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An energy-storage system comprised of lithium-ion battery modules is considered to be a core compo-
nent of new energy vehicles, as it provides the main power source for the transmission system.
However, manufacturing defects in battery modules lead to variations in performance among the cells
used in series or parallel configuration. This variation results in incomplete charge and discharge of bat-
teries and non-uniform temperature distribution, which further lead to reduction of cycle life and battery
capacity over time. To solve this problem, this work uses experimental and numerical methods to con-
duct a comprehensive investigation on the clustering of battery cells with similar performance in order
to produce a battery module with improved electrochemical performance. Experiments were first per-
formed by dismantling battery modules for the measurement of performance parameters. The k-
means clustering and support vector clustering (SVC) algorithms were then employed to produce battery
modules composed of 12 cells each. Experimental verification of the results obtained from the clustering
analysis was performed by measuring the temperature rise in the cells over a certain period, while air
cooling was provided. It was found that the SVC-clustered battery module in Category 3 exhibited the
best performance, with a maximum observed temperature of 32 �C. By contrast, the maximum observed
temperatures of the other battery modules were higher, at 40 �C for Category 1 (manufacturer), 36 �C for
Category 2 (manufacturer), and 35 �C for Category 4 (k-means-clustered battery module).

� 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Energy-storage systems such as battery modules for new
energy vehicles (NEVs) are gaining extensive attention [1,2] as a
means of replacing traditional gas (petrol/diesel)-operated vehicles
and thereby promoting a cleaner environment. The performance
parameters of lithium (Li)-ion battery modules include energy
density, capacity, and specific power. To meet the power demand
required for the transmission systems of NEVs, several small bat-
tery modules are used in series or parallel to form a large battery
module (also known as a battery pack). A battery module consists
of a number of cells connected in series and parallel. The range of
an NEV depends on the performance of its battery module, and the
performance of a battery module depends on the individual perfor-
mance of each cell and on the configuration of the cells in series or
parallel. The ideal performance of a battery module should follow
the criteria of uniformity and equalization; however, these criteria
have not yet been satisfactorily met.

During the mass manufacturing of cells and the assembly of
cells into modules, slight variations occur due to uncertainties in
the operating manufacturing conditions [3]; these may include a
performance difference of the electrode materials, a change of
operating conditions, or geometrical variation caused by machin-
ing errors [4]. These uncertainties can cause defects in the battery
modules such as surface scratches, exposed foils, and cracks.
Manufacturing defects in battery modules lead to variations in per-
formance among the cells used in series or parallel configuration,
which in turn may lead to variations in the performance parame-
ters (i.e., capacity and voltage) of each cell in a module. Over a
period of time, this problem accumulates, resulting in uneven tem-
perature distribution and incomplete charge/discharge of several
cells in the module. These problems lead to less capacity being
available [5–7].

Uniformity and equalization criteria—if adapted during the
design and manufacturing of a battery module—can avoid the
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problems of overheating, thermal runaway, and so forth, and thus
increase the life of the battery module [8–12].

In order to solve these problems, some battery-sorting methods
have been researched [13–15]. Gallardo-Lozano et al. [16] summa-
rized the different active methods for a battery equalization
system, and concluded that the switched capacitor and double-
tiered switching capacitor methods are the best sorting methods.
Kim et al. [17] proposed an approach based on a screening process
(capacity screening and resistance screening) to improve the utility
of a Li-ion series battery module. In subsequent research, they pro-
posed a practical universal modeling of multi-cell battery strings
arranged in series and parallel configurations [18]. Kim et al. [19]
proposed a modularized two-stage charge equalizer with cell
selection switches. The advantage of this sorting method is that
it can be widely used for a large number of Li-ion cells in a hybrid
electric vehicle (HEV). In addition, five sorting methods—namely,
capacity and alternate current internal resistance, electrochemical
impedance spectroscopy (EIS), voltage curve, dynamics parame-
ters, and thermal behavior—are compared in Ref. [20]. It was found
that low-frequency battery impedance is the most suitable method
for sorting batteries by their dynamic characteristics.

Previous studies [21–36] have conducted the selection and clas-
sification of homogenous cells. Based on experimental verification,
the sorted cells have a more consistent performance in terms of
voltage, temperature, and capacity in comparison with unsorted
cells. However, little research has focused on conducting experi-
ments. Therefore, the present work combines experimental and
numerical methods to conduct a comprehensive investigation on
the clustering of battery cells with similar performance in order
to design a battery module with higher electrochemical perfor-
mance. Fig. 1 illustrates the procedures that were used to perform
the clustering analysis and verify the performance of the designed
modules. Charging–discharging tests were conducted on 48 Li-ion
cells to measure their voltage, temperature, and capacity. The k-
means clustering and support vector clustering (SVC) algorithms
were used to group cells with similar performance in order to pro-
duce a battery module. A comparison analysis was performed on
Fig. 1. A comprehensive procedure for the des
the performance of the battery modules produced in this research
and the performance of those purchased from a manufacturer.

2. Experimental setup for data measurement

This section describes the charging–discharging tests that were
conducted on 48 Li-ion cells for the measurement of data (voltage,
temperature, and capacity). The 48 cells were obtained by disman-
tling the battery pack shown in Fig. 2(a).

The disassembly process of the battery modules was performed
in four steps:

Step 1: Obtain information on the battery modules such as
capacity, cell numbers, and connection modes between cells.

Step 2: Identify the output terminal of the battery module once
the module is unpacked. This step should be done carefully to
avoid any connection between the negative and positive poles of
the battery module.

Step 3: Break the series connection first. In order to ensure
safety, the battery module was split up into small parts by destroy-
ing the series and parallel connections.

Step 4: Split the small parts into cells.
After dismantling the battery module, charging–discharging

tests were conducted by means of a battery-testing system
(Fig. 2(b)). The battery-testing system mainly include the
battery-testing device, a data-collecting system, Li-ion cells, etc.
The battery-testing device was purchased from Newware Ltd. It
has eight channels and can save data automatically. The steps for
testing the charging–discharging process are summarized in
Table 1. Step 1: The constant current discharge was set at 1.3 A.
Step 2: This step began at the point when the voltage of the Li-
ion battery was 2.75 V, and involved a resting time of 30 min. Step
3: A constant current and constant voltage charge were set with a
cut-off voltage of 4.2 V. Step 4: This step again involved resting for
30 min. Step 5: The number of cycles was set as 20. Throughout the
process, the voltage was not permitted to exceed the range of 2.65–
4.3 V. Each cell was charged–discharged for at least 30 cycles. The
data collected from the experiment are shown in Table 2, where
ign and manufacture of a battery module.



Fig. 2. (a) Dismantling and disassembly process for battery modules; (b) battery–testing system used for conducting charging–discharging tests.

Table 1
Steps for testing the 18650 Li-ion battery.

Step State Value Cut-off voltage

1 Constant current discharge 1.3 A 2.75 V
2 Resting 30 min
3 Constant current and constant

voltage charge
1.3 A
4.2 V

4.2 V

4 Resting 30 min
5 Cycle 20

Maximum safety voltage: 4.3 V; minimum safety voltage: 2.65 V; start experiment
steps: constant current discharge.
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‘‘zero” and ‘‘full” refer to fully discharged and fully charged states,
respectively. The following section describes how clustering algo-
rithms were used to analyze the collected experimental data.

3. Clustering algorithms

Supervised learning and unsupervised learning are two cate-
gories of machine learning methods. Supervised learning is gener-
ally used for classification, while unsupervised learning is
employed for clustering. Clustering algorithms are a broad set of
techniques for grouping data according to different rules; many
excellent descriptions can be found in Refs. [37–39]. The purpose
of clustering analysis is to group data into several classes according
to certain rules. These classes are not given in advance, but are
determined by the characteristics of the data. The data in the same
class tend to resemble each other in a sense, whereas the data in
different classes tend to be discrepant.

3.1. k-means clustering algorithm

MacQueen proposed the k-means clustering algorithm in 1967
[39]. As this algorithm is simple and easy to understand and has
a relatively fast calculation speed, it is usually used as the preferred
algorithm for the cluster analysis of large samples [40].

The main steps of the k-means clustering algorithm are as
follows:

Step 1: k samples are randomly selected as the initial cluster
centers.

Step 2: The distances between other data and each initial clus-
ter center are calculated, and the data are divided into cluster
domains in which the nearest cluster center is located.

Step 3: After all the data are sorted, the average of all the data of
every cluster is recalculated, and the data where the average is
located become a new cluster center.

Step 4: Multiple iterations are performed until the centers of
two consecutive clusters are the same, indicating that the data
are classified into k clusters.
The sum of square errors is a commonly used evaluation crite-
rion that refers to the sum of the Euclidean distances from the data
samples in one cluster to the cluster center ml, which can be
expressed as follows:

Eðm1;m2; :::;mlÞ ¼
Xk

i¼1

X
j2cl

k xj �ml k2 ð1Þ

where {xj} # c is a dataset, c # X is the data domain, k is the num-
ber of clusters, and cl is the cluster domain whose cluster center is
ml. The clustering center ml can be calculated by the following:

ml ¼ 1
Nl

X
j2cl

xj ð2Þ

where Nl is the number of data samples in clustering domain cl.
The objective function E(�) in Eq. (1) represents the sum of the

square errors between all the data in k clusters and their cluster
center ml. A smaller value of E(�) indicates better data concentra-
tion in the cluster—that is, a better clustering result.

Although the k-means clustering algorithm is practical and sim-
ple to implement, it has some limitations. First, determining a rea-
sonable value of k is difficult. Second, the randomness of selecting
initial clustering centers may result in instability of the clustering
results. Third, this algorithm is sensitive to noise. A self-organized
map based on a neural network can also be used for clustering.
However, it is necessary to train the neural networks, which can
make this process time-consuming. Therefore, the next section
introduces a better and more efficient clustering algorithm.

3.2. The SVC algorithm

In general, a support vector machine (SVM) is adopted for clas-
sification (supervised learning). SVC is a slightly different algo-
rithm from an SVM. In fact, SVC is an unsupervised learning
clustering algorithm.

The main idea of SVC is to map data space to a high-dimensional
feature space using a Gaussian kernel function. Next, a sphere with
a minimum radius is obtained and the sphere contains most of the
mapped data [41,42]. After being mapped back to the data space,
the sphere can be separated into several parts, each containing a
single cluster point set.

In this paper, a robust and efficient cluster marking method is
adopted, which is based on the training kernel radius function. This
method has two stages. The first stage involves dividing the dataset
into several mutually exclusive groups, each of which is a cluster.
The second stage involves marking all data samples.

The description of the dataset support vector is the foundation
of the SVC algorithm. The data samples are mapped to a high-
dimensional feature space through nonlinear changes, and the



Table 2
Data obtained from charging–discharging tests on cells.

Cell number Discharged state Charged state

Zero voltage (V) Zero temperature (�C) Zero capacity (A�h) Full voltage (V) Full temperature (�C) Full capacity (A�h)
1 3.3981 25.6 2.6783 4.1895 26.0 2.6847
2 3.3751 26.8 2.7192 4.1911 26.9 2.7258
3 3.4065 26.6 2.6669 4.1887 26.9 2.6683
4 3.3557 26.5 2.6959 4.1922 26.5 2.7056
5 3.4055 26.7 2.4773 4.1905 26.8 2.4843
6 3.3600 26.1 2.6488 4.1882 26.2 2.6538
7 3.3649 25.8 2.6845 4.1900 26.1 2.6858
8 3.3981 25.6 2.6783 4.1895 26.0 2.6847
9 — — — — — —
10 3.4128 28.0 2.6941 4.1946 26.6 2.6934
11 3.3774 27.9 2.6698 4.1962 27.3 2.6533
12 3.3769 28.0 2.7042 4.1946 27.0 2.7080
13 3.3884 27.9 2.6861 4.1941 26.7 2.6881
14 3.3464 26.8 2.6829 4.1946 26.3 2.6349
15 3.3908 27.1 2.6764 4.1949 26.7 2.6571
16 3.4147 26.9 2.6617 4.1953 26.4 2.6646
17 3.4103 25.3 2.5432 4.1954 24.8 2.5468
18 3.4063 24.2 2.6620 4.1947 23.6 2.6594
19 3.4089 23.7 2.6707 4.1938 24.0 2.6737
20 3.3982 25.1 2.6708 4.1946 23.0 2.6717
21 3.4182 24.2 2.5175 4.1941 24.1 2.5170
22 3.3995 23.8 2.6642 4.1944 22.4 2.6634
23 3.3939 23.2 2.6728 4.1951 22.7 2.6724
24 3.4041 22.9 2.6348 4.1936 22.9 2.6323
25 3.3967 28.3 2.6452 4.1966 28.6 2.6455
26 3.4026 29.3 2.6413 4.1965 29.0 2.6434
27 3.4011 23.8 2.6851 4.1962 24.3 2.6877
28 3.3962 28.3 2.6560 4.1962 29.6 2.6634
29 3.4154 23.8 2.5792 4.1950 23.7 2.5837
30 3.2876 28.8 2.6331 4.1941 30.5 2.6364
31 3.4122 29.9 2.5995 4.1944 30.1 2.5987
32 3.4104 30.1 2.6747 4.1947 30.1 2.6790
33 3.3937 25.0 2.6566 4.1945 24.8 2.6534
34 3.3790 25.1 2.6788 4.1948 24.2 2.6756
35 3.3902 24.8 2.6020 4.1951 24.4 2.6022
36 — — — — — —
37 3.4002 23.8 2.6394 4.1943 23.8 2.6386
38 3.3851 23.8 2.6446 4.1956 23.5 2.6434
39 3.4251 23.8 2.6228 4.1927 23.7 2.6192
40 3.4100 24.7 2.5946 4.1953 24.7 2.5933
41 3.3533 25.3 2.6293 4.1962 25.1 2.6310
42 3.3960 25.3 2.6796 4.1958 24.6 2.6776
43 3.3964 25.4 2.6917 4.1964 25.2 2.6955
44 3.3601 25.2 2.6931 4.1952 24.4 2.6953
45 3.4027 23.9 2.6643 4.1941 23.5 2.6663
46 3.3747 23.8 2.6763 4.1952 23.7 2.6750
47 3.3881 24.2 2.6236 4.1952 23.6 2.6268
48 — — — — — —
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minimum radius of a sphere containing all the mapped data sam-
ples is identified. The above steps are equivalent to the following
optimization problem:

maxW ¼ P
j
U xj
� �2

bj �
P
i;j
bibjU xið Þ �U xj

� �

s:t: 0 � bj � C;
P
j
bj ¼ 1; j ¼ 1; :::;N

ð3Þ

where U �ð Þ represents the nonlinear mapping, bj is the Lagrange
multiplier, and C is a regularization constant. Only the samples that
satisfy the constraints 0 � bj � C lie on the boundary of the sphere.
When bj ¼ C, the samples are located outside the boundary. The
Gaussian kernel function is used to calculate the dot product
U Xið Þ �U Xj

� �
:

Kðxi;xjÞ ¼ e�qkxi�xjk2 ð4Þ
where q is the width parameter and W can be re-expressed as
follows:
W ¼
X
j

K xj;xj
� �

bj �
X
i;j

bibjK xi;xj
� � ð5Þ

At each point of xi, W is defined as the Wolfe dual form of the
distance from the center of the sphere in the feature space.

f xð Þ ¼ R2 xð Þ ¼ k U xð Þ � a k2 ð6Þ

where R(�) is the distance from each xi to the center of the sphere
and a is the center of the sphere. Considering the kernel definition,
the following equation can be obtained:

f ðxÞ ¼ R2ðxÞ ¼ Kðx;xÞ � 2
X
j

K xj; x
� �

bj þ
X
i;j

bibjK xi;xj
� � ð7Þ

A notable feature of the trained kernel radius function is that
this cluster boundary can be constructed from a set of outlines to

contain samples in data space: x : f xð Þ ¼ R̂
2n o

, R̂ ¼ R Xið Þ for a sup-

port vector xi. f �ð Þ is separated into several disjointed sets:



Table 3
Clustering analysis results.

Clustering method Cell number

Un-clustering 4, 7, 21, 22, 23, 24, 26, 27, 29, 30, 42, 44
k-means clustering 18, 19, 22, 23, 27, 29, 37, 38, 39, 45, 46, 47
SVC 17, 18, 21, 23, 24, 27, 29, 33, 35, 39, 40, 41

Table 4
Mean difference of battery module.

Clustering method Voltage (V) Temperature (�C) Capacity (A�h)
Un-clustering 0.8111 0.5541 0.0026
k-means clustering 0.7946 0.4183 0.0022
SVC 0.7930 0.2762 0.0022

Table 5
Standard difference of battery module.

Clustering method Voltage (V) Temperature (�C) Capacity (A�h)
Un-clustering 0.0360 0.5322 0.0025
k-means clustering 0.0142 0.3652 0.0013
SVC 0.0191 0.2162 0.0014
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Lf R̂
2� �

¼ x : f ðxÞ ¼ R̂
2n o

¼ C1 [ ::: [ Cn ð8Þ

where Ci (i = 1,. . . , n) is the connection set corresponding to differ-
ent clusters.

Although it may be difficult to determine the appropriate kernel
parameters in the selection of the model, SVC has some obvious
advantages over other clustering algorithms: ① It can generate
arbitrary cluster boundary shapes; ② it has flexible boundary
changes to handle outliers; and ③ it avoids explicit calculations
and is therefore effective for large datasets.

3.3. Clustering results

Supervised learning methods require training sets and test sets.
This method identifies the rules in the training set and then uses
these rules for the test set. In contrast, unsupervised learning has
no training set or test set; rather, it looks for rules only in a set
of data. In this research, the six kinds of parameters of charged
and discharged state in Table 2 were used as the input vectors to
conduct the clustering analysis. The output is the clustering results,
which were verified by performing experimental verification.

This section mainly focuses on the clustering analysis of the
data in Table 2. In this study, we chose voltage, temperature, and
capacity as the inputs. Of course, researchers can also choose other
parameters, so this choice of inputs is just one option rather than a
standard. In this paper, the k-means clustering and the SVC algo-
rithms are considered. In the SVC approach, the kernel argument
q and the regularization constant C are set as 0.2 and 1.2, respec-
tively. In the k-means clustering approach, the number of clusters
is set as 4. The results of the clustering analysis are shown in
Table 3, where the column labeled ‘‘un-clustering” represents the
comparison group that is produced by randomly selected cells
out of all the cells.

Based on the clustering analysis results, the changes in voltage,
temperature, and capacity in the charge and discharge of the new
battery module were calculated. The mean difference and standard
difference were calculated by the following:

mv ¼ 1
N

XN
i¼1

Fvi � Zvi

� � ð9Þ

sv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

Fvi � Zvi �mv
� �2

vuut ð10Þ
Fig. 3. Mean difference
where mv denotes the mean difference of the voltage; Fv and Zv
denote the full voltage and zero voltage, respectively; N is the num-
ber of cells; and sv denotes the standard difference of the voltage.

The results of the mean difference and standard difference are
given in Tables 4 and 5, respectively. As can be seen from Table 4,
the mean differences of the voltage, temperature, and capacity in
the sorted battery module are obviously smaller than those in
the unsorted battery module, indicating that the sorted cells share
a similar performance. The results in Tables 4 and 5 are also repre-
sented in Figs. 3 and 4, respectively. From Fig. 3, it can be seen that
the SVC algorithm performed better than the k-means clustering
algorithm in the clustering analysis, especially regarding tempera-
ture difference.

4. Experimental verification

In order to verify the results of the clustering, experimental
verification was performed. As temperature is the most important
parameter affecting the capacity and life of a battery module, an
analysis was performed on the temperatures (performance
parameter) of the batterymodules produced from the four different
of battery module.



Fig. 4. Standard difference of battery module.
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categories (i.e., two modules purchased from the manufacturer
with the same specifications, one SVC-clustered battery module,
and one k-means-clustered battery module produced from the
grouping of cells). The experimental setup is shown in Fig. 5. Air
cooling was supplied from the bottom for the modules of each cat-
egory. The temperature was observed every 5 min over the cycle as
the module was charged–discharged at the same rate. Fig. 6 clearly
shows that the battery modules corresponding to Category 3 (the
SVC-clustered battery module) presented the best performance,
Fig. 5. Experimental setup for the verificat
with a maximum observed temperature of 32 �C. By contrast, the
maximum observed temperatures of the other battery
modules were higher, at 40 �C for Category 1 (manufacturer),
36 �C for Category 2 (manufacturer) and 35 �C for Category 4
(k-means-clustered battery module). As the SVC-clustered battery
module underwent the least heating, it is expected to have a longer
life-cycle than the modules in the other categories. A plausible rea-
son for this result is that the selection of cells with similar perfor-
mance that was made when producing the module resulted in an
ion of the produced battery modules.



Fig. 6. Temperature variation of the battery modules at six different positions in a charging–discharging cycle from four categories: (a) Category 1 (manufacturer);
(b) Category 2 (manufacturer); (c) Category 3 (SVC-clustered battery module); (d) Category 4 (k-means-clustered battery module).
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equalized temperature distribution within the module, which con-
sequently lowered the rise in temperature in comparison with the
modules in the other categories.

5. Conclusions

To achieve uniformity and equalization of the Li-ion cells used
in a battery module for NEVs, we combined experimental and
numerical methods to conduct a comprehensive investigation on
the clustering of battery cells with similar performance in order
to design a battery module with better electrochemical perfor-
mance. Charging–discharging tests were performed on 48 cells.
Clustering algorithms were then employed to conduct a clustering
analysis on the two kinds of battery modules (a SVC-clustered bat-
tery module and a k-means-clustered battery module). The perfor-
mances of the battery modules created using clustering algorithms
were compared with the performances of the two modules pur-
chased from a manufacturer. The SVC-clustered battery module
exhibited the best performance, with a maximum observed tem-
perature of 32 �C. By contrast, the maximum observed tempera-
tures of the other battery modules were higher, at 40 �C for
Category 1 (manufacturer), 36 �C for Category 2 (manufacturer),
and 35 �C for Category 4 (k-means-clustered battery module). A
plausible reason for this finding is that the selection of cells with
similar performance during the production of the module resulted
in an equalized temperature distribution within the module, which
consequently lowered the rise in temperature in comparison with
the modules in the other categories.

The k-means clustering algorithm performance may vary
depending on the data used. However, for the SVC algorithm, if
the data are given, the clustering results are only affected by the
SVC parameter settings. Furthermore, since SVC avoids explicit cal-
culations in the high-dimensional feature space, it is effective for
large datasets. It can easily be applied in industrial contexts in
which the electric vehicles comprise hundreds of packs.

In order to minimize battery manufacturing defects, the pro-
cessing technology and assembly level can be improved; alterna-
tively, the ability to detect defects can be improved. However,
manufacturing defects do exist. Although the proposed approach
may appear to be overly lengthy for incorporation before the
design stage, it is worth noting that an alternative application of
the proposed method could be for battery recycling. Since batteries
contain chemical substances and heavy metals, their disposal can
cause environmental pollution and a waste of resources. However,
old batteries still have various levels of capacity that can be used in
other areas. Future work can focus on conducting large-scale test-
ing on cells in order to design a larger battery module, as well as on
performing experimental verification on the performance of
probabilistic methods [43,44], extreme machine learning methods
[45,46], and artificial-intelligence-based methods [47–50].
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