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In this study, a copper ferrocyanide/silica/polyvinylidene fluoride (CuFC/SiO2/PVDF) hollow-fiber com-
posite membrane was successfully synthesized through a facile and effective crosslinking strategy. The
PVDF hollow-fiber membrane with embedded SiO2 was used to fix the dispersion of CuFC nanoparticles
for cesium (Cs) removal. The surface morphology and chemical composition of the composite membrane
were analyzed using scanning electron microscopy and X-ray photoelectron spectroscopy (XPS). The
composite membrane showed a high Cs rejection rate and membrane flux at the three layers of CuFC
and 0.5% SiO2, and its Cs rejection rate was not affected by variation in the pH (pH = 4–10). The modified
membrane could be effectively regenerated many times using ammonium nitrate (NH4NO3). The Cs
selectivity performance was verified by an efficient Cs rejection rate (76.25% and 88.67% in 8 h) in a solu-
tion of 100 lg�L�1 of Cs with 1 mmol�L�1 of competing cations (K+ and Na+). The CuFC/SiO2/PVDF hollow-
fiber composite membrane showed a particularly superior removal performance (greater than 90%) in
natural surface water and simulated water with a low Cs concentration. Therefore, the CuFC/SiO2/PVDF
hollow-fiber composite membrane can be used directly in engineering applications for the remediation
of radioactive Cs-contaminated water.

� 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The release of large amounts of radionuclides into the aquatic
environment has attracted worldwide attention after the
Fukushima Daiichi nuclear power plant accident in 2011 [1,2].
Among such radionuclides, the concentration of cesium (137Cs) is
very high because of the long half-life (30.1 years) and high
mobility of this element; thus, Cs poses a particular threat to envi-
ronmental safety and human health [3]. Although there have been
many studies on effective removal techniques for trace radionu-
clides, monovalent Cs removal still faces great challenges due to
the highly active biochemical characteristics of Cs, which are sim-
ilar to those of potassium [4]. Many Cs removal methods have been
reported, including adsorption, membrane technology, distillation,
and chemical precipitation [5–9]. Of these methods, adsorption is
one of the most effective removal techniques for Cs.

Various types of Cs adsorbents including molybdophosphate,
metallic oxides, zeolites, carbon, and other clay minerals have been
extensively studied [4,10–14]. However, these absorbents have a
low selectivity for removing Cs from water. Transition metal ferro-
cyanides (Cu, Fe, Zn, and Ni) are extensively used as absorbents due
to their high selectivity for Cs and low cost [15–19]. These absor-
bents always have a lattice spacing size of about 0.32 nm, which
is similar to that of the hydrated ion of Cs [20]. In particular, copper
ferrocyanide (CuFC) has shown excellent Cs sorption capacity and
chemical stability, and has been used to selectively separate Cs
from contaminated wastewater [3,15,21–23]. However, CuFC is
commonly available in the form of fine particles that are difficult
to separate and collect, which limits its practical application [24].

In recent decades, supporting materials with magnetism or high
surface areas have been selected to immobilize CuFC [15,22,25,26].
For example, CuFC-type particles can be loaded onto silica (SiO2) to
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improve their mechanical properties, which results in a high Cs
rejection rate [27]. The problem of the difficult separation and
recovery of the adsorbents has not been solved by fixing them onto
the surface of particles. Chen et al. [28] tried to fix transition metal
ferrocyanides directly onto a non-woven fabric to solve this prob-
lem. To remove heavy metal ions, Efome et al. [29–31] fixed metal-
organic framework adsorption materials to a membrane using
electrostatic spinning technology in order to effectively solve the
problem of nano-materials fixation. However, the efficiency of
the adsorption materials may decrease through internal fixation.
Recently, transition metal ferrocyanide nanolayers on membranes
were engineered to remove Cs from water [32–36]. However, the
adsorbent particles directly loaded on the membrane surface
blocked the membrane’s pores and affected the membrane’s filtra-
tion efficiency. A substrate with a binding agent can be used in
membrane filtration with an acceptable flux and a minimal pres-
sure drop [10,37]. Ding et al. [10] demonstrated an absorbent-
bead structured membrane that was functionalized to effectively
eliminate Cs through a filtration adsorption method. Nevertheless,
a chemical bonding method can fix the particle substrate on the
surface of a membrane more firmly than anchoring through a
physical deposition method. Qin et al. [38] reported that the use
of chemical bonding to load TiO2 nanoparticles (NPs) onto a
polyvinylidene fluoride (PVDF) membrane greatly improved the
membrane flux and increased the stability of the composite mem-
brane. As far as we know, the chemical bonding of transition-metal
ferrocyanide-coated NPs onto a hollow-fiber membrane surface for
the removal of Cs in water has not been well documented.

In the present work, we synthesized CuFC/SiO2-incorporated
PVDF (CuFC/SiO2/PVDF) hollow-fiber composite membranes for
the effective removal of Cs in water. The physicochemical charac-
teristics of the composite membranes were analyzed and their Cs
rejection abilities were studied.

2. Material and methods

2.1. Chemicals and reagents

Non-radioactive cesium nitrate was used as an alternative to
137Cs due to its similar chemical properties. Tetrabutylammonium
fluoride (TBAF, 98%) and trimesoyl chloride (TMC, 98%) were
supplied by Sigma-Aldrich. SiO2 NPs modified by amino groups
(w/v: 2.5%; particle size: 300 nm) were purchased from Aladdin.
Sodium ferrocyanide (Na4[Fe(CN)6]�10H2O) and other reagents
used in this work were provided by Sinopharm. Ultrapure water
prepared by the Milli-Q IQ7000 (Millipore, USA) water purification
system was used in this study.
Fig. 1. Schematic diagram of CuFC/SiO2/PVDF hol
2.2. Membrane surface modification

A PVDF hollow-fiber membrane (OriginWater, U100 MF, 0.1–
1 lm) was chosen for this study and was further modified by a
reported method developed with a minor modification [38]. First,
the two terminals of the hollow-fiber membranes were sealed with
epoxy resin for 24 h; the membranes were then washed with water
for 24 h, and then dried at room temperature after washing with
ethanol for 1 h. The membranes were then further modified, as fol-
lows: ① Pristine PVDF membrane was immersed in 1 mol�L�1

potassium hydroxide (KOH) solution with 5 g�L�1 TBAF for
60 min at 45 �C, and then dipped into 1 mol�L�1 sodium hydrogen
sulfite (NaHSO3) aqueous solution with H2SO4 for 1 h at 45 �C;
② the treated membrane was then immersed by 0.8 wt% TMC
hexane solution; ③ the treated membrane was dipped into SiO2

suspension with a mass concentration of 0.05% and 0.5%,
respectively, for 60 min at 100 r�min�1 and 25 �C. Next, the
membrane was heated at 70 �C for 5 min to improve the grafting
reaction. Finally, the membrane was washed and marked as
SiO2/PVDF hollow-fiber composite membrane (Fig. 1).

2.3. CuFC/SiO2/PVDF hollow-fiber composite membrane preparation

The modified membranes were dipped into 50 mL CuCl2
(0.5 mol�L�1) and placed in a shaker with a shaking speed of
120 r�min�1 for 2 h at 25 �C. The membranes were then transferred
into 50 mL of 0.5 mol�L�1 Na4[Fe(CN)6] solution and were agitated
at 150 r�min�1 for 4 h at 25 �C. The final CuFC-modified mem-
branes were washed many times to elute any residual solution.
The loading process of CuFC was repeated one to three times to
grow the crystal. Next, ultrapure water was used to wash the
modified membranes. The prepared membranes were dried at
40 �C and then stored in ultrapure water (Fig. 1).

2.4. Membrane characterization

The surface morphology of the membranes was characterized
by scanning electron microscopy, and the element composition
of the membrane surface was analyzed by X-ray photoelectron
spectroscopy (XPS). The membrane surface was evaluated for the
binding performance of the CuFC and SiO2 NPs via an ultrasonic
test for 2 min and then tested again for another 2 min. In the
end, the weight and surface morphology of the composite mem-
brane before and after the treatment were determined. Membrane
regeneration was carried out by soaking the membrane in a solu-
tion of 5 mol�L�1 ammonium nitrate (NH4NO3) at 120 r�min�1 for
24 h at 25 �C.
low-fiber composite membrane preparation.
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2.5. Membrane filtration experiments

Cs solutions of 100 lg�L�1 were used to conduct the filtration
tests. NaOH or HCl solution was used to maintain the solution at
pH = 7 ± 0.1. One membrane filtration system (Fig. 2) was used to
assess the Cs rejection ability and water permeability of the
membrane at 90 kPa. The effective membrane area was 12.5 cm2.
After 1 h of water filtration, the membrane flux was tested and
the permeate samples were analyzed.

The effect of the organic matter (5.0 mg�L�1 humic acid, HA) and
competing cations (1 mmol�L�1 K+, Na+) on the Cs removal was
explored. The physicochemical properties of natural surface water
(SW) were tested after filtering through 0.45 lm film; the results
are displayed in Table 1. Next, 100 lg�L�1 Cs solutions in SW and
HA solution were used to conduct the filtration experiments. An
inductively coupled plasma mass spectrometer was used to test
the Cs concentration. The concentrations of cations and anions
were analyzed using an inductively coupled plasma atomic emis-
sion spectrometer and ion chromatography, respectively.
Fig. 2. Schematic diagram of the membrane filtration system. A: feed tank;
B: pump; C: membrane element; D: membrane; E: pressure gauge; F: pump.

Table 1
The properties of the SW collected from Wu River (Guizhou, China).

pH Concentration

DOM
(mg�L-1)

Cs+

(lg�L-1)
Na+

(mg�L-1)
K+

(mg�L-1)
7.81 2.37 0.91 4.35 2.79

DOM: dissolved organic matter.

Fig. 3. (a) Elemental composition of membrane surfaces by XPS; (b) area fractions of elem
SiO2. Cps: counts per second.
3. Results and discussion

3.1. Properties of PVDF hollow-fiber membranes

The amino-modified SiO2 NPs were bound with the reactive
groups (—COCl) of the pristine PVDF membrane surface, which
was formed by pretreating in an alkaline solution and TMC hexane
media [38]. The CuFC was then loaded onto the SiO2 NP surface. As
shown in Fig. 1, dehydrofluorination and nucleophilic addition
were the two main modification steps. Treatment with KOH solu-
tion facilitated the formation of unsaturated double bonds in the
pristine PVDF membrane, which was followed by the formation
of hydroxyl groups to induce a nucleophilic addition reaction on
the polymer chains. XPS was used to test the modification charac-
teristics; the results are shown in Fig. 3. A dramatic change in the
XPS wide spectra was seen in the SiO2/PVDF hollow-fiber composi-
te membranes but not in the pristine membrane. The ratio of oxy-
gen atoms increased, indicating that oxygen-containing groups had
been introduced onto the surface of the membrane [38]. Two more
peaks of Si 2s and Si 2p appeared in addition to the peaks of C 1s, O
1s, and F 1s, which verified that successful binding of SiO2 on the
PVDF membrane had occurred. A high content of SiO2 particles
facilitated the contact with the pretreated PVDF membrane and
promoted the loading of SiO2 onto the membrane surface through
binding with the active group. Furthermore, as shown in Fig. 3, an
Fe 2p peak (708.6 eV) and a Cu 2p peak (932.7 eV) appeared on the
composite membrane, respectively, in accordance with the pres-
ence of Fe(CN)64� and Cu [39,40], respectively, demonstrating that
CuFC was successfully loaded onto the membrane.

The surface morphologies of the PVDF membranes were charac-
terized; the results are shown in Fig. 4. The pristine membrane
showed the typical structure of a microfiltration microfiltration
membrane, having a porous skin layer. The results also demon-
strated that the amount of SiO2 NPs increased with the initial con-
centration used for loading SiO2 (Figs. 4(b) and (c)). The surface of
the CuFC/SiO2/PVDF (0.05%) showed aggregates of porous platelets
(Fig. 4(d)), indicating that CuFC was successfully loaded onto the
Ca2+

(mg�L-1)
Mg2+

(mg�L-1)
Cl–

(mg�L-1)
NO3

–

(mg�L-1)
SO4

2–

(mg�L-1)
44.79 13.46 4.74 3.16 45.93

ents on the membrane surfaces. 0.05% and 0.5% refer to the mass concentrations of



Fig. 4. Surface morphology of the PVDF membranes. (a) Pristine PVDF membrane; (b) and (c) SiO2/PVDF membranes; (d–f) CuFC/SiO2/PVDF membranes.
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membrane surface [41]. In addition, there was a formed selective
CuFC layer (one layer and three layers) on the surface of the com-
posite membrane (Figs. 4(e) and (f)), which might be due to the
SiO2 layer being stabilized on the surface of the membrane.

The Cs rejection rate and flux of these membranes were tested;
the results are shown in Table 2. It can be seen that the rejection
rate increased and the flux decreased with an increase of the
loaded layer. At a concentration of 0.05% SiO2, the rejection rate
of the composite membrane with three layers of CuFC was
higher than 90%, even with decreasing membrane flux. In order
to achieve the highest rejection rates, 0.5% SiO2-loaded composite
membranes were selected in the following experiments.
Table 2
Rejection rate and flux of composite membranes with different layers of CuFC and differe

CuFC load layer Concentration of SiO2 (%) Flux (L�(m�h�kPa)�

1 0.05 1.61
3 0.05 0.30
1 0.5 2.92
3 0.5 0.49
3.2. Binding stability of modified membrane

As shown in Figs. 4(f) and 5, there was almost no morphological
change on the hollow-fiber composite membrane surface before
and after physical treatment. It was also demonstrated that the
fixation ability of the SiO2 NPs for CuFC effectively inhibited
delamination or peeling between the membrane surface and the
CuFC layer. Furthermore, the membrane weight decreased by just
0.2 mg after the physical treatment of the membrane—an amount
that could be ignored. Thus, the results of the weight measure-
ments and surface morphology indicated that the binding between
the PVDF membrane and the CuFC NPs was strong.
nt concentrations of SiO2 (Cs: 100 lg�L�1; pH = 7).

1) Rejection rate after 1 h (%) Rejection rate after 6 h (%)

70.25 49.36
94.20 89.68
87.45 78.22
99.82 94.64



Fig. 7. Effect of initial pH on Cs rejection rate by the composite membrane.

Fig. 5. Surface morphology of the composite membrane after physical treatment.
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3.3. Regeneration of modified membrane

It is a major challenge to establish membrane treatment meth-
ods that can recover after being used several times. To evaluate
membrane regeneration, NH4NO3 solution was used to regenerate
the filtered composite membrane [42,43]. The Cs rejection rate of
the regenerated membrane after being used for 18 h was evalu-
ated. As shown in Fig. 6, the rejection rate of the composite mem-
brane decreased with increasing treatment time. The membrane
regeneration was carried out after 18 h. After two cycles of NH4NO3

regeneration, the Cs rejection rate was still greater than 98%.
Egorin et al. [42] reported that more than 63% of Cs desorption
could be achieved from CuFC adsorbent in seawater after
regeneration with 5 mol�L�1 NH4NO3 solution. Thus, the composite
membrane can be regenerated efficiently by NH4NO3 solution
many times, giving it potential for practical applications.
3.4. Effect of initial pH

The Cs rejection rate may be affected by the pH of the feed solu-
tion; therefore, a series of experiments was carried out over a pH
range from acidity to alkalinity. As shown in Fig. 7, the membranes
exhibited the maximal rejection rate at pH = 7; the rejection rate
decreased at pH = 4 and at a pH higher than 7 (Fig. 7). The phe-
nomenon of decreased rejection rate at low pH might be caused
by the competing adsorption of H+ and Cs onto the CuFC/SiO2/PVDF
Fig. 6. Loading-regeneration of Cs by the composite membrane.
hollow-fiber composite membrane [15,24]. Furthermore, CuFC can
decompose in alkaline solution [15,24].
3.5. Effect of competing cations

The chloride salts of K+ and Na+ were selected to test the role of
competing cations in the Cs rejection rate using composite mem-
branes. As shown in Fig. 8, the rejection rate of the prepared com-
posite membrane was high (99%), but the rejection rate of the
pristine PVDF membrane was negligible. The membranes also
showed a high rejection rate even after the addition of competing
monovalent cations for 8 h. However, the rates decreased with an
increase in the duration of the filtration time. Compared with
Na+, K+ showed a greater detrimental effect on Cs rejection rate;
this might be due to the fact that K+ has a similar hydration radius
(0.331 nm) as Cs+ (0.329 nm), which could induce competition
[3,21]. The Cs rejection rate decreased with an increase of filtration
time (Fig. 6), indicating that physical interception by the mem-
brane is not the primary removal mechanism for Cs. As shown in
Fig. 8, the Cs rejection rates were not greatly affected by the pres-
ence of competing cations, and remained above 90% for the first 2 h
of unsaturated adsorption. Adsorption saturation of Cs was gradu-
ally reached and the Cs rejection rate was reduced with an increase
Fig. 8. Effects of competing cations on Cs rejection rate by the composite
membrane.



Fig. 9. Effect of organics on Cs rejection rate by the composite membrane.
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of filtration time. Thus, the results show that adsorption by the
modified membrane is the major mechanism for Cs removal.

3.6. Effects of organics

The effects of organics on Cs rejection rate using composite
membrane filtration were tested in an HA solution and in SW;
the results are shown in Fig. 9. The membrane continued to have
a high Cs rejection rate (> 90%) in both solutions for 8 h. During this
period, HA was deposited onto the membrane surface; this might
have helped keep the rejection rate high due to size exclusion
and Donnan exclusion [6]. Therefore, in addition to adsorption, size
exclusion and Donnan exclusion on the membrane surface play an
important role in Cs removal. It can be concluded that the compos-
ite membrane has excellent application potential for Cs removal.

4. Conclusions

In this work, a hollow-fiber composite membrane was prepared
using the facile method of binding CuFC onto a PVDF membrane
surface in order to remove Cs from water. SiO2 NPs were used as
an intermediate support layer, and chemical bonding of CuFC to
the membrane surface occurred. The CuFC/SiO2/PVDF hollow-
fiber composite membranes exhibited high selectivity toward Cs
andmembrane flux. Themembranewas able to directly and quickly
filter out Cs in water, with a rejection rate higher than 99%. Further-
more, Cs rejection rate could be restored to more than 98% using
5 mol�L�1 NH4NO3. The rejection rates were slightly affected by
the solution pH and by competing cations. In addition, the compos-
ite membrane demonstrated good selectivity for water with a low
Cs concentration (100 lg�L�1), including SW and simulated water
with HA. Overall, the functionalized composite membrane showed
excellent potential for the removal of radionuclide Cs.
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