents the total number of parts in a module unit; 
B indicates the comprehensive correlation degree; and the lower 
corners p and q refer to the p-th and q-th parts.

3.1.3  Relative coupling degree of product parts
The external independence of the product refers to the degree 

of independence between different modules. The greater the 
external independence, the lower the degree of similarity be-
tween modules; the external independence is usually measured 
in terms of relative coupling, and is the most important index in 
the module partition. The independence of modules is generally 
evaluated by the function and structure of components. Next, a 
mathematical optimization model of the integrated relative cou-
pling between modules is created. 

According to incidence matrix (6), the relative coupling be-
tween module Mi and module Mj is

 
p q

1 q=1 1 q=1

/ 1
i i i iN N N N

i
j i j

p p
M ε

= =

= ∑∑ ∑∑   (9)

The degree of relative coupling among the modules is as fol-
lows:

 
i

p q

1

i i
1 j=i+1 p=1 q=1 1 q=1

/ 1
i i iN N NNM M

i p
M ε

−

= =

= ∑ ∑ ∑∑ ∑∑( )   (10)

The degree of relative coupling between module Mi and Mj is 
expressed in formula (10), which indicates the relative coupling 
between the modules.

3.1.4  Active recovery degree
The active recovery modular calculation of a product in-

volves dividing the product into different modules according to 
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the product’s active recovery criteria, easy disassembly criteria, 
economic criteria, and environmental standards, so that the max-
imum active recovery of the product is achieved and the product 
can be recovered well. Let N be the total number of parts of the 
product and M be the number of units of the product module. 
Ni refers to the number of parts in the i-th module Mi, where 
the value of i ranges from 1 to M. We need to calculate only the 
interaction factors of the corresponding criteria and obtain the 
weight of each criterion through expert scoring. In this way, the 
relative active recovery matrix for the entire product family can 
be obtained as follows:

(1) Establish the part relative active recovery matrix:
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where rip, jq
 is the comprehensive recovery between the p-th part 

in module Mi and the q-th part in module Mj.
(2) Establish a mathematical optimization model for integrat-

ed relative active recovery among the modules. 
The relative active recovery of module Mi and module Mj is

 ∑∑∑∑
====

=
jij

qp

i N

q

N

p

N

q
ji

N

p

i
j rI

1111
1  (12)

The comprehensive relative active recovery degree among 
the modules is as follows:

 ( )∑∑∑∑∑∑
====+=

−

=

=
jij

qp

i N

q

N

p

N

q
ji

N

p

M

ij

M

i
rI

11111

1

1
1   (13)

where Ij
i is the relative active recovery degree between module 

cluster Mi and module cluster Mj; and I is the comprehensive rel-
ative active recovery degree among the cluster modules.

3.2  Module division based on the NICA-II 

In the design of a product based on module division, there are 
three optimization objectives—active recovery degree, internal 
aggregation, and external independence. Therefore, the problem 
is a multi-objective optimization problem. The mathematical 
translation of this concept is as follows:

     

[ ]( ) ( ), ( ), ( ) ,F X I X M X O X=

(x) 0, j 1, 2, 3 ..., J
(x) 0, k 1, 2,

,
,3 ..., K

j

k

g
h

≤ =
= =  (14)

           

1 2( , , ..., )
(0 )

N

i

X δ δ δ
δ

=
∈ , M

where I(X) and O(X) are the maximization objective functions; 
M( X ) is the minimization objective function; hk( x ) is a con-
straint in the optimization problem; K is the number of con-
straints; gj(x ) is another constraint; and j is the number of con-
straints.

In order to solve this problem, we propose an original method 
based on an improvement in the multi-target optimization algo-
rithm. The artificial immune system [12] is a new computational 
intelligence method associated with the biological immune 
system. The immune algorithm can efficiently solve many math-
ematical problems; however, it has some limitations. Based on 
a previous immune algorithm, Coello and others [13] developed 
the multi-objective immune system algorithm (MISA). The 
MISA is widely used in multi-objective optimization problems 
because of its convergence speed and solving precision; howev-
er, it has low efficiency when solving a number of multi-objec-
tive optimization problems divided into modules. Therefore, we 
have improved the traditional method.

Fig. 1 shows the flow chart of the novel immune clonal al-
gorithm II (NICA-II) for multi-objective problems in modular 
division. 

(1) Initialize population;
(2) Input the basic parameters of the algorithm, including 

initial algebra i = 0, antibody group size N, clone size M, and 
maximum iteration number G;

(3) Randomly generate an antibody group with a size N(i), 
and perform the immune clone operation, N (1)(i) = IC(N(i));

(4) Carry out immune gene operation and complete 
cross-variation, N (2)(i) = IC (N

(1)(i));
(5) The antibody was divided into a dominant antibody and a 

non-dominant antibody. The non-dominant antibody in the mod-
ular antibody group was selected to update the antibody group 
N (3)(i) = IS (N

(2)(i));
(6) The calculation result obtained N (4)(i) = IRS (N

(3)(i)) and 
the new target-function value matrix F (N (4)(i));

(7) It is judged that when i is greater than j, it directly outputs 
the module antibody group A(i) and its objective function matrix 
F (N(i)); when i is less than j, let

 
( 4 )

( 4 )
( + 1) = ( )
( ( + 1)) = ( ( )), 1

N i N i
F N i F N i i i= +

and return to step (2) with the result.
In order to achieve a global search, the algorithm proposed 

in this paper uses a cloning operation, in which the mutation op-
eration is the main part, and the 4-bit and 2-digit form is used to 
counter the gene value of the antibody and its gene position. In 
this case, the internal combustion engine has 19 parts, of which 
five are coded 0011; while p = 0.2, the variation is 0010. The 
compilation process is shown in Fig. 2.

In order to ensure the uniformity of the Pareto-optimal solu-
tion distribution, a modular clonal selection operation and a 
module-element antibody-group-update operation are adopted. 
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The former effectively accelerates the convergence rate, and the 
latter removes a more crowded antibody to ensure uniformity.

4  Example of module division of traditional 
internal combustion engine

The internal combustion engine is a type of power machine. 
It transforms the chemical energy stored in the fuel into kinetic 
energy. Its invention promoted the production of cars, and it has 
an important place in people’s lives. However, due to the imper-
fect recycling process, the problem of environmental pollution 
caused by a large number of discarded internal combustion en-

gines cannot be ignored. Fig. 3 shows a schematic diagram of a 
certain type of internal combustion engine. Table 1 lists the main 
parts of the simplified internal combustion engine.

First, based on the four active recovery criteria proposed in 
the previous section, each standard value of any two parts in the 
internal combustion engine is calculated. Then the conclusion is 
obtained by expert consultation. It is concluded that the difficul-
ty of active recovery of the internal combustion engine mainly 
lies in the economic criterion and the easy disassembly criterion. 
The weight index between the criteria is: λ={0.09, 0.33, 0.52, 
0.06}, and according to formula (12), the normalized calculation 
of the active recovery matrix is as follows:

Start

Population
initialization

Input NICA-II basic
parameters

Random production of antibody groups 
with a scale of Ni

i≥G

Modular immune
cloning operation

Module immunization
gene operation

The antibody was divided
into dominant and 

non-dominant, antibody

The non-dominant antibody 
in the module antibody

group was selected, 
and the scale was Nnon

Nnon>Nn

Preservation of Nn
non-dominant antibody

End

Module
element
antibody

group update
operation

Module element
antibody group

update operation

Delete an antibody,
and make Nnon=Nnon–1

Y

N

Y

N

i=i+1

  Fig. 1. NICA-II flow chart.

Fig. 2. Schematic diagram of antibody coding and clone variation of internal combustion engine parts.

0 0 1 1 0 0 1 0

1 2 3 4 5 6 7 20 1 2 3 4 5 6 7 20... ...

Antibody

Product parts

Clone variation
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1 2 3 4 16 17 18 19

1

2

3

4

1.000 0.511 0.207 0.542 0.524 0.813 0.778 0.629
0.511 1.000 0.686 0.388 0.366 0.534 0.314 0.538
0.207 0.686 1.000 0.779 0.518 0.486 0.487 0.760
0.542 0.388 0.779 1.000 0.789 0.354 0.218 0.163

K K K K K K K K
K
K
K
K











      

16

17

18

19

0.524 0.366 0.518 0.789 1.000 0.596 0.747 0.213
0.813 0.534 0.486 0.354 0.596 1.000 0.515 0.311
0.778 0.314 0.487 0.218 0.747 0.515 1.000 0.109
0.629 0.538 0.760 0.163 0.213 0.311 0.109 1.000

K
K
K
K

  









Each module is based on the correlation degree matrix (6), 
which is used to obtain the degree of relative correlation between 
the components in the product; the results after normalization 
are as follows: 

1 2 3 4 16 17 18 19

1

2

3

4

1.000 0.381 0.523 0.451 0.534 0.457 0.158 0.379
0.381 1.000 0.221 0.775 0.076 0.241 0.531 0.624
0.523 0.221 1.000 0.146 0.239 0.819 0.437 0.136
0.451 0.775 0.146 1.000 0.356 0.165 0.325 0.277

K K K K K K K K
K
K
K
K











      

16

17

18

19

0.534 0.241 0.819 0.165 1.000 0.247 0.186 0.394
0.457 0.241 0.819 0.165 0.247 1.000 0.569 0.724
0.158 0.531 0.437 0.325 0.186 0.569 1.000 0.253
0.379 0.624 0.136 0.277 0.394 0.724 0.253 1.000

K
K
K
K

  









A multi-objective optimization mathematical model for the in-
ternal combustion engine is established. Its objective function is

1
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  (15)
        

When the module is divided, if the number of modules is the 
square root of the total number of parts, then the result of the 
module division is optimal. Therefore, the number of modules is 
set to be the square root of the total number of parts N, and the 
constraint conditions are

 

, 1
, 0
, 1, 2, ...,

i j N
i j
i j n

< +
>
∈

 (16)

    
where N represents the total number of parts; and i and j repre-
sent any two modules in the module division.

Taking δi as the optimization object, the objective function is 
the minimum degree of coupling between the internal combus-
tion engines and the maximum degree of polymerization inside 
the module. The formula for the multi-objective optimization of 
internal combustion engines is as follows: A(i) = {a1(i), a2(i), …, 
a100(i)}, where i represents the superposition algebra. Using the 
module division method of the NICA-II, the maximum iteration 
number G is 200, the mutation probability P is 0.2, the clone 
proportion R is 4, and the Pareto solution set is calculated as 
shown in Fig. 4.

In order to prove the superiority of the NICA-II, the 
non-dominated sorting genetic algorithm (NSGA) is introduced. 
From the comparison shown in Fig. 4, it is clear that the Pareto 
solution set of the NICA-II is more intensive.

From another perspective (as in Table 2), the average com-
puting time of the two algorithms is compared under the same 
conditions. It is found that the average operation time of the NI-
CA-II is shorter than that of the NSGA.

Finally, the number of non-dominated individuals of the two 
algorithms is compared (Table 3). Obviously, the results show 
that the number of NICA-II non-dominated individuals is great-
er, and the accuracy of the final solution set is relatively high.

The comparison shows that the improved algorithm has a 
considerable advantage over the previous algorithm.

Based on the results of the Pareto solution set and the char-

16

17 18 19

15

14

13

12 11 10 9

8

7

6

5

4

3
2

1

Fig. 3. A type of combustion engine.

Table 1. The main parts of a certain type of internal combustion engine 
after simplification.

Serial number Part Serial number Part

1 Distributor 11 Oil sump

2 Air filter 12 Base cabin

3 Carburetor 13 Crankshaft

4 Ignition switch 14 Connecting rod

5 Spark plug 15 Piston

6 Ignition coil 16 Inner cabin

7 Battery 17 Timing chain

8 Intake valve 18 Exhaust valve

9 Engine 19 Camshaft

10 Free wheel
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acteristics of the product structure of the internal combustion 
engine, the comprehensive optimal solution of multi-objective 
programming for the modular unit of the internal combustion en-
gine is obtained. The final module division scheme is composed 
of five modules: the power module {5,7,9,15}, the fuselage 
module: {8,11,16,18,12}, the switch module {4,6}, the transmis-
sion module {10,13,14,17,19}, and the auxiliary module {1,2,3}.

5  Conclusions

(1) We quantified the active recovery of a product into an 
optimization goal in the multi-objective optimization of module 
division, and constructed a mathematical model based on active 
recovery, degree of cohesion, and external coupling of the prod-
uct.

(2) We used an improved immune genetic algorithm to solve 
the multi-objective optimization problem and compared it with 
the traditional immune genetic algorithm. The comparison re-
sults showed that the algorithm can effectively improve the con-
vergence speed, and results in a more efficient multi-objective 
optimization problem.
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Fig. 4. Pareto solution.
Note: M is the degree of coupling, O is the degree of polymerization, and I is the degree of active recovery.
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