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It has long been a challenging task to detect an anomaly in a crowded scene. In this paper, a self-
supervised framework called the abnormal event detection network (AED-Net), which is composed of
a principal component analysis network (PCAnet) and kernel principal component analysis (kPCA), is pro-
posed to address this problem. Using surveillance video sequences of different scenes as raw data, the
PCAnet is trained to extract high-level semantics of the crowd’s situation. Next, kPCA, a one-class classi-
fier, is trained to identify anomalies within the scene. In contrast to some prevailing deep learning meth-
ods, this framework is completely self-supervised because it utilizes only video sequences of a normal
situation. Experiments in global and local abnormal event detection are carried out on Monitoring
Human Activity dataset from University of Minnesota (UMN dataset) and Anomaly Detection dataset
from University of California, San Diego (UCSD dataset), and competitive results that yield a better equal
error rate (EER) and area under curve (AUC) than other state-of-the-art methods are observed.
Furthermore, by adding a local response normalization (LRN) layer, we propose an improvement to the
original AED-Net. The results demonstrate that this proposed version performs better by promoting
the framework’s generalization capacity.

� 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Video studies have attracted an increasing amount of attention
from researchers in the computer vision community in recent
years. Lately, research into topics such as object tracking [1–3], gait
recognition [4,5], and activity recognition [6–8] have achieved
competitive results and demonstrated promise for the future.

Abnormal event detection, which involves detecting the specific
frames in a video that contains an anomaly, is one of the hottest
research issues in the video field. In comparison with the tasks
mentioned above, abnormal event detection has greater
significance for national security and for people’s lives with the
modernization of society, an increasing number of surveillance
cameras are being deployed in various places, producing an enor-
mous quantity of video every second. This much data is impossible
for a human to deal with, or to determine any abnormal events
contained within. However, missing even one anomaly in a surveil-
lance video could result in unbearable loss. Thus, there is a need for
the construction of an automatic video abnormality detector that
can deal withmillions of videos frames and can alert people in order
to enable a timely and effective response when an anomaly
happens.

Ref. [9] describes the many difficulties inherent in anomaly
detection. Although it is simple enough to list a few types of
abnormalities for a specific scene, such as the presence of a car or
a bicyclist in a pedestrian crowd, it is impractical to enumerate all
the abnormal events that could be possible within that scene; thus,
there are countless positive classes in this classification task.
Furthermore, due to a lack of abnormal samples—that is, video
frames including abnormal events—the training set is severely
imbalanced, making it infeasible to train a model for multi-class
classification. All these difficulties indicate that the anomaly detec-
tion task is a one-class classification problem that is hard to handle.

Some methods have been suggested to deal with abnormal
event detection. For example, Ref. [10] proposes a method based
on histograms of the optical flow orientation descriptor. As the
handcrafted feature descriptor in this case was constructed based
on human experience, it did not represent the feature in a training
process. Thus, it performs worse than current deep learning
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methods. Deep learning methods have been recently developed, as
described in Refs. [11,12], largely due to the availability of big data
and efficient hardware. Such methods are intensively applied in
the computer vision field and have achieved great results. In Ref.
[13], Wang et al. used a convolution neural network (CNN) for
defect detection in product quality control. However, the original
CNN for face recognition is not applicable to this task, because its
training requires samples of different classes. Considering the suc-
cess of the principal component analysis network (PCAnet) [14] in
image classification, Ref. [15] proposes a PCAnet-based method to
extract information from raw images for anomaly detection, with a
one-class classifier constructed on a clustering algorithm. How-
ever, this method has natural limitations due to the K-medoids
clustering algorithm, which has difficulty dealing with the high-
dimensional features extracted by the PCAnet. In this paper, we
propose a self-supervised network, termed the abnormal event
detection network (AED-Net), to deal with the task of video anom-
aly detection, with only normal samples being provided as training
data. Since PCAnet has been demonstrated as being able to extract
features as an unsupervised model, it was chosen for our self-
supervised AED-Net. In addition, a one-class classifier is used to
handle the extracted high-dimensional features in order to deter-
mine the abnormality of frames.

To be more specific, this new self-supervised network uses opti-
cal flow maps as the input, because these maps are well-suited to
representing motion. Next, high-level semantics of a crowd’s situ-
ation can be extracted from the PCAnet. Subsequently, a simple but
effective one-classifier kernel principal component analysis (kPCA)
[16] is used to classify the high-dimensional features. Having the
advantages of both networks, AED-Net is trained to understand
each frame and conduct detection. More importantly, a local
response normalization (LRN) layer (a technique used in CNN to
aid generalization) is incorporated to improve the AED-Net. It is
worth noting that this new network can be trained with unlabeled
data and performs better in comparison with state-of-the-art
methods in an abnormal detection task. Our new self-supervised
network can effectively detect abnormal events even in crowded
situations, which improves the detection results according to the
experiments tested on the public Monitoring Human Activity data-
set from University of Minnesota (UMN dataset) and Anomaly
Detection dataset from University of California, San Diego (UCSD
dataset).

The rest of this paper is organized as follows. Section 2 provides
a brief review of related works, and Section 3 reviews the basic
algorithms of our framework, the PCAnet and kPCA. Next, the com-
plete architecture of AED-Net is elaborated in Section 4, along with
our improvements to it. Section 5 illustrates and discusses the
experimental results of the UMN [17] and UCSD [18] datasets.
Finally, Section 6 presents our conclusions.
2. Related work

In general, traditional methods for anomaly detection can be
divided into two major classes. The first class is based on trajec-
tory, and has been widely used in abnormal events detection
[19–22]. In Refs. [23–25], the authors extract the trajectory of nor-
mal events to indicate normal modes; trajectories that differ from
the normal patterns are then considered abnormal. However,
occlusion between moving objects affects the effectiveness of this
method when it is applied to crowded scenes. To tackle this
problem, a new model is suggested in Ref. [26] to deal with the
interrelatedness of human behavior and to ameliorate the repre-
sentation of objects’ interaction. In Ref. [27], a discrete transforma-
tion is utilized to develop a reliable multi-target tracking algorithm
that associates objects in different frames. However, the occlusion
problem affects the results so much that the methods listed above
do not address this issue in an effective way. Hence, the tracking
strategy is not adopted in our work.

The spatiotemporal method falls into another category. Promis-
ing research on this method has been proposed. In Ref. [28], Wang
et al. propose a covariance matrix as a feature descriptor, which
encodes the optical flow and partial derivatives of adjacent frames.
In Refs. [29–32], the authors model motion patterns with his-
tograms of pixel changes. In Refs. [33–35], distributions of optical
flow are used as the basic features, and models for detecting abnor-
mal events are then built based on optic flow features. Ref. [36]
proposes an approach to estimate the interaction between moving
objects. Another study [9] uses a detector that combines time and
space anomalies. The wavelet transform used in image processing
can also be utilized to analyze motion [37,38]. In those cases deli-
cate feature descriptors were designed manually, and tended to
work well only under specified conditions. In our work, the fea-
tures are extracted by a self-supervised network.

With its rapid development, deep learning has recently
achieved outstanding results in the field of abnormal event detec-
tion. Unlike the features of manual design, features extracted by a
deep learning network are obtained through a learning process. In
the proposed AED-Net, a self-supervised learning method is pro-
posed for abnormal event detection, which involves only normal
samples being learned.
3. Self-supervised feature extraction and anomaly detection

Self-supervised learning is a learning paradigm in which there
is no external supervised information—that is, labels—as ground
truth beyond the data itself. Under this paradigm, the self-
supervised learning method simply adopts the raw data as the
material for training, which means that the model learns to extract
latent supervised information in the data. Data categories are not
employed in the training process.

The self-learning model is applicable to the anomaly detection
task. Since we can only use normal data to train the model, no
external supervised information is given to the model. Thus, the
model must fully understand what a normal datum is from the
input video clips, and then use it as supervised information to tune
its parameters. Table 1 introduces the notations used in this paper.
3.1. PCAnet for feature extraction

Both traditional and deep learning methods have been applied
for feature extraction from video frames. In Ref. [10], the global
optical flow descriptor is used as the feature. However, optical flow
only contains low-level motion information in the frames; high-
level information features such as people’s running pattern, or
how many people are in the frame, cannot be represented by it.
Thus, the deep learning method is used to deal with this high-
level feature extraction problem. The most popular model is
CNN, which stack layers and extract deeper and deeper features
step by step. However, that particular model requires strong exter-
nal supervised information, which is not provided in our task. Thus,
we chose the PCAnet [14], an equivalent model in feature extrac-
tion that utilizes the power of deep learning without requiring
external supervised information.

PCAnet [14] is a deep learning network that has been proposed
within the prevailing trend of deep learning. Although it is simple
in comparison with other popular deep learning networks, such as
the deep CNN, PCAnet is capable enough to handle challenging
tasks such as face recognition. Thus, this model was chosen for
its efficiency and competitive ability in feature extraction.



Table 1
A description of the notations used in this paper.

Variable Description

S Raw surveillance video frame
I Input of PCAnet (optical flow map)
k1; k2 Size of patches in PCAnet
X Matrix consisting of all patches from an optical flow map at Stage

1 of PCAnet

Si Matrix containing all matrices X
�
at the ith stage of PCAnet

Ki
j jth filter of ith stage of PCAnet

C Outputs of Stage 1 of PCAnet
Y Matrix consisting of all patches from an optical flow map at Stage

1 of PCAnet
O Outputs of Stage 2 of PCAnet
T Integer-valued image after binarizing and encoding outputs of

Stage 2
F Final feature of PCAnet
F Inputs feature of kPCA classifier
M Fið Þ Feature F mapped into higher-dimensional space
j Fi; Fj
� �

Scalar product of M Fið Þ and M Fj
� �

Wj Eigenvectors of covariance matrix of mapped feature in higher-
dimensional space

V Kernel matrix, Vi;j ¼ j Fi; Fj
� �

V
�

Kernel matrix, V
�
i;j , which is the scalar product of M

�
Iið Þ and M

�
Ij
� �

R Reconstruction error, i.e., abnormality score

a Eigenvectors of kernel matrix V
�

pi Output value on the ith feature map
qi Normalized output of pi
d; n; b; c Hyperparameters of LRN
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PCAnet is a cascaded linear network. A typical two-stage PCAnet
architecture is shown in Fig. 1. Because it is inspired by CNN, each
stage of PCAnet consists of an independent principal component
analysis (PCA) filter bank that must be learned in order to perform
feature extraction work. Feature maps in the first stage are linearly
cascaded to the next stage to extract higher-level features. As dis-
cussed by Chan et al. [14], the performance corresponding to the
number of stages shows that although a two-stage network per-
forms better than a one-stage network, networks with more than
two stages have few advantages over a two-stage network; there-
fore, a two-stage PCAnet is sufficient for the task at hand for the
benefit of computation efficiency.

A two-stage PCAnet was therefore used to extract features. In
the training phase, at the beginning of Stage 1, an optical flow
map Ii with the shape h�w is sampled around each pixel to small
Fig. 1. Typical structure of the two-stage PCAn
patches sized k1 � k2, as shown in Fig. 1 with the upper
gray arrows. Next, the samples, patch x1ð Þ; patch x2ð Þ; :::;
patch x h�k1þ1ð Þ� w�k2þ1ð Þ

� �
, are vectorized and compose sample matrix

X ¼ x1; x2; x h�k1þ1ð Þ� w�k2þ1ð Þ
� �

. We then perform mean subtraction

to X to obtain X
�
. (See Table 1 for a list of all the notations used

in this paper.)
For N input optical flow maps, I ¼ I1; I2; :::; INf g, PCAnet

initially samples them to obtain the following:

S1 ¼ X
�
1; X

�
2; :::; X

�
N

h i
2 Rk1k2�N h�k1þ1ð Þ� w�k2þ1ð Þ ð1Þ

Next, PCAnet computes L1 convolution kernels based on I by
implementing PCA, as shown by the lower gray arrow in Fig. 1,
to obtain the following:

K1
l ¼ vec2matk1 ;k2 sl S1S

T
1

� �h i
2 Rk1�k2 ; l ¼ 1; 2; :::; L1 ð2Þ

where sl S1S
T
1

� �
denotes the lth principal eigenvector of S1S

T
1, and

vec2mat �ð Þ maps a vector from R
k1k2 to a matrix M 2 R

k1�k2 . At the
end of Stage 1, the convolution operation is performed to extract
features:

Cl
i ¼ Ii � K1

l ; i ¼ 1; 2; :::; N ð3Þ

where � denotes two-dimensional (2D) convolution, Cl
i refers to the

lth feature map of the ith input Ii, and the number of outputs in
Stage 1 is L1N. Note that the boundary of Ii is zero-padded in order
to ensure that the outputs have the same size as the input—that is,
h�w. As implied, in the test phase, PCAnet will directly perform a
convolution operation on inputs I using kernels obtained from the
training phase.

Stage 2 is conducted in almost the same way as Stage 1. In the

training phase, each input Cl
i of C is sampled to patches. These

patches are vectorized and compose matrix S2 after mean subtrac-
tion is performed:

S2 ¼ �Y
1
1; :::;

�Y
L1
1 ; �Y

1
2; :::;

�Y
L1
2 ; :::; �Y

1
N; :::;

�Y
L1
N

h i
2 Rk1k2�L1N h�k1þ1ð Þ� w�k2þ1ð Þ

ð4Þ

where �Y
l
j ¼ �yi;l;1; �yi;l;2; :::; �yi;l; h�k1þ1ð Þ� w�k2þ1ð Þ

h i
2 Rk1k2� h�k1þ1ð Þ� w�k2þ1ð Þ

refers to the sample matrix of Cl
i. We then compute convolution ker-

nels in Stage 2:
et used in our method. Conv: convolution.



T. Wang et al. / Engineering 5 (2019) 930–939 933
K2
m ¼ vec2matk1 ;k2 sm S1S

T
1

� �h i
2 Rk1�k2 ; m ¼ 1; 2; :::; L2 ð5Þ

Finally, we obtain the outputs of Stage 2 by convolution:

Ol;m
i ¼ Cl

i � K2
m;

l ¼ 1; 2; :::; L1; m ¼ 1; 2; :::; L2; i ¼ 1; 2; :::; N
ð6Þ

The number of outputs in Stage 2 is L2L1N.
After Stage 2, we binarize the output by the Heaviside step

function H �ð Þ, assigning 1 for positive entries and 0 for zero or
negative entries. This enables the network to have nonlinearity.
Thus, the network is capable of capturing high-level semantics in
the optical flow maps. Each of these L1 inputs of the second stage

Cl
i has L2 real-valued outputs in the second stage

Ol;m
i m ¼ 1; 2; :::; L2ð Þ. Around each pixel, there are L2 binary bits;

we can view them as a decimal number, converting the L2 outputs

Ol;m
i to a single integer-valued image:

Tl
i ¼

XL2
m¼1

2m�1H Ol;m
i

� �
ð7Þ

Finally, the output features of PCAnet are block histograms

(with 2L2 bins) computed based on all Tl
i. Note that one histogram

does not represent the whole Tl
i, but a region of it. To do this, Tl

i is
partitioned into B blocks and then used to calculate the histogram.
A histogram is computed in each block. Next, all the histograms are

concatenated into one vector, Bhist Tl
i

� �
. For single-input optical

image Ii, the feature is as follows:

F i ¼ Bhist T1
i

� �
; :::; Bhist TL1

i

� �h iT
2 R 2L2ð ÞL1B ð8Þ

The local block can be either overlapping or non-overlapping.
The latter setting is beneficial for detection except for face detec-
tion [14], so it is set to non-overlapping in this paper. Besides the
overlapping choice, the hyperparameters of the PCAnet also
include the filter size k1; k2, the number of filters in each stage
L1L2, and the block size for local histograms.

3.2. A self-supervised learning method for anomaly detection: kPCA

Because we can only utilize video sequence of normal scenes,
and it is necessary to distinguish normal frames from abnormal
frames with previously unknown anomalies, it is appropriate to
class this task as one-class classification.

The common idea in one-class classification task is to train a
classifier that encloses the training data—that is, the normal
data—and thereby separate the abnormal data from the normal
data. The support vector domain description (SVDD) classifier is a
good example of this method. However, this classifier often gener-
ates a too-large decision boundary that hinders good performance.
Using Gaussian process priors, Kemmler et al. [39] built a model for
Fig. 2. The structure of a on
one-class classification that uses different measures derived from
Gaussian process regression and approximate Gaussian classifica-
tion. However, this model strongly relies on hyperparameter tun-
ing of the re-parameterized kernel function.

In contrast, by learning the distribution of data, which is usually
nonlinear, a kPCA classifier [16] can generate a decision boundary
smoothly following the distribution of data, and tends to classify
more accurately.

The structure of a kPCA classifier is shown in Fig. 2. The essen-
tial idea of this one-class classifier is that the features of normal
frames have a similar distribution, while the features of abnormal
frames have a very different distribution. Thus, after using PCA fil-
ters that were computed based on training features—that is, nor-
mal features—in order to perform PCA on both normal features
and abnormal features, we were able to observe a clear difference
in reconstruction error between normal features and abnormal fea-
tures. The classification could then be conducted according to this
disparity.

As discussed by Hoffmann [16], PCA cannot capture the nonlin-
ear structure of input. Hence, kPCA is introduced to overcome this
drawback, as it maps input Fi 2 R

d to feature in higher-
dimensional space: M Fið Þ 2 Rn n > dð Þ. PCA is then performed in
the feature space. Computation here only requires the scalar pro-
duct ofM Fið Þ—that is, M Fið Þ �M Fbð Þ½ �. The scalar product is further
replaced by the kernel function j Fi; Fj

� �
to perform the same task.

Here, the kernel function uses the Gaussian kernel

j Fi; Fj
� � ¼ exp � kFi�Fjk2

2r2

� �
. Furthermore, we obtain M

�
Fið Þ from

M Fið Þ by performing mean subtraction, which can further repre-
sent Wj, the eigenvectors of the covariance matrix in higher-
dimensional space. Thus, Wj can be expressed by M Fið Þ as follows:

Wj ¼
XN
i¼1

aj
i M Fið Þ � 1

N

XN
k¼1

M Fkð Þ
" #

ð9Þ

It turns out that aj, where aj ¼ aj
1; a

j
2; :::; a

j
N

h i
; j ¼ 1; 2; :::; q,

is an eigenvalue of kernel matrix V
�
. Each component of V

�
—that

is, V
�
i;j—is a scalar product of M

�
Fið Þ and M

�
Fj
� �

. Similarly, each
component of kernel matrix V—that is, Vi;j—is a scalar product of
M Fið Þ and M Fj

� �
. Thus,

V
�
i;j ¼ Vi;j � 1

N

XN
a¼1

Via � 1
N

XN
a¼1

Vaj þ 1
N2

XN
a;b¼1

Vab ð10Þ

According to Hoffmann [16], given feature FZ , the reconstruc-
tion error is calculated in feature space as follows:

R Izð Þ ¼ M
�

Fzð Þ �M
�

Fzð Þ
h i

� WM
�

Fzð Þ
h i

� WM
�

Fzð Þ
h in o

ð11Þ
e-class classifier: kPCA.
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where W ¼ W1; W2; :::; Wq
� �

. The equation above can then be
expressed more clearly, as follows:
R Fzð Þ ¼ k M Fzð Þ k2 �
Xq

j¼1

M Fzð Þ �Wj
� �2

¼ Vzz � 2
N

XN
a¼1

Vza þ 1
N2

XN
a;b¼1

Vab �
Xq

j¼1

Pj Fzð Þ� �2

¼ 1� 2
N

XN
a¼1

Vza þ 1
N2

XN
a;b¼1

Vab �
Xq

j¼1

Pj Fzð Þ� �2
ð12Þ

In the equation above, Pj Fzð Þ is expressed as follows:
Pj Fzð Þ ¼ M Fzð Þ �Wj

¼ M Fzð Þ � 1
N

XN
a¼1

M Fað Þ
" #

�
XN
i¼1

aj
iM Fið Þ � 1

N

XN
i;b¼1

aj
iM Fbð Þ

" #

¼
XN
i¼1

aj
i Vzi � 1

N

XN
a¼1

Via � 1
N

XN
b¼1

Vzb þ 1
N2

XN
a;b¼1

Vab

" #
ð13Þ

Hence, we obtain the desired form of measurement R Izð Þ to
detect the anomaly.

The hyperparameters in this classifier are the number of
eigenvectors q and the kernel width r. Their values depend on
the specific experiment environment.

Finally, given an input X and extracted feature Fx, we define the
classifier as follows:
status Xð Þ ¼ anomalyR Fxð Þ > threshold
normalityR Fxð Þ � threshold

�
ð14Þ

The threshold above is the maximum reconstruction error com-
puted in the training phase, as shown in Fig. 2.
4. Proposed AED-Net

Given the task of anomaly detection in video frames, we pro-
pose AED-Net, an integral self-supervised detection framework
based on the self-supervised learning method that trains on
normal data. To perform the feature extraction task based on input
video frames, PCAnet is adopted as an effective network. For one-
class classification, we then use kPCA, a particular one-class
classifier, to determine the abnormality of the frames.
Fig. 3. Architecture of th
4.1. Optical flow computation

Initially, we obtain raw video frames, S. To detect the abnormal
events in these frames, the moving area should first be separated
from the static background in S in order to simplify the detection
task. Optical flow, which represents the motion field between
frames [40], is applicable to this motion extraction requirement.

The Horn–Schunck (H–S) method [41] can be used to compute
optical flow. Considering the constraints of pixel value consistency
and flow variety across the image, this method constructs an
energy function and optimizes it to obtain optical flow in the form
of u and v [41], which are the horizontal and vertical components
of the optical flow. The constraint of smoothness is added to the
function in order to mitigate the aperture problem. The proposed
energy function is as follows:

E ¼
ZZ

Ixuþ Iyv þ It
� �2 þ a2 k ru k2 þ k rv k2

� �h i
dxdy ð15Þ

where E is the global energy; Ix, Iy, and It are the pixel values across
the width direction, height direction, and time direction; and a is
the hyperparameter controlling the smooth term.

Next, in order to process the optical flow feature as an image is
processed, we visualize the optical flow u; v and obtain optical
flow maps, I, using the Munsell Color System.
4.2. AED-Net

On an intuitive level, the anomaly detection task in our
proposed AED-Net is to assign a score indicating abnormality to
each frame of video. During a training phase, the largest recon-
struction error should be set as the threshold for anomaly detec-
tion. Thus, in the testing phase, the abnormality of the test
frames can be determined by comparing the score of the test
frames with the threshold. To fulfill this task, we incorporate both
PCAnet and kPCA to build AED-Net.

The framework of our proposed AED-Net is shown in Fig. 3, and
the proposed algorithm of AED-Net is shown in Algorithm 1. First,
optical flow maps, I are used as input of the whole framework for
training and testing. Next, the PCAnet model is trained to learn to
extract high-level information that better represents the situation
of the scenes from the spatiotemporal features. Finally, utilizing
the block-wise histograms as classification features extracted by
PCAnet, kPCA is trained to learn the nonlinear data distribution
of normal scenes and to determine the max normality score as
the threshold computing by reconstruction error.
e whole framework.
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During the test time, in order to minimize the influence of
frames that carry little relevant information, foreground detection
is first performed and frames in the test video clip that contain few
people are removed. Next, k block-wise features are extracted by
the PCAnet trained previously, and a test score is computed for
every frame by kPCA. Finally, the test score is compared with the
max normality score to determine whether the frame is abnormal.

Algorithm 1. AED-Net

Input:
Optical flow maps I ¼ I1; I2; :::; INf g

Output:

Threshold of max normality score threshold, K1, K2, a
1: for i ¼ 1; 2; :::; N do
2: Sample Ii by patches and get Xi by vectorizing and

concatenating all patches
3: end for

4: X
�
l ¼ Xi � 1

N

P
Xið Þ

5: S1 ¼ X
�
1; X

�
2; :::; X

�
N

h i
6: K1 ¼ argmin

K1
k S1 � K1 K1

� �T
S1 ks:t: K1 K1

� �T
¼ IL1

7: C ¼ I � K1; C ¼ Cl
i

n o
; i ¼ 1; 2; :::; N; l ¼ 1; 2; :::; L1

8: for i ¼ 1; 2; :::; N; j ¼ 1; 2; :::; L1 do

9: Sample Cj
i by patches and get Yj

i by vectorizing and
concatenating all patches

10: end for

11: �Y
J
l ¼ Yj

i �mean Yj
i

� �
12: S2 ¼ �Y

1
1; :::;

�Y
L1
1 ; �Y

1
2; :::;

�Y
L1
2 ; :::; �Y

1
N; :::;

�Y
L1
N

h i
13: K2 ¼ argmin

K2
k S2 � K2 K2

� �T
S2 ks:t: K2 K2

� �T
¼ IL2

14: Ol;m
i ¼ Cl

i � K2
m;

l ¼ 1; 2; :::; L1; m ¼ 1; 2; :::; L2; i ¼ 1; 2; :::; N

15: Tl
i ¼

PL2
m¼12

m�1H Ol;m
i

� �
16: F i ¼ Bhist T1

i

� �
; :::; Bhist TL1

i

� �h iT
17: for i ¼ 1; 2; :::; N do
18: for j ¼ 1; 2; :::; N do
19: Vi;j ¼ j F i; F j

� �
20: end for
21: end for

22: V
�
i;j ¼ Vi;j � 1

N

PN
a¼1Via � 1

N

PN
a¼1Vaj þ 1

N2

PN
a;b¼1Vab

23: a ¼ argmin
a

k V
�
�aaT V

�
ks:t: aaT ¼ Iq

24: Initialize threshold = 0
25: for i ¼ 1; 2; :::; N do

26: R F ið Þ ¼ 1� 2
N

PN
a¼1Via þ 1

N2

PN
a;b¼1Vab �

Pq
j¼1 Pj F ið Þ� �2

and

27: Pj F ið Þ ¼ PN
k¼1a

j
k Vik�½ 1

N

PN
a¼1Vka � 1

N

PN
b¼1Vibþ 1

N2

PN
a;b¼1Vab�

28: if R F ið Þ > threshold do
29: threshold ¼ R F ið Þ
30: end if
31: end for
4.3. Improved PCAnet with normalization technique

In the machine learning field, the generalization of an algorithm
is an important but difficult task that measures the algorithm’s
performance on new data. Nowadays, the most popular and
effective normalization technique in the deep learning field is
batch normalization (BN) [42]. BN improves the network’s general-
ization ability such that when given a sample as input, the output
is determined by a whole mini-batch; thus, it never produces a
deterministic output for a sample. The role of BN in elevating a
model’s generalization ability has been proven experimentally
[42]. However, BN is not applicable to our self-supervised model
because it has two trainable parameters in the implementation:
c and b. In AED-Net, we could not find ways to train these param-
eters. Besides, we do not feed data by mini-batches in our method.
However, LRN, a light-weight normalization technique with no
trainable parameters, is applicable to our task and achieved good
results in the experiments.

Proposed by Krizhevsky et al. [43], the LRN scheme has been
found to aid the generalization ability of a model. Response compe-
tition among contiguous outputs with the same spatial position is
introduced. For an output value pi on the ith feature map, the nor-
malized output qi can be calculated as follows:

qi ¼
pi

a þ d
P

j2nb i;nð Þ pj

� �h ih
nb i;nð Þ ¼ j j ¼ max 0; i�n

2

� �
:::min N � 1; iþn

2

� �		
 � ð16Þ

where d, n, a, h are configurable parameters; d denotes the weights
on outputs of adjacent frames; a is the bias term for computational
safety; h controls the total magnitude of the normalization term;
and n denotes how many adjacent frames are included in the nor-
malization. The feature maps of a network are arranged once the
network is initialized.

We introduced this scheme from CNN to PCAnet in order to
improve the model’s ability to generalize. It is added after comput-
ing the feature maps by convolution operation at each stage. In
addition, the LRN parameters are all set intuitively before training
and are not learnable, making the LRN suitable for our unsuper-
vised framework.
5. Experiments

We carried out experiments on the UMN dataset [17] and the
UCSD Ped1 and Ped2 datasets [18] for local abnormal event detec-
tion. These public datasets, which are open to the entire research
community, were used to evaluate the proposed AED-Net with dif-
ferent criteria: the frame-level criterion and the pixel-level criterion.
The UMN dataset was used to evaluate the model’s capacity with
the frame-level criterion, the UCSD Ped1 and Ped2 datasets were
used to evaluate it with both pixel-level criterion and frame-level cri-
terion. Both the evaluation criteria are based on truth-positive rates
(TPR) and false-positive rates (FPR), in which ‘‘abnormal events”
are denoted as ‘‘positive,” while ‘‘normal status” are denoted as
‘‘negative.” The results of the experiments were compared with
other state-of-the-art methods, and demonstrated the superiority
of our method.

5.1. Detection performance on the UMN dataset

The UMN dataset [17] is composed of three scenes—namely, a
lawn, interior, and plaza—with a resolution of 240 � 320. All sce-
nes are related to the escaping action of crowds. In this dataset
[17], the evacuation behaviors of crowds are assigned as abnormal.
We detect the anomalism of each frame, which is measured by
frame-level criteria. Fig. 4 shows a couple of frames from each
UMN scene. For computational efficiency, all optical flow maps
extracted from the original video frames are resized to small sizes,
which have been proved to contain sufficient information for
detection.



Table 2
Results comparison on the UMN dataset.

Method AUC (%) EER (%) Ref.

Li et al. 99.5 3.7 [9]
Chaotic invariants 99.4 5.3 [23]
SF 94.9 12.6 [36]
Sparse 99.6 2.8 [34]
Bao et al. — 2.6 [15]
Ours 99.7 2.4 —

Bold values indicate the present work study of this paper. SF: social force.
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Foreground detection is used in this experiment to avoid the
disturbance of no-meaning frames. Frames that contain fewer than
three whole human body motion shapes, as shown in Fig. 5, are
detected directly in our work by measuring moving foreground
blobs.

To improve the generalization ability of the AED-Net, a data
augmentation technique is adopted in this experiment. An optical
flow map is first resized to 120 � 160 and nine sub-maps sized
96 � 128 are cut from the resized map. Next, all ten maps (one
of 120 � 160 and nine of 96 � 128) are resized uniformly to
24 � 32 for training and testing.

After removing interfering frames, we construct a training set
and test set for each scene. 760 normal frames in the scene on
the lawn are used for training, which forms a training set of
7600, while other normal and abnormal frames are used for test-
ing. For the indoors scene and the plaza scene, the number of
frames for training are 1100 and 1000, respectively.

For all three scenes, the hyperparameters in AED-Net are set as
follows: the filter at each stage is sized as 3 � 3. Both stages have
eight filters to reserved enough variance. The final block size is
8 � 8. The hyperparameters in the classifier, kernel size r, and
number of filters q, differ for each scene. They are set at
1; 2800ð Þ, 1; 3800ð Þ, and 0:25; 4200ð Þ for r; qð Þ for the scene on
Fig. 4. Examples of video frame for three scenes. (a, d) show a scene on a lawn, (b, e) sh
crowds (d–f) are assigned as abnormal.

Fig. 5. Examples of abnormal video frames detected by considering the area of foregroun
lawn, (b) shows an indoor scene, and (c) shows a scene in a plaza.
the lawn, indoor, and on the plaza, respectively, after cross-
validation. The receiver operating characteristic (ROC) curve, area
under curve (AUC), and equal error rate (EER) are analyzed with
the frame-level criterion. When plotting the ROC curve, the thresh-
old for determining the anomalism of the frames is altered. The
results, along with comparisons with other methods, are presented
in Table 2 [9,15,23,34,36]. As shown in Table 2, our method
achieves respectable results on frame-level anomaly detection as
measured by both AUC and EER. Given the simplicity of whole
framework, this result is remarkable, and is better than the
state-of-the-art methods.
ow an indoor scene, and (c, f) show a scene in a plaza. The evacuation behaviors of

d in the frame due to its disturbance to detection. As before, (a) shows a scene on a
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5.2. Detection performance on the UCSD dataset

The UCSD dataset [18] contains video clips with a resolution of
158 � 238 obtained from a camera hung above pedestrian walk-
ways. There are 34 training samples and 36 test samples in the
Ped1 scene, and 16 training samples and 12 testing samples in
the Ped2 scene, which includes people walking in different direc-
tions. The video clips that are labeled as abnormal have single
anomalies such as a car, bicyclist, and so on. One of the frames with
a car anomaly is shown in Fig. 6. Each video frame is partitioned
into patches sized 12 � 16, which contain part of either walking
people or the anomaly. These patches are then utilized as raw data.
Assigning the anomalism of these patches is called ‘‘anomaly
detection on pixel-level criteria” because it involves classifying
the abnormality of a different section of the pixels of a frame.
Fig. 6. Examples of frames of video clips containing an anomaly. (a) Frame of video clip

Fig. 7. Results for the Ped1 scene. (a) Pixel-level

Table 3
Results comparison for the UCSD Ped1 scene.

Method AUC (%)

Pixel level Frame level

Li et al. 44.1 83.8
MPPCA 20.5 79.6
CDAE 65.8 82.9
Sparse 46.1 90.1
SF 17.9 67.0
AED-Net 86.1 88.2
AED-Net + LRN 88.9 89.7

MPPCA: mixture of probabilistic principal component analyzers; CDAE: covariance matr
Similar to previous experiments, foreground detection is
performed here to avoid disturbance. After that, normal
patches from the video frames containing the anomaly of a
bicyclist are used as the training set, and abnormal patches from
two frames of two video clips are used as the test set. The
hyperparameters in AED-Net are set as follows: k1 ¼ k2 ¼ 5,
L1 ¼ L2 ¼ 7, and block size 7 � 7 for experiments. The hyper-
parameters in the kPCA classifier are set as follows: 0:8; 1350ð Þ
for r; qð Þ.

Ped1 pixel-level and frame-level results, along with a
comparison with other methods, are shown in Fig. 7 and Table 3
[9,18,28,34,36]. Ped2 pixel-level and frame-level results are shown
in Table 4 [9,18,36]. In all the experiments, the proposed frame-
work outperforms the state-of-the-art methods, especially in
terms of AUC.
with the anomaly of a bicyclist; (b) frame of video clip with the anomaly of a car.

ROC for Ped1; (b) frame-level ROC for Ped1.

EER (%) Ref.

Pixel level Frame level

55.0 24.4 [9]
71.8 32.9 [18]
36.9 26.8 [28]
53.7 18.6 [34]
79.0 39.2 [36]
22.9 22.6 —
19.4 19.1 —

ix of optical flow features for detection of abnormal events.



Table 4
Results comparison for the UCSD Ped2 scene.

Method AUC (%) EER (%) Ref.

Pixel level Frame level Pixel level Frame level

Li et al. 70.0 85.2 29.3 18.2 [9]
MPPCA 23.5 77.6 71.2 30.4 [18]
SF 29.1 71.6 80.2 42.3 [36]
AED-Net 88.9 90.2 22.4 20.3 —
AED-Net + LRN 91.3 89.6 16.8 15.9 —
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5.3. Experiments on the improved AED-Net

After adding a LRN layer to the PCAnet, the whole framework
was tested on the UCSD dataset, using the same experimental set-
ting as the previous one used on the UCSD dataset. The hyperpa-
rameters of LRN were set as c ¼ 2, d ¼ 1� 10�4, where n ¼ 5 and
b ¼ 0:75.

The results (shown in Fig. 7 and Tables 3 and 4) indicate that
after the addition of the LRN, the whole framework shows better
performance in detecting anomalies as measured by both AUC
and EER. These findings indicate that this strategy improves our
method by promoting its generalization ability.

6. Conclusion

In this work, we propose a simple but efficient framework, AED-
Net, based on a self-supervised learning method. Raw data from
surveillance video clips are used to calculate optical flow maps;
their high-level features are then extracted by PCAnet, which is
further used to determine the anomalism of local abnormal events
and global abnormal events. The experimental results show that
the framework performs well in detecting both global abnormal
events and local abnormal events. Furthermore, after a LRN layer
was added to address the overfitting problem, the performance
of this framework improved. The framework achieves results that
are better than state-of-the-art methods, indicating that it can
effectively extract motion patterns from raw video and use them
to detect anomalies.
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