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Exploring the physical mechanisms of complex systems and making effective use of them are the keys to
dealing with the complexity of the world. The emergence of big data and the enhancement of computing
power, in conjunction with the improvement of optimization algorithms, are leading to the development
of artificial intelligence (AI) driven by deep learning. However, deep learning fails to reveal the underlying
logic and physical connotations of the problems being solved. Mesoscience provides a concept to under-
stand the mechanism of the spatiotemporal multiscale structure of complex systems, and its capability
for analyzing complex problems has been validated in different fields. This paper proposes a research
paradigm for AI, which introduces the analytical principles of mesoscience into the design of deep learn-
ing models. This is done to address the fundamental problem of deep learning models detaching the
physical prototype from the problem being solved; the purpose is to promote the sustainable develop-
ment of AI.

� 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. AI has achieved significant development and increasingly
become a common multidisciplinary technique

In recent years, various scientific and technological break-
throughs have become a reality. AlphaGo, developed by Google,
defeated top Go players such as Lee Sedol and Ke Jie; driverless cars
have traveled safely for millions of kilometers and obtained legal
driving rights in more than ten states in the United States; and
image- and speech-recognition techniques have gradually matured
and been widely used in consumer products such as cameras and
smartphones, bringing great convenience. As a result, the old term
‘‘artificial intelligence” (AI) has reappeared in the public sight, trig-
gering a new round of technological revolution. Today, AI is
included in the major development strategies of many countries,
and is regarded as a core capability [1–4]. As AI is closely related
to many fields, it is expected to become a model framework for
interdisciplinary research and to further promote the coordinated
development of various fields.
AI has existed for more than 60 years, since its birth at the
Dartmouth conference in 1956. The development of its main-
stream techniques has gone through three key periods: the reason-
ing period, knowledge period, and learning period. From 1956 to
the early 1970s, AI research was in the reasoning period, and
mainly concentrated on rule-based symbolic representation and
reasoning; the representative achievements in this period were
various automatic theorem-proving procedures [5]. However, with
the increasing difficulty of problems, it was challenging for machi-
nes to be intelligent purely based on logical reasoning. Hence,
some researchers turned from the exploration of general thinking
law to the application of specialized knowledge, and AI research
entered the knowledge period. From the early 1970s to the end
of the 1980s, a large number of expert systems [6] were estab-
lished and achieved remarkable results in specific application
areas. However, with the expansion of the application scale, it
was very difficult to summarize knowledge and then teach it to
computers. Therefore, some researchers advocated having comput-
ers learn knowledge from data automatically, and AI research
entered the learning period. Since the early 1990s, AI research
has been devoted to machine learning theory and algorithm
research [7]. Machine learning has not only made breakthroughs
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in traditional AI tasks such as image recognition [8–10] and
speech recognition [11,12], but also played an important role in
many novel applications, such as predicting the activity of poten-
tial drug molecules [13], analyzing particle accelerator procedure
[14], reconstructing brain circuits [15], identifying exoplanets
[16], diagnosing skin cancer [17], and predicting the effects of
mutations in non-coding DNA on gene expression and disease
[18,19].

The revival of AI can be attributed to three main factors. First,
the significant progress of data acquisition, storage, and transmis-
sion techniques has resulted in big data, which is an essential
resource for AI research. Moreover, the maturity of high-
performance computing techniques and the emergence of power-
ful computing hardware (e.g., graphics processing units (GPUs)
and central processing unit (CPU) clusters) have laid a solid foun-
dation for the study of AI. Last but not least, researchers have accu-
mulated abundant experience and skills in modeling large-scale
complex problems, leading to the rapid development of machine
learning methods represented by deep neural networks [20],
which provide an effective approach to study AI. Today, AI is a mul-
tidisciplinary technique, which can be used in any area that
requires data analysis.
2. Deep learning is prevailing, but its physical mechanism
remains unclear

A deep learning model is actually a multilayer artificial neural
network. To avoid confusion, it is hereinafter referred to as a deep
neural network, the structure of which is shown in Fig. 1. The
model consists of three main parts: the input layer, hidden layer
(s), and output layer. Each node of the input layer corresponds to
one dimension of the input data (e.g., a pixel of image), each node
of the output layer corresponds to a decision variable (e.g., a
semantic category), and the hidden layers are made up of many
‘‘neurons.”

In terms of biological mechanism, a neuron receives a potential
signal transmitted by other neurons and will be activated and out-
put a signal when the accumulated signal is higher than its own
potential. This process can be formalized as y ¼ f wTxþ b

� �
, where

x ¼ x1 � � � xn½ �Tdenotes a multidimensional input signal, y denotes a
Fig. 1. An example of a deep neural network. Eight images on the bottom r
one-dimensional output signal,w ¼ w1 � � �wn½ �T denotes the weight
of the input signal, b denotes a bias, and f is an activation function.
It can be seen that a deep neural network is essentially a mathe-
matical model produced by nesting a simple function hierarchi-
cally. Although the deep neural network is inspired by
neurophysiology, its working principle is far from the brain simu-
lation depicted by the media. In fact, the working principle of the
human brain has not yet been fully explored.

When many neurons are hierarchically organized as a deep
neural network, this deep model is equivalent to a nested
composite function, and each layer of the network corresponds
to a nonlinear mapping (the output signal of the previous layer is
used as the input signal for the next layer). Signal transmission
throughout the network can be formally described as y ¼
f WL � � � f W2f W1xþ b1ð Þ þ b2½ � � � � þ bLf g, where Wl and bl l ¼ð
1; 2; :::; LÞ respectively denote the weight matrix and the bias vec-
tor at the lth layer (i.e., the model parameters to be solved). Here,
the model parameters are packed into matrices and vectors, since
each layer of the network contains multiple neurons. Given the
application task, a loss function (used to measure the difference
between the actual and expected outputs of a deep neural net-
work) should be designed first, and then the model parameters
can be solved by optimizing the loss function with a backpropaga-
tion algorithm [21], so that a multilevel abstract representation
collectively hidden in a dataset can be learned.

Illustrated by statistical learning theory [22], the more numer-
ous the parameters are, the higher the model complexity will be,
and hence the stronger the learning ability will be. We can increase
the model complexity of a deep neural network by ‘‘widening” or
‘‘deepening” it. The latter works better in practice. While ‘‘widen-
ing” only increases the number of basic functions, ‘‘deepening”
increases not only the number of functions, but also the layers of
function nesting, making it more powerful in view of functional
expression. Therefore, ‘‘deepening” is more helpful in improving
model complexity and learning ability. Taking the ImageNet com-
petition in the computer vision field as an example, neural archi-
tecture is getting deeper and deeper, from the seven-layer
AlexNet [8] to the 16-layer VggNet [9], and then to the 152-layer
ResNet [10]. At present, the deepest neural network has reached
thousands of layers, with the number of model parameters reach-
ing as many as several billions.
ight of Fig. 1 was adapted from ImageNet (http://www.image.net.org).
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It is worth noting that one crucial aspect of a deep neural net-
work is how to design the neural architecture reasonably. Existing
neural architectures have mostly been developed manually by
human experts, which is a time-consuming and error-prone pro-
cess. Therefore, a great deal of effort is currently being put into
automatic machine learning (AutoML), with a particular focus on
methods of automated neural architecture search (NAS) [23]. The
concept behind NAS is to explore a search space—which defines
all of the architectures that can be represented in principle—by
Bayesian optimization [24], reinforcement learning [25], or neuro-
evolutionary learning [26], with the goal of finding the architec-
tures that achieve high predictive performance on unseen data.

Although deep learning has achieved many successes, the inter-
pretability of such a model remains unclear. When researchers
apply a deep neural network to model their problems, they regard
it as a ‘‘black box” and only focus on the input and output. Most
employed neural architectures are designed entirely based on the
experience and intuition of the researchers, which fail to link the
problem to be solved with its physical background. Although the
calculation process of a deep neural network can be explicitly rep-
resented by a mathematical formula, it is difficult to explain it at
the level of physical meaning. The model lacks a physical connota-
tion that can reflect the essence of the problem. Even if AutoML is
helpful to find ‘‘better” neural architectures in terms of predictive
performance, it still cannot be physically explained. A few
researchers have tried to explain a deep neural network in terms
of some specific application tasks. Taking image recognition as an
example, researchers performed a de-convolution operation on a
deep convolutional neural network (CNN) to visualize the visual
features learned by the layers, hoping to explain the microscopic
process of image recognition [27]. However, such a heuristic expla-
nation is not universal and can hardly be extensively applied to
other cases; furthermore, it fails to reveal the physical mechanism
of the model. Therefore, the interpretability of the deep neural net-
work is a bottleneck in its further development.
3. Mesoscience is expected to be a possible solution to reveal the
physical mechanism of deep learning and further promote the
development of AI

Associating the design of a deep neural network with the physi-
cal mechanism of the problem to be solved is a prerequisite for
realizing breakthrough progress in AI, and the universality of the
physical mechanism determines the scope of AI applications,
which is a fundamental problem for AI in the future.

Mesoscience is based on the idea that complexity originates
from the compromise in the competition between two or more
dominant mechanisms in a system, resulting in a complex spa-
tiotemporal dynamic structure [28]. Almost all systems studied
in AI research are complex systems. Introducing mesoscience prin-
ciples and methods into AI research (mainly in respect to deep
neural networks) might be a promising way to address the afore-
mentioned problems.

Starting with the study of gas–solid fluidization in chemical
engineering [29], mesoscience has been consecutively applied to
studies in gas–liquid fluidization [30], turbulence flow [31,32], pro-
tein structure [33], catalysis [34], and so forth. The universal law
has now been gradually summarized. The main spirit of meso-
science can be summarized as follows [35,36]: In general, a com-
plex problem has multiple levels, each of which has multiscale
characteristics, and different levels are related to each other. A
complex system consists of countless elements, and there is likely
a spatiotemporal multiscale structure between the system and ele-
ment scale due to the collective effect of elements. There are three
types of regimes in such a structure (taking the case of a system
controlled by two dominant mechanisms as an example), with
completely different properties when the boundary and external
conditions are changed:

A–B regime: This regime is jointly controlled by physical
mechanisms A and B, and is known as the mesoregime. The
structure of the mesoregime shows the alternation of the two
states, which is controlled by the compromise in competition
between mechanism A and mechanism B. In this regime, the
system structure conforms to the following:

min
A

B

� �

A-dominated regime: As the external conditions change,
mechanism B disappears and mechanism A alone dominates the
system. In this case, the system structure characteristics are simple
and in line with the following:

A ¼ min

B-dominated regime: As the external conditions change in the
opposite direction, mechanism A disappears and mechanism B
dominates the system; the system structure now conforms to the
following:

B ¼ min

Most importantly, the transition between the A, A–B, and B
regimes is often accompanied by sudden changes in the system’s
characteristics and function.

The problem handled by deep learning can often be regarded as
a complex system. The correlation between the input and output of
such a system is usually modeled as a nonlinear nested map. Using
mesoscience theory to examine existing deep learning models, this
paper proposes the following research and application mode of
mesoscience-based AI:

Supposing that there is a huge training dataset, we want to
establish a model to express the inherent laws of the dataset
through deep learning. According to the concept and logic of meso-
science, the following steps should be taken:

(1) Analyze these data to determine how many levels they
involve.

(2) For each level, analyze the existence of three regimes.
(3) If it belongs to regime A or regime B, the structure is simple

and can be solved by the existing deep learning technique.
(4) If it is in the A–B mesoregime, the system has a significant

spatiotemporal dynamic structure. It is necessary to analyze its
physical dominant mechanisms first; next, use a multi-objective
variational model for the two or more mechanisms with the classi-
cal gradient descent to help the model training.

(5) After analyzing each level, carry out association and integra-
tion among different levels.

Examining the above steps, we found that, for problems belong-
ing to regime A or regime B, the extreme conditions are relatively
simple from the mesoscience perspective. Thus, the existing deep
learning techniques can be used to quickly iterate to the solution
to establish the mathematical model. However, for problems in
the A–Bmesoregime, the correlation between the input and output
is controlled by multiple—at least two—physical mechanisms.
Therefore, a time-consuming parameter-learning procedure is
inevitable, if the conventional deep learning method is used. Alter-
natively, if the physical mechanism is decomposed first, according
to the concept of mesoscience, and the multi-objective variational
method is adopted to analyze different control mechanisms, cou-
pled with the classical backpropagation algorithm, the deep learn-
ing solution satisfying the error condition can be obtained more
quickly.
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For complex problems dealt with by deep learning, if the con-
trol mechanism is analyzed first at the physical level, the model
can be established following the above steps. This is helpful to
speed up the model training and facilitate a deeper understanding
of the physical nature of the system.

A general method to address the intrinsic problems in AI may be
to introduce the analytical and processing means of mesoscience
into deep learning, such as region decomposition, dominantmecha-
nisms identification, and the multi-objective variational method.
4. The problem-solving paradigm of AI can be improved by
mesoscience

A general flowchart of AI theoretical and application research
based on deep learning is shown in Fig. 2. The main steps can be
summarized as follows:

(1) Collecting training data: Gather (sufficient) data from
application scenarios (often complex systems), and label the data-
set if supervised learning is involved.

(2) Constructing a deep neural network: Choose a suitable
neural architecture and optimization algorithms to train a statisti-
cal model that can capture the potential patterns hidden in the
dataset.

(3) Applying the model: Predict results for new data using the
well-trained model.

The essential step in such a flowchart is to construct the deep
neural network. At present, researchers entirely rely on their
own experience and intuition to complete this step, due to the
‘‘black box” issue inherent in artificial neural networks. To this
end, we suggest that mesoscience principles and methods could
be considered for the construction of a deep neural network. The
resulting improved flowchart is shown in Fig. 3.

Solving the problem of complex systems is a critical goal of AI,
as illustrated by Figs. 2 and 3; complex systems provide both appli-
cation scenarios and massive datasets for AI. The human brain is
also a complex system. On the one hand, brain science [37]—that
is, studying the material basis and mechanism of human think-
ing—is an important support for the future development of AI.
On the other hand, improving our understanding of complex sys-
tems will also help brain science research. The recent success of
the deep learning technique can be regarded as a mathematical
success. If the research results of brain science can be integrated
into AI in the future, this will inevitably and significantly promote
the research and application of AI.
Fig. 2. Schematic of existing AI
Brain scientists have been trying to reveal the secrets of the
human brain, not only from the perspective of biology and anat-
omy, but also in terms of the development of the cognitive mech-
anism. By combining this knowledge of how intelligence occurs
with advanced computer hardware and software technology, it is
possible to build an ‘‘artificial brain” that may be comparable to
the human counterpart. However, different people use their differ-
ing abilities to solve problems with their brain after receiving cor-
responding education and training, even though different peoples’
brains have identical structure and functions. The key is that when
a problem arises, people make use of their understanding of the
problem’s physical nature together with their brain’s reasoning
and induction abilities to obtain the correct solution within a lim-
ited time. Therefore, the ability of AI to solve practical problems
should depend on the progress of brain science, the development
of information technology (IT), the understanding of the physical
nature of the problems, and the effective integration and coupling
among them.

Although mesoscience originates from the field of chemical
engineering, its basic principles are pervasively applicable to other
complex systems. The core concept of mesoscience is to find the
multilevel correlations and multiscale associations in the system,
as well as to identify the mesoregimes and their physical dominant
mechanisms in different levels. Next, the multi-objective varia-
tional method is used to seek the law of compromise in competi-
tion of the dominant mechanisms in order to solve the problem.
In the new paradigm illustrated by Fig. 3, mesoscience plays an
important role in improving the model architecture and learning
algorithm, in addition to improving related computing hardware
and computational methods.

From the mesoscience concept to AI applications, many issues
remain to be explored. For example, Google’s AlphaGo Fan [38]
adopted deep reinforcement learning—which integrates the per-
ception ability of deep learning with the decision-making ability
of reinforcement learning—to beat the human Go world champion.
By combining the deep reinforcement learning technique with the
Monte Carlo search strategy, AlphaGo assesses the current board
situation through the value network to reduce the search depth,
and uses the policy network to reduce the search width, in order
to improve the search efficiency. AlphaGo is a successful applica-
tion example of deep reinforcement learning. From the perspective
of system structural analysis, deep reinforcement learning can be
divided into three levels: ① tens of thousands of perceptrons,
② several deep learning networks, and ③ deep reinforcement
learning strategies. These levels coincide with the three scales in
research and applications.



Fig. 3. Schematic of mesoscience-based AI research and applications.
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mesoscience: ① element scale, ② mesoscale, and ③ system scale.
It is worth investigating whether it is possible to directly apply
analytical methods to deep reinforcement learning.

Notably, DeepMind has developed four main versions of
AlphaGo: Fan, Lee, Master, and Zero. The earlier versions of AlphaGo
such as Fan and Lee [38] are trained by both supervised learning
and reinforcement learning, while the latest version AlphaGo Zero
[39] is solely trained by self-play reinforcement learning without
any human knowledge, and use a single deep neural network rather
than separate policy and value networks. Here, we take only
AlphaGo Fan as an example, for two reasons: First, AlphaGo Fan
[38] is themost complicated version, and this paper focuses on ana-
lyzing complex systems; thus, AlphaGo Fan is the most typical case
among the four versions. Second, no matter whether policy and
value networks are separated (e.g., AlphaGo Fan and Lee [38]) or
merged (e.g., AlphaGo Zero [39]), they still correspond to the
mesoscale in accordance with the mesoscience concept.

Another example is the generative adversarial network (GAN)
[40], which is one of the most popular and successful deep learning
models. GAN performs learning tasks by means of a mutual game
between the generative model and the discriminative model.
GAN’s goal is to generate pseudo data consistent with the distribu-
tion of real data by using a generative model with the help of a dis-
criminative model. These two models have their own goals as well;
the generative model attempts to generate data that can deceive
the discriminative model, while the discriminative model strives
to distinguish the generated data from the real data. In the process
of establishing the GAN, the two models are mutually restrained,
and each tries to lead in the direction of its own advantage. Finally,
under the constraint of the GAN objective function, the two models
reach equilibrium and compromise with each other. If the behavior
of the two models is regarded as being equivalent to the two
dominant mechanisms, A and B, in the mesoregime, then the GAN’s
training is the process of compromise in the competition of two
dominant mechanisms in the mesoregime. In this way, the spirit
of mesoscience may be beneficial when training a GAN model
and further boosting its applications.

Through an analysis of the progress of AI and big data during
the past years, two conclusions can be drawn, as shown in Fig. 3:
① With the continuous development of brain science, the working
principle of the human brain is gradually being revealed, and a
breakthrough could be realized in AI using such achievements.
② Big data has its own complexity. In order to tackle the complex-
ity behind big data and build a physical model conforming to the
objective law, it is necessary to identify the physical mechanism
behind the complexity. The above two aspects are logically consis-
tent; that is, exploring the physical mechanism of complex systems
and making effective use of them are the keys to dealing with com-
plexity. Reflecting this logic, this paper advocates applying the
principle and methods of mesoscience to AI.
5. Conclusion

The emergence of big data, along with the advancement of com-
puting hardware, has prompted great development in AI, leading to
its applications in many fields. However, due to certain problems
inherent in deep learning, the interpretability of deep learning is
limited. Although mesoscience originates from chemical engineer-
ing, its analytical methods—which include multilevel and multi-
scale analysis, as well as the idea of compromise in the
competition of dominant mechanisms in the mesoregime—can also
be applied to other complex systems. In recent years, mesoscience
has achieved successful applications in different fields, and is
expected to provide a novel concept to improve the interpretability
of deep learning.

At present, the proposed mesoscience-based AI is a preliminary
research idea, and its verification and expansion require the joint
effort of researchers from various disciplines. In particular, explo-
ration on its specific applications is required in future.
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