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Illicit and pharmaceutical drugs are considered to be emerging contaminants of concern, and much
research effort has gone into assessing their occurrence in wastewater. However, little information exists
on their presence in treated sludge or biosolids. In this study, we examined sludge and biosolids from a
large metropolitan wastewater treatment plant (WWTP) in Australia to determine the occurrence of five
drugs of abuse, including benzoylecgonine as indicator of cocaine consumption, methamphetamine and
3,4-methylenedioxy methamphetamine (MDMA) as representative illicit stimulants, and codeine and
morphine as pharmaceuticals with potential environmental risk. The samples were solid-phase extracted
and analyzed by liquid chromatography–tandem mass spectrometry (LC–MS/MS). Benzoylecgonine and
MDMA were present in raw sludge but were notably degraded during solids treatment processes, and
were not detected in the dewatered sludge (after treatment) or in biosolids. Methamphetamine, codeine,
and morphine were detected in all biosolids samples at mean concentrations of 20–50 lg�kg�1. The pres-
ence of these three drugs in biosolids shows that these compounds are relatively stable in the solids and
in soil, and can persist in biosolids for at least several years. A simple environmental risk assessment
based on estimated risk quotients (RQs) for these compounds indicated that the potential environmental
risks associated with the land application of biosolids are very low at typical Australian biosolids appli-
cation rates.

� 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Illicit drugs are considered to be emerging contaminants of con-
cern due to their toxic effects on aquatic biota and ecosystems.
Their presence has been reported in various environmental sources
including surface water [1–4], drinking water [5–9], groundwater
[10–12], aquatic biota (fish or other) [13–15], and sewage sludge
[16–20]; however, little information is available regarding their
possible presence in biosolids [21,22]. Here, the term biosolids
refers to the treated sludge product of sewage treatment at
wastewater treatment plants (WWTPs) [23].

Increasing global rates of secondary-level wastewater treat-
ment using activated-sludge-type processes have led to increased
volumes of sludge and biosolids production. Recent global bioso-
lids production rate estimates are on the order of 2.5 � 107–
6.0 � 107 t of dry solids per year [24], with much of this being
applied to soil [25]. According to the Australian and New Zealand
Biosolids Partnership (ANZBP) [26] report, about 3.3 � 105 t of
dry biosolids were generated in Australia in 2017, of which 75%
was applied in agriculture—a comparatively high amount in
comparison with agricultural application in the United States and
European Union (about 45%) [25]. Since biosolids are rich in nutri-
ents, their land application as fertilizer is an attractive option for
sustainable soil nutrient management and carbon sequestration
[27,28]. In addition to agricultural nutrients and other soil-
improving constituents, biosolids contain numerous contaminants
of concern—in particular, persistent organic pollutants that include
pharmaceuticals [11,21,29], pesticides, polychlorinated biphenyls
(PCBs) or polycyclic aromatic hydrocarbons (PAHs) [30–33], and
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(potentially) residual amounts of illicit drugs. There is evidence
that some drugs of abuse may be toxic to aquatic biota, but there
are limited studies on their potential effect on terrestrial biota.
For example, Parolini et al. [34] examined the oxidative status of
the zebra mussel after exposure to a mixture of drugs of abuse
(cocainics, amphetamines, and morphine) and reported a signifi-
cant increase in antioxidant activities posing a potential threat to
mussel health.

Hydrophobic compounds having high (> 4) to moderate (2.5–4)
octanol–water partition coefficient logKOW values have relatively
high adsorption potential and are therefore more likely to accumu-
late in solids and sludge fractions [35,36]. Conversely, compounds
with lower logKOW value (< 2.5) have relatively low sorption poten-
tial and may be more likely to remain in the aqueous phase [35].
Compounds that are not eliminated effectively during wastewater
solids treatment processes may be transported into the environ-
ment through biosolids-reuse programs, where they may enter
the food chain through uptake by plants and crops. For example,
past research has revealed the uptake of certain antibiotics by
crops (e.g., cabbage, lettuce, and spinach) grown in biosolids-
enriched soil [37–39]. Therefore, it is important to characterize
and understand the levels of other pharmaceutical contaminants
in biosolids, including drugs of abuse.

Several reports have been published detailing the presence of
drugs of abuse in aqueous wastewater environments [40–42];
however, to date, limited international data is available on their
presence in biosolids and almost none has been published for Aus-
tralia. For example, methamphetamine was detected in sludge
(2 lg�kg�1) from the Australian WWTP by Govindarasu [43], while
Jones-Lepp and Stevens [21] reported comparable metham-
phetamine levels (4 lg�kg�1) in biosolids from the United States.
Several studies have reported the presence of codeine in biosolids
from the United States (not detected–328 lg�kg�1) [23,44,45] and
Canada (2.9–110 lg�kg�1) [46–48]. The limited data availability
for biosolids is most likely a result of the emerging nature of
wastewater epidemiology as a research field and also a reflection
of the fact that much of this research has focused on raw sewage
analyses to estimate population drug-consumption rates [40],
rather than on understanding drug removal/partitioning during
WWTP processing.

Accordingly, the aim of this study was to investigate the pres-
ence of several drugs of abuse in Australian sludge/biosolids.
Methamphetamine and 3,4-methylenedioxy methamphetamine
(MDMA) were chosen as examples of illicit stimulants, codeine
and morphine were included as pharmaceuticals with potential
environmental risk, and benzoylecgonine was chosen as an
indicator (i.e., metabolite) of cocaine consumption (see Fig. 1 for
Fig. 1. Structures of targeted compounds including molecular weight (g�mol�1),
obtained from the PubChem Compound Database.
structure). The compounds targeted in this study were chosen
based on previous work in Australia, which had indicated relatively
high concentrations of these drugs in wastewater (influent and
effluent) and reported that some of these compounds have the
potential to pose an environmental risk [40,49]. Thus, the objec-
tives of this research were: ① to develop a method to determine
the occurrence of specific drugs of abuse in biosolids, and ② to
investigate the levels of these drugs at different stages during
sludge/biosolids processing.
2. Material and methods

2.1. Chemicals and reagents

The reference standards and deuterated internal standards of
each drug were purchased from Cerilliant (Cerilliant Corp., USA).
Methanol, formic acid, dichloromethane, and isopropanol were
acquired from Merck (Merck Pty. Ltd., Australia), while acetic acid
was obtained from Spectrum� (Spectrum Chemical Mfg. Corp.,
USA) and ammonia from Optigen (Optigen Ingredients, Australia).
Ultra-pure water was obtained from arium� pro VF water purifica-
tion unit (Sartorius Stedim Biotech GmbH, Germany). Solid-phase
extraction (SPE) cartridges (UCTTM XRDAH; 500 mg per 6 mL)
were purchased from PM Separations (Australia).

2.2. Study site and sample collection

The sludge samples were collected from a treatment plant
located in Australia (Fig. 2 provides the sampling locations). The
treatment plant serves about 7 � 105 people and receives an aver-
age sewage flow of 150 ML�d�1. The plant operates with a conven-
tional activated-sludge reactor process comprising anaerobic,
aerobic, and anoxic zones in series. The primary sludge is gravity
thickened and waste-activated sludge (WAS) is thickened by dis-
solved air flotation, after which the combined sludge undergoes
mesophilic anaerobic digestion with a solids retention time of
18 d. Part of the digested sludge volume further undergoes
mechanical dewatering by centrifuge, while the majority is dewa-
tered in sludge lagoons. Sludge lagoons are filled over a period of
1.5–3 years; the lagooned solids are then dried and stockpiled for
a further minimum period of three years (i.e., the sampled three-
year-old stockpiled biosolids in this study have their origins in
wastewater entering the WWTP during the 2012–2014 period).
The Grade A quality biosolids product is then used in broadacre
agriculture as a soil supplement.

Samples were initially collected (three replicates) after anaero-
bic digestion for method development (extraction and analytical).
Later, three more samples (45 samples in total: five treatment
stages � three-time points � three replicates) were collected for
analyses between Dec 2016 and Jun 2017. The samples were col-
lected at different WWTP stages including primary sludge, mixed
digested sludge, centrifuge-dewatered biosolids, lagoon-stabilized
sludge, and biosolids from the three-year-old stockpiles. Primary
sludge was collected as a 24 h composite and the remaining were
grab samples. All samples were stored at �20 �C prior to sample
preparation and analysis.

2.3. Sample preparation and extraction

All samples were freeze-dried (Lyph-Lock 6, Labconco Corp.,
USA) followed by homogenization. First, two solution mixtures
were tested for the extraction of the targeted drugs: ① 8 mL of a
solution mixture of methanol and 0.1 mol�L�1 acetic acid (1:1
v/v) after Monsalvo [50]; and ② 20 mL of 50 mmol�L�1 formic acid
and methanol (80:20 v/v), based on the methods of Kaleta et al.



Fig. 2. Schematic diagram highlighting the sludge treatment processes at the selected WWTP and sampling points. S1: primary sludge; S2: mixed digested sludge; S3:
centrifuge-dewatered biosolids; S4: sludge lagoons; S5: biosolids three-year-old stockpiles.
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[20]. Fig. 3 illustrates the detailed extraction procedures. In sum-
mary, 1 g of freeze-dried sample was weighed and spiked with a
200 lL mixture of the deuterated internal standards of each drug.
The sludge sample with the added solution mixtures was ultrasoni-
cated for 15 min, followed by rotary mixing for 1 h. After mixing,
the sample was centrifuged at 3500 r�min�1 (2851 g) for 10 min
Fig. 3. Extraction protocols for
(Allegra X-12R Beckman Coulter Australia Pty. Ltd., Australia).
The supernatant was then collected into a glass bottle, and the
extraction was repeated three times and combined. Following that,
one sample was directly evaporated to dryness under nitrogen at
40 �C and another sample was extracted using a SPE protocol
previously published for wastewater samples [51]. For this
sludge/biosolids samples.
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purpose, the filtered supernatant was loaded onto mixed-mode
SPE cartridges pre-conditioned with methanol (6 mL) and sodium
acetate buffer (6 mL). The SPE cartridges were washed with sodium
acetate buffer (6 mL), 0.1 mol�L�1 acetic acid (2 mL), and methanol
(6 mL). Elution of the analytes was achieved with a mixture of 4%
ammonia and 96% dichloromethane/isopropanol (80:20) and the
samples were evaporated to dryness. Both dried samples (after
direct evaporation and the SPE method) were reconstituted with
20 lL of 0.1% formic acid in methanol and 180 lL of 0.1% formic
acid in Milli-Q water prior to analysis by liquid chromatography–
tandem mass spectrometry (LC–MS/MS). The final extraction solu-
tion was selected based on the accuracy and recovery of the sam-
ples spiked with known concentrations of the drugs (Table 1).
2.4. Chromatography analysis

The analytical instrumentation consisted of a Shimadzu (Shi-
madzu Corp., Japan) high-performance liquid chromatograph
(HPLC; LC-20AD), autosampler (SIL-20A/HT), pump system (LC-
20AD), and degasser (DGU-20A), coupled to an API 3000 triple
quadrupole mass spectrometer (Applied Biosystems, Canada)
equipped with an electrospray ionization (ESI) source.

Chromatographic separation was achieved using a Phenomen-
exTM (Phenomenex Inc., USA) Luna� pentafluorophenyl (PFP) col-
umn (100 mm � 4.6 mm, 3 lm) coupled to a PFP guard column
(4 mm � 2.0 mm, 5 lm), at a total flow rate of 0.6 mL�min�1, based
on a previously published method used for wastewater samples
with slight modification [40]. The mobile phase consisted of Sol-
vent A (5% methanol + 0.1% formic acid) and Solvent B (95% metha-
nol + 0.1% formic acid). The sample injection volume was 10 lL.
The gradient started with 30% B with an immediate linear increase
to 100% B until 4 min, followed by a 4 min isocratic period and then
a linear decrease to 30% over 0.1 min. The gradient was then main-
tained at that level until the end of the runtime (10 min). Mass
spectra were measured in positive ionization mode via multiple
reaction monitoring. The compound-specific parameters are sum-
marized in Table 1.
2.5. Method validation

Extraction recoveries of the selected compounds were deter-
mined for each extraction solution through samples spiked with
the standard concentrations, which ranged from 20–1700 lg�kg�1

(see Table 1 for the concentration range). Recoveries were assessed
by comparing the measured concentrations achieved versus the
spiked concentrations. The drug concentrations were calculated
by the ratio of analyte/internal standard through isotope dilution.
Deuterium-labeled standards of each analyte served as internal
standards to account for analyte loss during the extraction process.
Table 1
Compound-specific mass spectrometric parameters used for the analysis of target compou

Targeted drugs/internal
standards

Retention time
(min)

Precursor ion
(m/z)

Product ion
(m/z)

Declusteri
potential (

Morphine 3.88 286 165 50
Morphine-d3 3.89 289 165 50
Codeine 6.62 300 215 50
Codeine-d3 6.63 303 215 50
MDMA 7.90 194 163 35
MDMA-d5 7.92 199 165 35
METH 7.47 150 119 20
METH-d5 7.48 155 121 20
BE 9.85 290 168 50
BE-d3 9.86 293 171 50

Other MS/MS parameters: Nebulizer gas: 12 pounds/square inch gauge (psig); curtain g
The limit of quantification (LOQ) and limit of detection (LOD) were
respectively determined as ten times and three times the signal-to-
noise ratio for each compound. Linearity was established by ana-
lyzing the standards at different concentrations and the LOQ was
chosen as the lowest measurable concentration that fitted the
standard curve within ±15%.

2.6. Statistical analysis

Statistical analyses were conducted using Prism� 7.03 (Graph-
Pad Software Inc., USA). The Shapiro–Wilk normality test was per-
formed, followed by a two-tailed t-test to compare the recoveries
obtained with extraction solutions 1 and 2 (n = 15). Similarly, the
differences between the concentrations of the drugs before and
after sludge treatment for the various treatment processes were
assessed by t-test.
3. Results and discussion

3.1. Extraction recoveries and data quality assurance

The performance of both extraction solutions followed by SPE
or direct injection methods was determined for absolute recovery
by comparing the concentration measured with the spiked concen-
trations in the samples, as shown in Table 1. The recovery of all the
compounds with Solution 1 (methanol + 0.1 mol�L�1 acetic acid)
and Solution 2 (formic acid + methanol) after SPE ranged from
93%–116% and 61%–186%, respectively, as summarized in Fig. 4.
The variation in recovery could be related to matrix interference,
which caused suppression (codeine/morphine) or amplification
(MDMA/methamphetamine) of detection. Direct injection of the
extracts gave a poor signal response, making SPE necessary. How-
ever, there was a significant difference in the recoveries obtained
for all compounds with Solution 1 compared with Solution 2, both
followed by SPE extraction (t28 = 2.11, p = 0.044). Based on our
results, a pretreatment followed by SPE extraction is a recom-
mended method for the extraction of targeted compounds in
wastewater solids matrices. Similarly, Kaleta et al. [20] applied
SPE extraction for the analysis of amphetamine in sludge samples
due to the complex consistency of sludge. Thus, Solution 1 in com-
bination with SPE extraction was used throughout the present
study.

3.2. Analysis of selected compounds in sludge and biosolids samples

The extraction method outlined above was applied in order to
determine the concentration of drugs in wastewater solids samples
from different WWTP stages. The results obtained for each sample
(mean ± SEM) are summarized in Fig. 5. The most ubiquitous
nds and the corresponding limit of detection (LOD) and limit of quantification (LOQ).

ng
V)

Collision
energy (V)

Standard concentration
range (lg�kg�1)

LOD
(lg�kg�1)

LOQ
(lg�kg�1)

65 400–850 3.2 9.6
65
35 800–1700 1.6 5.0
35
18 40–85 0.7 2.2
18
35 80–170 19.3 58.4
35
25 20–43 0.4 1.2
25

as: 10 psig; ion spray voltage: 5000 V.



Fig. 4. Recoveries obtained for the extraction (n = 3) of target drugs with two
solution mixtures (Solution 1 and Solution 2) followed by SPE or direct injection.
BE: benzoylecgonine; METH: methamphetamine.
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compounds were methamphetamine, codeine, and morphine,
which were found in all sludge and biosolids samples. In contrast,
benzoylecgonine and MDMA were present at the initial WWTP
stages (primary sludge and digester samples) but were not
detected in the treated biosolids, confirming either their complete
removal by the sludge treatment processes or their biodegradation.

The concentrations of the targeted compounds ranged from 1 to
78 lg�kg�1 in primary sludge, with the highest concentration being
reached for methamphetamine (Fig. 5). Morphine concentration
was significantly higher in anaerobically digested sludge than in
primary sludge (t6 = 2.598, p = 0.0408). This increase (�four-fold)
might be due to the glucuronide process—in which morphine-6-
glucuronide, a major metabolite of morphine, is converted back
to free morphine [40,52–54]—or to the conversion of codeine into
morphine [55] during the treatment process. Another possibility is
that morphine might be adsorbed and accumulated during the
activated-sludge process, and then added to the digesters via the
thickened WAS. Prior work at this site demonstrated that mor-
phine was effectively removed from the incoming wastewater by
this plant, following activated-sludge treatment (for a raw
wastewater morphine concentration of about 900 lg�L�1, with
> 90% removal) [40]. Assuming a primary-to-WAS ratio of 4:1,
Fig. 5. Concentrations (mean ± SEM) of targeted compounds (lg�kg�1 of dry weight) fo
centrifuge/lagoon, and biosolids from stockpiles.
the observed four-fold increase in morphine levels between the
primary treatment and WAS is feasible.

Benzoylecgonine and MDMA were not detected in the treated
sludge (centrifuged or lagoon dewatered). These compounds may
have undergone degradation based on their shorter half-life values
or lesser affinity for solids partitioning. For example, the half-life of
MDMA is much lower (15–59 d) than that of methamphetamine
(131–502 d) [56,57]. Langford et al. [58] have described benzoylec-
gonine as a polar compound with a very low affinity for solids due
to a small logKOW of 2.15; this should result in a greater proportion
of the compound being present in the aqueous phase and rela-
tively less being present in the solids fraction. Another possibility
regarding MDMA non-detection may be MDMA metabolism,
which favors the degradation of MDMA to hydroxylated ampheta-
mines. These compounds (i.e., hydroxylated amphetamines) may
still be bioactive in the treated biosolids, with unknown toxicity.
However, there was no significant difference in the metham-
phetamine mean concentrations in the centrifuged or lagoon-
dewatered sludge (mean ± SEM; (61.6 ± 1.3) or (54.2 ± 1.1)
lg�kg�1, respectively). The results for benzoylecgonine and MDMA
in the present study are comparable to those of a recent Slovakian
study [22], in which benzoylecgonine was below the LOQ and
MDMA was present at very low levels, on average, in digested
sludge (< 5 lg�kg�1). The methamphetamine concentrations
recorded in this study are comparatively higher than those previ-
ously reported in sludge samples from an Australian WWTP
(2 lg�kg�1) [43], but remain within the range reported by
Mastroianni et al. [17] (i.e., 6.7–111 lg�kg�1) in sludge samples.
It should be noted that in 2013, when the study by Mastroianni
et al. was published, methamphetamine was being used—and
therefore detected—at far lower levels than at present, which
probably resulted in lower levels being present in solids as well
at that time. For example, the methamphetamine concentration
detected in influent wastewater in Spain was 50 ng�L�1 in 2011
[59], whereas it was about 3000 ng�L�1 in Australian wastewater
in 2016 [40]. The results indicate that methamphetamine is a
stable compound that undergoes minimal degradation under
mesophilic anaerobic digestion conditions.

The other two compounds detected in the dewatered
centrifuge/lagoon-treated sludge were codeine and morphine,
whose mean concentrations ranged in 10.6–15.4 and
39.6–139.4 lg�kg�1, respectively. Here, the mean dewatered
und in primary sludge, anaerobically digested sludge, treated sludge dewatered by
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sludge values for codeine were almost double the levels
(6.3 lg�kg�1) reported by Gago-Ferrero et al. [60] in sludge col-
lected from WWTPs in Greece, where sludge is treated by aerobic
digestion prior to dewatering. However, the digested and dewa-
tered sludge codeine concentrations found in the present study
were similar to those of Ivanová et al. [22], who reported median
codeine levels of 16 lg�kg�1 in primarily anaerobically digested
(some aerobic) and centrifuge-dewatered sludge from several
Slovakian WWTPs. The difference in the levels between our data
and those of Gago-Ferrero et al. [60] and, to a lesser extent, Ivanová
et al. [22] might be due to the use of anaerobic digestion for sludge
treatment in this study, as it may be less effective than aerobic
digestion for codeine degradation or removal. For example, the
literature reports that aerobic digestion is better at trace organics
removal than anaerobic digestion [61,62]. Furthermore, given that
the numbers are still within the same order of magnitude (< two-
fold difference), these differences could also feasibly relate to sam-
pling variability, or to differences in analytical measurement or
recovery. The morphine mean concentration (� 40 lg�kg�1) was
the same in both treated sludges in this study (centrifuged or
lagoon dewatered), and was comparatively higher than the range
reported by Mastroianni et al. [17] (2.2–19.1 lg�kg�1) in treated
sludge from 15 Spanish WWTPs with predominantly activated-
sludge operations. The sludge treatment processes in their study
were comparable to those used in the current investigation, and
included anaerobic digestion followed by centrifuge dewatering.
Overall, there was no significant difference in the concentrations
of drugs (methamphetamine, codeine, and morphine) in the bioso-
lids generated after dewatering by centrifugation or lagoon.

Of the five targeted drugs, methamphetamine, codeine, and
morphine were detected in all biosolids samples (Fig. 5). In general,
methamphetamine concentration (52.2 lg�kg�1) was approxi-
mately twice the mean concentration of codeine and morphine
(� 23 lg�kg�1). A likely reason for the higher concentration of
methamphetamine in biosolids is its higher influent mass loads
[40,49,63]. Methamphetamine has been shown to be relatively
stable in the environment [57,64], which may also explain its
prevalence and persistence in the stabilized biosolids examined
here. The codeine levels were within the same range as that
reported by Langdon [65], but were slightly higher than the con-
centrations found by Sabourin et al. [48] (up to 14.6 lg�kg�1) in
Canadian biosolids.

To the best of our knowledge, this is the first study providing
information on the presence of illicit and pharmaceutical drugs
in Australian biosolids. In order to try to understand the potential
environmental risk associated with these compounds in biosolids
in the context of Australian land application practice, we con-
ducted a hazard assessment using risk quotient (RQ). The RQ was
calculated as a ratio of the measured concentrations in the bioso-
lids from our study to the predicted no-effect concentration (PNEC)
in water from the literature [66,67], since no equivalent PNEC soil
values were available. Based on their RQ values, the compounds
were categorized as being of high (RQ � 1), moderate (RQ = 0.1–
1), or low (RQ < 0.1) risk to the environment [68,69]. This analysis
resulted in RQ values of < 0.1 (low environmental risk) for all com-
pounds except codeine (RQ = 0.4; moderate risk). We should stress
that since these RQ values were calculated using measured concen-
trations in 100% biosolids, this result substantially overestimates
the risk in the context of Australian agricultural biosolids reuse,
in which biosolids are typically applied at low rates of 10 t�hm�2,
or 1 kg�m�2 by dry mass [70]. Assuming that biosolids are incorpo-
rated into the top 10 cm of the soil, a further 100-fold dilution
occurs of biosolids-associated compounds in the environment,
which reduces the above RQ values for all substances to well below
the low-risk threshold value. Other jurisdictions should reassess
this risk determination in line with the local context (i.e., biosolids
drug concentrations and biosolids application rates/practices) in
order to properly assess local environmental risk. We should also
reiterate that the PNEC values used to calculate the RQ relate to
water environments, so the above RQs are only estimates for soil.
4. Conclusions

This study surveyed sludge and biosolids from a large
Australian WWTP in order to understand the occurrence and fate
of methamphetamine, MDMA, codeine, morphine, and the cocaine
metabolite benzoylecgonine during wastewater solids treatment.
Benzoylecgonine and MDMA were readily removed during sludge
treatment and were not detected in biosolids following long-
term stabilization treatment. Methamphetamine, codeine, and
morphine were always detected at low levels (lg�kg�1) in treated
sludge (centrifuged and lagoon-dewatered) and biosolids. In this
study, the average concentration of methamphetamine in waste-
water solids was higher than the levels reported internationally;
this may be a reflection of the fact that methamphetamine is the
main stimulant of choice for Australians, leading to relatively
higher levels in the wastewater and consequently in the solids
fraction. This study also found that the solids treatment processes
used at the surveyed WWTP (i.e., anaerobic digestion, agitated air
drying, lagoon stabilization, and stockpiling) do very little to
remove methamphetamine, morphine, and codeine, even after
exposure to long-term (multiple year) solids stabilization pro-
cesses. A simple environmental risk assessment showed that for
all five drugs, the risks associated with the land application of bio-
solids are likely to be very low at typical Australian biosolids land
application rates. Little is known on their long-term persistence
and accumulation in the environment, however, and the use of bio-
solids for agriculture may benefit frommore research to establish a
better risk profile for these compounds in the environment and to
assess their potential to enter the food chain. For such research, a
long-termmonitoring study would be required that should include
a sampling of biosolids-amended soils before and after application
at various rates, along with monitoring of the crops grown in order
to assess plant uptake potential.
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