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In the aluminum reduction process, aluminum fluoride (AlF3) is added to lower the liquidus temperature
of the electrolyte and increase the electrolytic efficiency. Making the decision on the amount of AlF3 addi-
tion (referred to in this work as MDAAA) is a complex and knowledge-based task that must take into con-
sideration a variety of interrelated functions; in practice, this decision-making step is performed
manually. Due to technician subjectivity and the complexity of the aluminum reduction cell, it is difficult
to guarantee the accuracy of MDAAA based on knowledge-driven or data-driven methods alone. Existing
strategies for MDAAA have difficulty covering these complex causalities. In this work, a data and knowl-
edge collaboration strategy for MDAAA based on augmented fuzzy cognitive maps (FCMs) is proposed. In
the proposed strategy, the fuzzy rules are extracted by extended fuzzy k-means (EFKM) and fuzzy deci-
sion trees, which are used to amend the initial structure provided by experts. The state transition algo-
rithm (STA) is introduced to detect weight matrices that lead the FCMs to desired steady states. This
study then experimentally compares the proposed strategy with some existing research. The results of
the comparison show that the speed of FCMs convergence into a stable region based on the STA using
the proposed strategy is faster than when using the differential Hebbian learning (DHL), particle swarm
optimization (PSO), or genetic algorithm (GA) strategies. In addition, the accuracy of MDAAA based on the
proposed method is better than those based on other methods. Accordingly, this paper provides a feasible
and effective strategy for MDAAA.

� 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The aluminum reduction cell, hereafter referred to as ‘‘the cell,”
is a complex multi-variable system, which is characterized by
energy balance andmass balance coupling. The electrolyte tempera-
ture (ET) can be reduced by decreasing the liquidus temperature
based on aluminum fluoride (AlF3) addition, and thus reducing
the loss of molten aluminum [1,2]. A well-shaped hearth can be
obtained with a precise AlF3 feeding amount (AFA) to a certain
degree [3]. Some research indicates that a well-shaped cell hearth
will result in high current efficiency [4,5]. However, an inaccurate
AFA may cause a large fluctuation of the side ledge (SL), which will
prevent the ideal energy equilibrium from being achieved. As a
result of the inherent complexity of the reduction process, making
the decision on the amount of AlF3 addition (MDAAA) mainly relies
on technicians and experts. However, it is difficult for inexperi-
enced technicians to perform this task. Because experienced
experts may not always be available, circumstances of excess or
insufficient AFA frequently occur. Therefore, it is desirable for an
accurate AlF3 addition to be determined using a scientific strategy.

These problems have attracted the attention of researchers.
There are three types of research on MDAAA, all of which mainly
focus on controlling the AlF3 concentration (CAlF3). The first type
of research takes an empirical approach that depends on under-
standing the dynamic of AlF3. CAlF3 is monitored by analyzing elec-
trolyte samples, which is done very sporadically. This method has
revealed a very strong correlation between CAlF3 and temperature
[6]. Temperature and electrolyte sample analysis with a time lag
(TL) are used in CAlF3 adjusting strategies in the control feedback
loop; building a logic rule base is the core method for these
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strategies [7–9]. The second type of research considers AFA as a
function of deviation from a target CAlF3 and/or temperature. In
practice, CAlF3 was found to change with the SL thickness, and some
linear regression models for MDAAA were proposed [10–12]. In the
third type of research, strategies are proposed based on the AlF3
mass balance and/or energy balance. MDAAA models have been
built by analyzing AlF3 evolution from cells, and CAlF3 control
strategies were developed based on estimation and decoupling
techniques with detailed process and plant knowledge [13–17].
The methods in the first type of research always rely on human
experience, and it is easy for human subjectivity to influence
knowledge model construction. Because of the complexity of mak-
ing a decision about the amount of AlF3, it is difficult for methods
of the second type to capture all of the complex features of AlF3
addition. Due to the detection of dead zones in the aluminum
reduction cell, it is difficult to implement refined AlF3 addition
using methods of the third type, which are based on AlF3 mass
balance and/or energy balance.

Existing research on MDAAA mainly focuses on data-driven or
knowledge-driven methods alone. However, data-driven methods
may fail to cover the complex characteristics of the cell, and
knowledge-driven methods may be overly subjective. Therefore,
it is desirable to develop a model that combines historical data
with the experience of experts. To address this challenge, modeling
with fuzzy cognitive maps (FCMs) seems practical, as it is charac-
terized by intuition and the simplicity of causal representations
[18]. FCMs have been widely used in decision analysis, control,
modeling, and prediction [19–22]. Here, we present only a few
examples. In Ref. [23], in order to track the maximum power point
of a photovoltaic array, FCMs were used for the fuzzy controller. In
Ref. [24], a fuzzy multiple attribute decision-making model was
built in combination with the technique for order of preference
by similarity to ideal solution (TOPSIS) and FCMs. In Ref. [25], FCMs
were used to assess the performance of a tunnel-boring machine,
and experiential knowledge was captured and utilized.

FCMs consist of concepts and edges; the former introduce the
qualitative analysis, while the latter quantitatively indicate the
causality [26]. Each concept represents a numeric state. The causal
relationship between concepts, which is provided by domain
experts in most current achievements, denotes the influencing
degree to which a concept changes other concepts [27]. The utiliza-
tion of experience to identify concepts and edge strength is the
core of these methods [28]. However, subjectivity may cause inac-
curacy of FCMs modeling [29]. At present, the existing contribu-
tions of FCM learning algorithms are mainly divided into three
classes: Hebbian-based [29–31], evolutionary-based [32,33], and
hybrid-based [34,35], where the latter combines Hebbian-based
and evolutionary-based learning algorithms. Although these
approaches are widely used for training FCMs, it is sometimes dif-
ficult to guarantee avoidance of the local optimization and to iden-
tify the global optima.

In this study, a data and knowledge collaboration strategy for
MDAAA is proposed, combined with experiential knowledge from
experts and data from the aluminum reduction process. The avail-
able data is used to extract meaningful fuzzy rules based on fuzzy
decision trees and the clustering method, and is also used to detect
the edge strength using the state transition algorithm (STA). The
initial structure of MDAAA provided by experts is amended using
the above fuzzy rules. The problem of having to rely on authorita-
tive experts for FCMs modeling can then be alleviated. The accu-
racy of MDAAA modeling based on FCMs is sensitive to the edge
strength [29], which can be relaxed by detecting strength using
the STA. Based on the augmented FCMs, the AFA can be obtained
by removing the normalization of the concepts. To the best of
our knowledge, this is the first time that a collaboration model that
simultaneously integrates expert knowledge with production data
is used for MDAAA based on augmented FCMs. In this study, the
validity of the proposed strategy is verified.

The outline of this paper is as follows. Section 2 analyzes the
role and evolution of AlF3, and describes the difficulties of and
solutions to MDAAA. Section 3 provides the details of fuzzy deci-
sion trees and extended fuzzy k-means (EFKM), which are used
to extract fuzzy rules. The STA is then introduced to detect
strength. Section 4 describes the initial structure design and the
learning problem. Section 5 models the MDAAA based on aug-
mented FCMs, verifies the effectiveness of the proposed strategy,
and provides the discussion. The last section gives the conclusions.
2. Analyses of AlF3 addition
2.1. Role analysis of AlF3

Research on the aluminum reduction process has been going on
for over a century; due to its complexity and high degree of nonlin-
earity, optimal cell operations are still significant challenges around
the world. The superheat degree is the D-value between the ET and
the liquidus temperature. During the process, the Al2O3 dissolves in
the electrolyte at a suitable superheat, and metal aluminum is pro-
duced on the cathode [4]. Ref. [2] shows that the current efficiency
will decrease by 1.2%–1.5% when the ET increases by 10 �C. AlF3
addition makes it possible to maintain a suitable superheat with a
low ET; this is the most important factor in lowering the liquidus
temperature because of the loss of AlF3, which must be added as
required in the reduction process. However, with unreasonable
AlF3 addition, the anode effectmayoccur frequently as the solubility
of Al2O3 decreasing, resulting in the destruction of the energy bal-
ance and mass balance. When the superheat increases with exces-
sive AlF3 addition, SL melting occurs, which is damaging to the cell
life. Therefore, MDAAA is crucial for the aluminum reduction pro-
cess. The schematic of a cell is shown in Fig. 1.

2.2. Evolution analysis of AlF3

AlF3 evolution is divided into two types, based on its character-
istics. The first type involves the neutralization reaction of AlF3.
Alumina contains certain impurities—mainly Na2O and CaO—
which neutralize AlF3. The second type of evolution involves the
emission and recycling of AlF3; during this process, a mass of par-
ticles together with hydrogen fluoride volatilize from the cell at a
high temperature, including particulate AlF3, NaAlF4, CaF2, Na3AlF6,
and Al2O3. In addition, an aspirator is used for exhaust collection.
The unstable NaAlF4 resolves into Na5Al3F14 and AlF3 as the tem-
perature decreases. The exhaust is then purified with Al2O3, and
the AlF3 from the purification is added to the cell [14].

2.3. Difficulties of MDAAA

Many factors must be considered in the MDAAA process,
increasing the complexity of the decision-making problem. Like
most industry processes, the aluminum reduction process interacts
with external disturbance and internal environment, as illustrated
by Fig. 2. However, it is also different from most industrial pro-
cesses. The ET is very high, at above 960 �C, and complex electro-
chemical reactions occur in the strong magnetic and corrosive
environment.

Three aspects of the external disturbance and internal environ-
mental have an influence on the aluminum reduction process:

(1) External disturbances such as an anode change (AC), alu-
minum tapping (AT), or beam raising (BR), will disturb the energy
equilibrium, causing a variation in CAlF3.



Fig. 1. Schematic of an aluminum reduction cell. Iline_current, ia, ib, ic, id are series current of cell, and anode current of each anodic bar, respectively; and M is metering
installation for feeding.

Fig. 2. The external disturbance and internal environment of the aluminum reduction process. AT: aluminum tapping; AC: anode change; S: sludge.
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(2) The SL and sludge will melt or solidify with variation of the
superheat, which also affects CAlF3. However, as a result of the high
temperature, the degree of influence is imponderable.

(3) Because of the TL of the cell, the response of the AlF3 addi-
tion will be delayed. Therefore, the temperature will not decrease
immediately. Over time, the SL will become thinner with an
increase in the superheat, resulting in a heat loss. Because of the
thin SL, the CAlF3 will decrease with more solidified electrolyte
melting into the cell. After that, the ET will slightly recover.

Correspondingly, the difficulties of AlF3 addition increase in
practice, including the following:

(1) Disturbances: External operations and the environment will
have an imponderable influence on CAlF3.

(2) Difficulties of mechanism modeling: Due to erosion and the
high temperature of the electrolyte, there is no mature real-time
detection service to analyze the electrolyte composition. CAlF3 is
detected by means of time-consuming sampling and chemical ana-
lyzing. The variation in CAlF3 will be unavailable in real time. In
addition, the CAlF3 evolutionary process is complex, and it will be
difficult to derive a mechanism model to describe the process
theoretically.

(3) Insufficient/excessive addition: Due to the TL of the cell, the
cell is out of sync between the influence of the AlF3 addition and
the variation of the superheat; this makes it easy to carry out insuf-
ficient or excessive addition.
2.4. Solutions to MDAAA

Based on the above analysis, a new solution for AlF3 addition is
proposed, as shown in Fig. 3. The solution contains two main
aspects: the data-driven method and the knowledge-driven
method. The concepts selection of FCMs and value range of the
concepts and weights depend on experts. Moreover, the initial
structure for MDAAA modeling will be provided by experts. EFKM
is proposed to design the membership functions with noisy pro-
duction data, which is the data-driven method. Next, the fuzzy
membership degrees are obtained for the input of the fuzzy deci-
sion trees. The fuzzy decision trees are used to extract the fuzzy
rules, which are used to amend the initial structure in order to
obtain a desired structure. The STA is introduced to detect the
causality degree in this study. At last, the MDAAA model is
obtained—that is, the augmented FCMs model. In general, knowl-
edge guides the model building, and data is used for amendment.
3. Background of the proposed strategy

3.1. FCMs theory

As a simple intuitive graphical representation and efficient
inference mechanism for complex systems, FCMs are a combina-
tion of fuzzy logic and neural networks, and have widespread
applications [19]. FCMs can be described by a set of concepts
(i.e., variables of a system) and relationships (i.e., causality
between variables) [20]. FCMs are usually constructed by domain
experts who have intimate knowledge of systems. This experiential
knowledge is transformed into concepts collection and relation
strength in some way. Fig. 4 illustrates a simple example of FCMs
where Ci is a concept with the numerical value Ai. The value Ai

refers to the active degree of a concept, which varies in a normal-
ized range of [0, 1] or [�1, 1] [19,36]. The strength wij denotes the
causality degree between the cause variable Ci and the effect vari-
able Cj, which ranges from �1 to 1 or a trivalent logic within {�1, 0,
1}. However, the trivalent logic is not fit for describing and



Fig. 3. Solving the MDAAA.

Fig. 4. A simple example of FCMs.
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modeling the real world [37]. The adjacency matrix of FCMs corre-
sponding to Fig. 4 is defined as W.

W ¼

0 w12 0 0 w12 0 w17

0 0 w23 0 0 0 w27

w31 w32 0 0 0 0 w37

0 w42 w43 0 0 0 w47

0 0 w53 w54 0 0 w57

w61 w62 0 0 w65 0 w67

w71 0 0 w74 0 w76 0

2
666666666664

3
777777777775

ð1Þ

Given the initial state A(t) = [A1(t); A2(t); . . . ; An(t)] (where n is
the number of concepts) and adjacency matrix W, then the new
state of each concept is calculated iteratively in the following way.

Ai t þ 1ð Þ ¼ f Ai tð Þ þ
Xn

j¼1;j–i

Aj tð Þwji

 !
ð2Þ
where Ai(t + 1) is the value of concept Ci at time (t + 1); Ai(t) is the
value of concept Ci at time t; wji is an element of W; and f is a
threshold function and makes the results map to an interval [0, 1]
or [�1, 1] [35].

3.2. Principle of the STA

Learning algorithms play an important role in improving the
accuracy of computing results based on FCMs [29]. Thus far,
Hebbian-based, evolutionary-based, and hybrid-based algorithms
have been applied in existing contributions [38,39]. In those works,
the researchers mainly focused on obtaining a desired adjacency
matrix W using experiential knowledge and/or historical data.

In this study, the STA, which is adopted to deal with non-convex
optimization problems, is a global optimization algorithm [40–43].
Each solution is considered as a state of the problem for the STA,
and the updating of the current solution is regarded as a state tran-
sition. The generation of the candidate solutions in the STA can be
described as follows:

Xtþ1 ¼ AtXt þ Btut

ytþ1 ¼ f ðXtþ1Þ
�

ð3Þ

where Xt 2 Rn stands for a candidate solution; At and Bt represent
transformation operators; ut is a function of X and the historical
state; and f(�) is the objective function.

The candidate solutions are generated based on the following
four special state transformation operators.

(1) Rotation transformation

Xtþ1 ¼ Xt þ ea
1

wk Xt k2
RrXt ð4Þ

where ea is the rotation factor; Rr 2 Rw�w is a random matrix, and
each element of Rr ranges from �1 to 1; and k � k2 is the 2-norm
of a vector. With a given radius a, the candidate solution can be gen-
erated by the rotation transformation in a domain of a hypersphere;
the rotation transformation is a local search operator.
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(2) Translation transformation

Xtþ1 ¼ Xt þ ebRt
Xt � Xt�1

k Xt � Xt�1 k2
ð5Þ

where eb is the translation factor, and each element of Rt 2 Rw�w is a
random variable ranging from 0 to 1. The translation transformation
can generate a line search, which is only performed when a better
solution can be found by other transformation operators.

(3) Expansion transformation

Xtþ1 ¼ Xt þ ecReXt ð6Þ
where ec is the expansion factor, Re 2 Rw�w is a random diagonal
matrix, and the elements of ec obey the Gaussian distribution such
that the mean value and standard deviation are 0 and 1, respec-
tively. The expansion transformation is a global search operator that
is able to search in the whole space.

(4) Axesion transformation

Xtþ1 ¼ Xt þ edRdXt ð7Þ
where ed is the axesion factor, Rd 2 Rw�w is a random diagonal
matrix, and the elements of ed obey the Gaussian distribution such
that the mean value and standard deviation are 0 and 1, respec-
tively, and only one random position has a nonzero value. The axe-
sion transformation is designed for a single-dimensional search as
well as the global search operator.

For a given solution, many different candidate solutions can be
generated by the aforementioned state transition operators. In this
study, the number of candidates generated by a certain operator is
set to 30, and in every iteration, the transformation operators are
alternately and independently applied. The FCMs can learn with
the objective function based on the STA to find the optimal W.

3.3. Knowledge extraction and membership functions design

3.3.1. Knowledge extraction based on fuzzy decision trees
In this study, as a representation of knowledge, fuzzy rules are

used to amend the initial structure of the MDAAA model. Many
computational intelligence knowledge-extraction algorithms are
available from the historical database, including neural networks
[44], support vector machines [45], and so on. Although these
methods are helpful for building a knowledge base, they always
suffer from inadequately or improperly expressing and dealing
with the vagueness and ambiguity associated with experts’ think-
ing, reasoning, cognition, and consciousness [46]. For aluminum
reduction, fuzzy variables, being from cognition, are always used
to describe the cell information [1]. In addition, most technicians
do not have enough specific knowledge to understand the results
generated by the above algorithms. Therefore, it is expected to
use the algorithms whose results are comprehensible and evalua-
tive, rather than using black box approaches. Simple linguistically
explicable rules are a good fit for technicians. A fuzzy decision tree
induction method is thus introduced to extract knowledge.

The fuzzy decision tree induction method can explicitly express,
measure, and incorporate the cognitive uncertainties of techni-
cians into the knowledge induction process. In the induction pro-
cess, this method can reduce the ambiguity of the classification
with fuzzy evidence to construct fuzzy decision trees [46]. Accord-
ingly, the fuzzy decision tree induction method is suitable for deal-
ing with the problem of cognitive uncertainties in the aluminum
reduction process [46].

3.3.2. Membership functions design based on EFKM
The membership degrees used to extract fuzzy rules are usually

provided by experts. However, the subjectivity of the experts may
affect the results. Therefore, a memberships generating method is
proposed. Because of the severe environment of the cell, the mea-
sured data contain a great deal of noise, and isolated points even
appear. EFKM is proposed in order to deal with the problem of
the traditional fuzzy k-means (FKM) being sensitive to isolated
points [47]. Based on EFKM, we obtain k clustering centers, c1,
c2,. . ., ck, where k is equal to the number of fuzzy partitions in prac-
tice, which is decided by the technicians.

The distance between the sample points xi and the cluster cen-
ters ck is defined as follows:

dik ¼ ak
xi � ckj j
xij j þ ckj j þ

1� ak

N

X
xj2U

xj � ck
�� ��
xj
�� ��þ ckj j ð8Þ

where xi and xj are the ith and jth samples, respectively; ck is the kth
clustering center;N is the number of adjacent sample points, decided
by the clustering centers numbers;U represents a collectionof neigh-
borhood sample points; and ak is defined as the smoothing parame-
ter, which is self-adjustable based on spatial neighborhood
information, where the more homogeneous the sample space is,
the smaller ak will be. When target sample points are in the regional
margin, ak will be bigger, and the memberships of the sample points
will be slightly affected. ak is shown by Eqs. (9) and (10).

a
�
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
xj2U

d xk;xj
� �� 1

N

X
xj2U

d xk;xj
� �2

4
3
5

2
vuuut

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
xj2U

xj � 1
N

X
xj2U

xj � 1
N

X
xj2U

xj

0
@

1
A

2
4

3
5

2
vuuut

ð9Þ

ak ¼ a
�
k=max a

�
k

� �
ð10Þ

The membership of sample xi belonging to category k is repre-
sented by lik.

lik ¼
Xk
j¼1

dik

djk

	 
 �2
m�1

ð11Þ

where m is the weighted index number, and the default value of m
is 2.

The clustering centers are shown by the following equation.

ck ¼
Xn
k¼1

lik

� �mxk
,Xn

k¼1

lik

� � ð12Þ

Then, a method of membership functions constructed with the
clustering centers for each fuzzy division of every concept is pro-
posed, as illustrated by Eqs. (13)–(15).

When i = 1, the membership functions le1
for the first fuzzy

division are given by the following:

le1
¼

1� x� c1ð Þ= xmin � c1ð Þ � 0:5; if xmin � x < c1
1� x� c1ð Þ= c2 � c1ð Þ; if c1 � x < c2
0: otherwise

8><
>: ð13Þ

When 1 < i < k, the membership functions lei
for the ith fuzzy

division are given by the following:

lei
¼

1� x� c1ð Þ= ci�1 � cið Þ; if ci�1 � x < ci
1� x� c1ð Þ= c2 � c1ð Þ; if ci � x < ciþ1

0: otherwise

8><
>: ð14Þ

When i = k, the membership functions lek
for the kth fuzzy divi-

sion are illustrated by the following:

lek
¼

1� x� ckð Þ= ck�1 � ckð Þ; if ci�1 � x < ci
1� x� ckð Þ= xmax � ckð Þ�0:5; if ck � x < xmax

0: otherwise

8<
: ð15Þ

where lei
denotes the membership degree of sample x attaching to

the ith fuzzy division, ci is the ith clustering center, and xmin and
xmax are the minimum and maximum values of the universe,
respectively.
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In this section, we obtain k clustering centers based on EFKM
and the membership functions of the fuzzy divisions based on
Eqs. (13)–(15). Based on these methods, we can obtain the mem-
bership degrees of the production data that are used to extract
the fuzzy rules.

4. New decision models constructed for the AFA

The AFA is usually computed by means of a simple formula or
decided by technicians. However, due to the cell’s complexities,
it is difficult for formulas to involve the characteristics, and techni-
cians’ experiential knowledge is not always correct. Therefore, it
guarantees the accuracy of the AFA based on data-driven or
knowledge-driven methods alone. In this section, a new MDAAA
model is constructed based on data and knowledge collaboration,
combing with FCMs, knowledge acquisition techniques and data
processing methods. The main steps of MDAAA modeling are as
follows:

Step 1: The concepts and value ranges and the causal directions
between concepts are determined by an expert. This makes it pos-
sible to obtain the initial structure of the MDAAA. This step is
knowledge-driven.

Step 2: The production data is preprocessed, including selection
and conversion. Next, the clustering centers based on EFKM are
obtained, which are used to generate the membership function of
each fuzzy division. The membership degrees are used to extract
the fuzzy rules. This step is data-driven.

Step 3: The fuzzy rules are used to amend the initial structure
and to obtain the desired structure of MDAAA. This step is
knowledge-driven.

Step 4: The STA is introduced to detect the causality degree
(weights). The final MDAAA model is obtained, and the desired
AFA is obtained. This step is data-driven.

Step 5: The target AFA is added to the cell by means of feeding
devices.

Based on the above steps, the details of the MDAAA model
building process are as follows.

4.1. Initial structure design of the MDAAA

Thirteen concepts are selected by an expert. Reducing the num-
ber of concepts to 13 makes it possible to not only cover the char-
acteristics of MDAAA, but also reduce the computing complexity.
Table 1 lists the 13 concepts with their descriptions and numbers
of fuzzy division.

Definition 1. One computing cycle is defined as the difference
between today and yesterday:
Table 1
Description and fuzzy partitions of concepts.

Concepts Descriptions Abbreviations Number of
fuzzy divisions

C1 Molecular ratio of electrolyte MR 5
C2 Electrolyte temperature ET 5
C3 Mean voltage MV 3
C4 Aluminum level AL 3
C5 Electrolyte level EL 3
C6 Cumulative changes of C1

P
DMR 3

C7 Cumulative changes of C2
P

DET 3
C8 Cumulative changes of C3

P
DMV 3

C9 Cumulative changes of C4
P

DAL 3
C10 Cumulative changes of C5

P
DEL 3

C11 AlF3 feeding amount AFA 5
C12 Setting voltage SV 3
C13 Tapping amount TA 5
X
DMR t � ið Þ ¼ MR t � ið Þ �MR t � i� 1ð Þ ð16Þ

where MR is the molecular ratio of electrolyte, MR(t) represents the
current value of the molecular ratio, and MR(t – i) denotes the value
on the (t – i)th day. The definitions of the other concepts are the
same as those for the MR.

Definition 2. Due to the particularity of aluminum reduction,
the change in MR is not obvious. It is difficult for fewer computing
cycles to reflect the recent changes in the MR. However, there is no
need to consider more computing cycles. In practice, the cumula-
tive values of four computing cycles for the MR are reasonable,
which are defined as follows:

X
DMR ¼

X3
t¼0

DMR t � ið Þ ð17Þ

Based on experiential knowledge, the MR is the current value
ratio of NaF to AlF3 [4]. The lower the MR, the lower the ET [1].
The thickness of the SL changes with variation in the ET; further-
more, changes in the MR may be caused by electrolyte solidifica-
tion or SL melting in the past few days, where the higher the ET,
the higher the MR [1]. Thus, there are connections between nodes
C1 and C2. In addition, the electrolyte resistance varies with
changes in the MR, where the higher the mean voltage (MV), the
higher the ET [1]. Therefore the MR, ET, and MV should be consid-
ered for the voltage setting and the AFA, and connections exist
from the MR, ET, and MV to the AFA. These cumulative changes
indicate the variation trend of the concepts; clearly, there are con-
nections existing from

P
DMR,

P
DET, and

P
DMV to AFA. The

heat dissipation of the aluminum level (AL) and the thermal insu-
lation of the electrolyte level (EL) are usually used to adjust the cell
energy balance. The higher the AL, the lower the ET, and the higher
the EL, the higher the ET. The MV is used to adjust the energy
import. Connections from the MR, ET, MV, and AL to the setting
voltage (SV) should exist, due to influences on the energy variation.
Accordingly, these should be considered in the MDAAA modeling,
along with the cumulative changes. In practice, the tapping
amount (TA), AFA, and SV are used to adjust the energy balance,
and influence each other.

Based on the above analysis, the initial structure of MDAAA is
obtained, as illustrated in Fig. 5. The initial structure will be
restructured using the methods proposed in Sections 3.3.1 and
3.3.2. However, the casual relationships are still unknown. The
STA is introduced to detect weights in the following section.

4.2. FCMs learning with the STA

Experts are subjective in determining the casual relationships
for simple FCMs. However, as shown in Fig. 5, it is difficult for an
expert to build complicated FCMs. Accordingly, there is an urgent
need to develop a learning algorithm. In this study, the STA is
introduced as a learning algorithm to eliminate the need for expert
intervention. Although the STA has been widely used in many
fields [40–43], this is the first time it is used for the FCMs learning
process. When the objective function reaches a minimum value, a
set of the desired weights of the augmented FCMs is obtained, and
the concepts’ values are in the predefined interval. The main goal is
to detect an adjacency matrix that brings the FCMs to a steady
state in the predefined interval of each weight.

The objective function must quantitatively measure the suit-
ability of a given candidate solution; it iteratively calculates the
difference between the estimated values and the real values of
the concepts. In our proposal, the objective function with the pre-
defined interval of the concepts and weights is shown in Eq. (18).
In the aluminum reduction process, the values of the concepts vary
within a certain range. Therefore, the values of the concepts are



Fig. 5. The initial structure of MDAAA.
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restricted within an interval, Al,lb � Al � Al,ub. In practice, the
causality degree is either positive or negative. For example, the
higher the AL, the greater the energy loss. The causality degree
between the AL and the ET is negative. However, the higher the
EL, the lower the energy loss. The causality degree between the
ET and the EL is positive. Accordingly, based on the real-life situa-
tion, the values ofwijn must be restricted within an interval,wijn,lb �
wijn � wijn,ub. In this study, wijn is restricted in [�1, 0] or [0, 1].

min J ¼ 1
K � 1

� 1
M

XK�1

k¼1

XM�1

m¼1

Ai tð Þ � Âi tð Þ

s:t: Al;lb � Al � Al;ub l ¼ 1;2; . . . ;M
wijn;lb � wijn � wijn;ub n ¼ 1;2; . . . ;N

ð18Þ

where K and M are the number of weights and concepts, respec-
tively; K is the number of learning records (historical data); Al,lb

and Al,ub are the lower bound and upper bound of the concepts,

respectively; Ai(t) is calculated by Eq. (2); Âi tð Þ is the desired
response; and wijn,lb and wijn,ub are lower bound and upper bound
of each weight.
5. Results and discussion

In order to verify the feasibility and ability of the proposed
strategy, the results of an experimental study of AlF3 addition in
the aluminum reduction process are discussed in this section.
The problem is investigated in a certain aluminum reduction plant
in Binzhou City, Shandong Province, China. The industrial data for
June and July 2016 were collected. In the aluminum reduction pro-
cess, the AL, MV, EL, and ET are measured every day. The MR is
measured every two days, with the averages of the closest two
days used for the missing values. The corresponding cumulative
changes of the above variables are accessed every day. The MR,
ET, MV, AL, and EL and the corresponding cumulative changes
are shown in Figs. 6 and 7, respectively.
5.1. The initial structure of the MDAAA model amendment

In order to alleviate the need for expert intervention for
MDAAA modeling, a knowledge-extraction method combined with
EFKM and the membership function generating method is
proposed.

First, clustering centers are generated by EFKM. The statistical
results are shown in Table 2, including the minimum value, maxi-
mum value, and clustering centers. The number of clustering cen-
ters being equal to the number of fuzzy partitions—that is, the
value of k—is based on experiential knowledge. The membership
functions of the MR,

P
DMR, TA, SV, and AFA are shown in Fig. 8.

Other membership functions of the concepts are similar to those
shown in Fig. 8, and are omitted here to save space.

Second, as a result of the complexity of the MDAAA model, it is
difficult for experts to depict the causalities. The fuzzy rule is an
expression of the association between concepts, and is also a
means of tacit knowledge representation, as illustrated by the
following:

� If Ci is high and Cj is low, then Ck is normal () Ci !
wij

Cj !
wjk

Ck

Accordingly, the connections can be mined based on
knowledge-extraction methods. Fuzzy decision trees are imple-
mented to extract fuzzy rules, whose variables include the MR,
ET, MV, AL, EL,

P
DMR,

P
DET,

P
DMV,

P
DEL,

P
DAL, AFA, SV,



Fig. 6. The values of (a) MR, (b) ET, (c) MV, and (d) AL and EL.

Fig. 7. The cumulative changes in (a) ET, (b) MV and MR, and (c) AL and EL. CCET: cumulative changes of ET; CCMV: cumulative changes ofMV; CCMR: cumulative changes of
MR; CCAL: cumulative changes of AL; CCEL: cumulative changes of EL.

W. Yue et al. / Engineering 5 (2019) 1060–1076 1067



Table 2
Clustering centers ci based on the EFKM algorithm.

Concepts Names Minimum Maximum Clustering centers ci

C1 MR 2.36 2.60 [2.3985, 2.4236, 2.4547, 2.4967, 2.5752]
C2 ET (�C) 949 970 [950.33, 956.51, 959.79, 962.59, 966.81]
C3 MV (V) 3.9746 4.1219 [4.0357, 4.0665, 4.0994]
C4 AL (cm) 27 30 [27.9219, 28.9931, 29.9964]
C5 EL (cm) 14 22 [15.4547, 17.4399, 19.9062]
C6

P
DMR �0.20 0.19 [�0.132527, �0.009562, 0.092622]

C7
P

DET (�C) �12 12 [�6.7340332, 1.151452, 6.927109]
C8

P
DMV (V) �0.118 0.092 [�0.0274, 0.0104, 0.0650]

C9
P

DAL (cm) �2 3 [�1.1714, 0.0113, 1.1817]
C10

P
DEL (cm) �7 4 [�4.1944, �0.7519, 2.0486]

C11 AFA (kg) 7.2 27 [8.585, 12.595, 16.101, 18.512, 22.587]
C12 SV (V) 4.025 4.037 [4.0264, 4.0329, 4.0357]
C13 TA (kg) 2833 3327 [2893.1, 2988.1, 3066.1, 3159.2, 3291.5]

Fig. 8. Fuzzy membership functions generated based on EFKM and Eqs. (13)–(15) for: (a) MR, (b) CCMR, (c) TA, (d) SV, and (e) AFA.
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and TA. The membership degrees of these variables, being the
input of the fuzzy decision trees, are generated based on Eqs.
(13)–(15). The pseudocodes of the fuzzy decision trees induction
method are shown in Algorithms 1–6, where G and GGambiguity

are the classification ambiguity and ambiguity function,
respectively. DAi and DCi are the ith dataset of attributes DA and
classification DC, respectively. S and Aij are the fuzzy subsethood
and the jth partition of ith attribute, respectively. In addition, DAij,
DCmk are the data of the jth partition of ith attribute and the data of
the jth partition of ith classification, respectively. ms and G_CE are
the number of partition and the ambiguity of each parent node,
respectively. AMBIGUITY is the ambiguity function. C_mu and
G_Ai_Ajm are the membership of classification and the class ambi-
guity for each fuzzy partition of each parent node and child node,
respectively. ClassAmbiguityWithP is the class ambiguity function
with parent node. The muE is the membership of fuzzy evidence.
muF is the membership of each fuzzy partition. muC is the mem-
bership of each classification.
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Algorithm 1. Main function.

Input: Dataset of attributes and classification DA, DC,
parameters a, b

Output: Fuzzy value
1: for each data DA do
2: if DA(i, j) < a then
3: DA(i, j) = 0;
4: end if
5: end for
6: for each attribute Ai do
7: G_Ai = GGambiguity(DAi; DCi);
8: value_Ai = min(G_Ai);
9: fprintf(‘The rootnode is Ai’);
10: for each fuzzy partition of root node do
11: S_Aij_C(i) = subsethoodA_B(DAij, DCmk, ms);
12: if max(S_Aij_C) 	 b then
13: fprintf(‘The leaf node of each fuzzy partition of root

node is’);
14: end if
15: end for
16: end for
17: for each parent node do
18: G_CE = AMBIGUITY(FuzzyEvidence_C_mu, DAi, DCi);
19: for each fuzzy partition of each parent node and child

node do
20: G_Ai_Ajm = ClassAmbiguityWithP(muE, muF, muC);
21: end for
22: [childnode_Ajm_min index_min] = min(G_Ai_Ajm);
23: if childnode_Ajm_min < G_CE_Ajm then
24: fprintf(‘The child node of Ajm is %s’);
25: end if
26: end for
Algorithm 2. Classification ambiguity function.

Input: Fuzzy memberships fuzzy events D and C
Output: The classification ambiguity
1: function G_Ai = GGambiguity(DA, DC)
2: for dataset DADC do
3: DAi_column = sum(DAi)
4: subsethood_Ai(i, :) = subsethoodA_B(DAi(:, i), DCi);
5: end for
6: weights_Ai = DAi_column/sum_Ai;
7: G_Ai = weights_Ai * (ambiguity(subsethood_Ai(i, :) = max

(subsethood_Ai); nsi, nsj));
8: end function
Algorithm 3. Classifying the possibility function.

Input: Fuzzy memberships of evidence, categories and
numbers of categories

Output: Possibility of Classifying an object to class Ci

1: function FuzzyEvidence_CE = FuzzyEvidence_C_mu(muE,
muC, C)

2: for each DA do
3: subsethood_temp(i) = subsethoodA_B(muE, muC(:, i),

size(muC, 1));
4: end for
5: FuzzyEvidence_CE = subsethood_temp/max(subsethood_te

mp);
6: end function
Algorithm 4. Subsethood function.
Input: Fuzzy memberships of A, B, and number of instances, N
Output: The subsethood between A and B
1: function subsethood_AB = subsethoodA_B(muA, muB, N)
2: for each DA do
3: val(:, j) = min(muA, muB(:, j));
4: end for
5: subsethood_AB = sum(val)/sum(muAij);
6: end function
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Algorithm 5. Ambiguity function.

Input: Fuzzy memberships of A, number of categories of A
and B

Output: Ambiguity of B
1: function E_A = ambiguity(muA, nA, nB)
2: The sorting result pi_Ai = sort(muA, 2, ‘descend’);
3: pi_Ai (:, nB + 1) = 0;
4: for each sort results do
5: E_a_Aj(:, i) = (pi_Ai (:, i) – pi_Ai(:, i + 1)) * log(i);
6: end for
7: E_A = sum(E_a_Aj; 2);
8: end function
Algorithm 6. Classification ambiguity with fuzzy partitioning.

Input: Fuzzy memberships of E, P, numbers of partitioning
and instances

Output: Classification ambiguity with fuzzy partitioning
1: function G_P_F = ClassAmbiguityWithP(muE, muF, muC, K,

N)
2: for each DA do
3: M_Ei F(:, k) = min(muE(:, k) , muF);
4: w_E_F(k) = sum(M_Ei_F) = sum(M_Ei_F_sum, 2);
5: G_Ei_F(k) = subsethoodA_B(M_Ei_F(:, k), muC, size(muC,

2));
6: end for
7: G_P_F = w_E_F * G_Ei_F’;
8: end function

Due to the complexity of the MDAAA and the limitations of techni-
cian cognition, some rules are ignored. The specificity to the alu-
minum reduction process, Ci, not only affects Cj; Cj also influences
Ci. Because of the large number of fuzzy rules produced by the fuzzy
decision trees, we present only the specific rules that differ from the
rules suggested by the experts. These rules are used to amend the
MDAAA structure, presented as follows:

� If C1 is high and C2 is high and C4 is normal and C7 is low then
C11 is very high;

� If C1 is very high and C2 is normal and C3 is high and C4 is low
and C9 is high then C11 is very high;

� If C1 is high and C2 is very low and C5 is high and C10 is low
then C13 is very high;

� If C3 is low and C1 is normal and C6 is high and C7 is high and
C8 is high and C9 is high then C11 is very low;

� If C3 is low and C5 is high then C13 is high;
� If C4 is high and C1 is normal and C6 is high and C7 is high then
C12 is low;

� If C5 is normal and C1 is normal and C2 is normal and C3 is high
and C4 is low then C11 is high;

� If C8 is high and C10 is low then C13 is low;
� If C10 is normal and C8 is low and C9 is high then C12 is high.



Fig. 9. The reconstructed structure of the MDAAA model.
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Third, based on the above fuzzy rules, the potential connections
among these concepts are found. The initial structure is recon-
structed using the newfound connections among the concepts;
the new structure of MDAAA is shown in Fig. 9.

The process of knowledge acquisition is based on the data-
driven method. The special rules above are used to reconstruct
the initial structure, and obtain an augmented structure. The pro-
cess of reconstruction involves data and knowledge fusion, and is
a data and knowledge collaboration process.

5.2. The MDAAA model obtained with FCMs learning

At present, we obtain the desired structure of the MDAAA
model without weights. In the following parts, we will detect the
weights to build augmented FCMs based on the STA. The vector
Ainitial represents the initial states of the concepts at a given time
in the aluminum reduction process. Because Ai is in [�1, 1], the
actual production data should be normalized by the following
equation:

A ¼ A
�
� A

�
min

A
�
max � A

�
min

� Urange � Drange
� �þ Drange ð19Þ

where A
�
is the real concept value; A

�
max and A

�
min are the maximal

and minimal real data selected from the history database, respec-
tively; and Urange and Drange are the maximal and minimal normal-
ized data, respectively. In cases where the real concept values are
only positive, Urange = 1 and Drange = 0, while in cases where the real
concept values are able to be both negative and positive, Urange = 1
and Drange = �1 in this study.
At last, because we want the truth value of the concepts/vari-
ables for the real system, the normalization is removed for Afinal

by the following equation:

A
�
real ¼ Afinal � Drange

Urange � Drange
� A

�
max � A

�
min

	 

þ A

�
min ð20Þ

where Afinal is the final value after the concept iterations, and

A
�
real is the truth value of a variable for a real system.
The Ainitial is selected as follows:

Ainitial ¼ ½ 0:1618;0:6190;0:5588;0:6667;0:1250;0:0769;
� 0:0833;�0:0324;0:2000;�0:0910;0:6455;0:8330;0:1478


The threshold function is given by the following:

f xð Þ ¼ e2x � 1
e2x þ 1

The vector Afinal is the final state of reachability, produced in the
convergence region. The Afinal,STA is obtained based on the STA.

Afinal;STA ¼ ½0:5663; 0:8121; 0:8710; 0:1220; 0:2892; 0:0950;
� 0:0817; 0:2631; 0:6934; �0:1298; 0:6000; 0:7883; 0:5879


The numerical weights among the concepts are shown in
Table 3.

Based on the STA, the learning results of the FCMs are shown in
Fig. 10. For a comparison with the STA, the differential Hebbian
learning (DHL) algorithm is selected, as proposed by Dickerson
and Kosko [48]. The results are illustrated by Fig. 11, which present
the values of the concepts with 50 iterations. The results indicate
that after the 32nd iteration, the FCMs reach an equilibrium region,



Table 3
Numerical weights among the concepts of Fig. 9.

Nodes C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

C1 0 0.3852 0 0 0 0.1932 0 0 0 0 0.7515 0.0005 0
C2 0.1587 0 0.0157 0.0045 0.2789 0.0956 0.3707 0 0 0 0.5664 0.0082 �0.8986
C3 0.7577 0.2198 0 �0.9733 0.0016 0 0 0.6807 0 0 0.0591 �0.5183 �0.0759
C4 �0.0883 0.1985 0.9655 0 0 0 0 0 0.9332 0 �0.4101 0.3067 0.4516
C5 0 0.6874 0.9975 0 0 0 0 0 0 0.0905 0 0 �0.0069
C6 0 0 0 0 0 0 0.11 0 0 0 0.7233 0.0299 0
C7 0.0299 0 0 0 0 0.9175 0 0.9771 0.0012 0.8652 0.1644 �0.0444 �0.1181
C8 0.0018 0 0 0 0 0 0.064 0 �0.8566 �0.8986 0.0938 �0.0085 �0.0683
C9 0 0.515 0 0 0 0 �0.7632 0.1832 0 0 �0.6158 0.2322 0.8993
C10 0 0 0 0 0 0 0.8998 0.3719 0 0 0 0 �0.9210
C11 0 0 0 0 0 0 0 0 0 0 0 0.2277 �0.0042
C12 0 0 0 0 0 0 0 0 0 0 �0.2555 0 0.0638
C13 0 0 0 0 0 0 0 0 0 0 �0.3092 0.9766 0

Fig. 10. FCMs learning results based on the STA.

Fig. 11. FCMs learning results based on the DHL algorithm.
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while 16 iterations are required based on the STA. With the above
Ainitial, the Afinal,DHL is as follows:

Afinal;DHL ¼ ½0:8322; 0:8784; 0:7993; 0:5847; 0:8567; 0:6000;
0:3547; 0:4437; 0:3046; �0:0673; 0:8157; 0:8555; 0:3689


Fig. 12 indicates that after the 37th iteration, the FCMs converge
into a stable region based on particle swarm optimization (PSO).
With the same Ainitial, the final calculated values of the concepts
Afinal,PSO based on PSO are as follows:

Afinal;PSO ¼ ½0:3481; 0:9460; 0:8624; 0:0477; 0:6316; 0:6609;
0:4790; 0:5618; 0:1174; �0:1409; 0:4041; 0:1020; 0:3381

Fig. 13 presents 100 iterations; after the 74th iteration, the FCMs
converge into a stable region with a slow convergence speed based
on a genetic algorithm (GA). With the above Ainitial, the final calcu-
lated values Afianl,GA of the concepts based on GA are as follows:

Afinal;GA ¼ ½0:8537; 0:75; 0:934; 0:5828; 0:7644; 0:5460; 0:5237;
0:5670; 0:4524; 0:0295; 0:4049; 0:0818; 0:4187


Figs. 10–13 reveal that the convergence speed based on the STA
is faster than those based on the DHL, PSO, and GA. In order to val-
idate the proposed strategy for the AFA, the values of C11 that were
computed based on the STA, DHL, PSO, and GA are converted to
real values using Eq. (20).



Fig. 12. FCMs learning results based on the PSO.

Fig. 13. FCMs learning results based on a GA.
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First, the lower vibration (VI), waving (WA), and MV are sym-
bols of better operations of AlF3 addition than may be obtained
by consulting technicians or experts. Corresponding to lower VI,
WA, and MV, the truth values of C1–C13 are selected for validation.
Verification in this study was carried out over about two months.
The data for the VI, WA, and MV are shown in Fig. 14.

Second, the MDAAA model is used to compute the AFA based
on the STA, DHL, PSO, and GA. Existing strategies for the AFA are
used for comparison; these are the linear programming model
Fig. 14. The values of (a) V
[12] and the fuzzy control method [49]. In practice, as a result
of the inherent feeding pattern of the cell, the total AFA is divided
into batches, with 1.6 kg being added once to the cell by one fee-
der. The total feeding times of all AlF3 feeders based on the
amended and initial structure are shown in Figs. 15 and 16,
respectively. In addition, the feeding times are shown in Fig. 17
based on the initial structure using the FKM. Table 4 provides
the analysis results of the MDAAA based on the amended struc-
ture, and of the initial structure with EFKM based on the initial
I and WA, and (b) MV.



Fig. 15. Feeding times based on each algorithm under the amended structure: (a) based on STA; (b) based on DHL; (c) based on PSO; (d) based on GA; (e) based on linear
programming (LP); (f) based on fuzzy control.
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structure with FKM, and highlights the minimum value of the
mean absolute percentage error (MAPE).

Third, Table 4 and Figs. 16 and17 show that theMAPEs of the AFA
are 10.1028 and 10.0766 based on FKM and EFKM, respectively,
under the initial structure, using the STA. This means that we can
obtain a higher accuracy for the AFA based on EFKM and the STA
under the initial structure. In comparison with the above result,
according to Table 4 and Fig. 15, when the MAPE of AFA is 6.2521,
based on the STA and EFKMunder the amended structure, it is lower
than the above result. This indicates that the accuracy of the AFA
basedon theamended structure is greater than that basedon the ini-
tial structure.Moreover, in contrast to the existing research achieve-
ments for MDAAA, Fig. 15(e) and Fig. 15(f) reveal that the proposed
strategy for MDAAA is more efficient, being based on EFKM, fuzzy
decision trees, and the STA to obtain augmented FCMs.

5.3. Summary

The MDAAA model based on augmented FCMs was designed by
data and knowledge collaboration; data was selected from the alu-
minum production database, and knowledge was extracted from
aluminum reduction experts and production data. Knowledge-
extraction methods were used to enrich the structure of the
MDAAA model in order to weaken the dependence on experts.



Fig. 16. Feeding times based on each algorithm with an initial structure using EFKM: (a) based on STA; (b) based on DHL; (c) based on PSO; (d) based on GA.
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The data-driven methods were used to eliminate the subjectivity of
experts, while the knowledge-driven methods were used to guide
the MDAAA model construction. Due to the complexities of the
aluminum reduction process, it is very difficult for technicians to
provide all the fuzzy rules. EFKM and fuzzy decision trees were
used for fuzzy rules extraction in order to reconstruct the initial
structure of MDAAA. Due to the large number of weights, it was
difficult for these to be provided by experts. In this study, the issue
was solved by introducing the STA. In essence, the main task of this
study was to propose a new strategy for MDAAA using FCMs based
on data-driven and knowledge-driven methods. In practice, this is
the first time data and knowledge collaboration based on FCMs has
been introduced to MDAAA.

The data used in this study were selected to correspond to low
VI, lowWA, and low MV per day. First, the STA had a faster conver-
gence rate than other learning methods, according to Figs. 10–13,
and the MAPE was lower than that based on other learning algo-
rithms. Second, the MAPE based on EFKM was lower than that
based on FKM, and compared with the initial structure, the MAPE
based on the STA was lower under the amended structure. In addi-
tion, having a maximum absolute error equal to 0.4498 meant that
only an average of 0.8094 kg existed between the real feeding
amount and the calculated value, which was acceptable and rea-
sonable for the complicated aluminum reduction process. Third,
in comparison with the existing MDAAA strategies, the proposed
method had a better performance.
6. Conclusions

In this study, a data and knowledge collaboration strategy for
MDAAA was proposed based on augmented FCMs. In practice,
the AFA is decided by technicians, who combine the data report
with experiential knowledge. FCMs are an efficient tool for captur-
ing kinds of knowledge, dealing with complicated models, and pro-
cessing knowledge problems, as they represent domain knowledge
both visually and descriptively. Therefore, FCMs are more compre-
hensible than other strategies for aluminum reduction technicians.
Knowledge-driven techniques were used for concepts selection
and initial structure construction, and data-driven methods were
used for knowledge extraction in order to reconstruct the initial
structure, which enriched the knowledge-based system. The learn-
ing algorithm STA was introduced to detect the weights among the
concepts of the FCMs; the results were compared with those of
other learning algorithms. In addition, the proposed strategy for
MDAAA was compared with those in existing research. The results
show that the proposed strategy is valid and more effective than
other strategies for MDAAA. The proposed strategy has potential
for application in automatic decision-making for AlF3 addition.
The results show the prospective performance of the MDAAA
model based on augmented FCMs. These results encourage us to
continue work on another challenging and relevant problem—
namely, feeding interval optimization in the aluminum reduction
process.



Fig. 17. Feeding times based on each algorithm with an initial structure using FKM: (a) based on STA; (b) based on DHL; (c) based on PSO; (d) based on GA.

Table 4
MAPE of each learning algorithm based on the amended and initial structure.

MAPE Learning algorithm Existing strategies

STA DHL PSO GA LP Fuzzy control

Initial structure using FKM 10.1028 16.7194 11.2917 14.3077 — —
Initial structure using EFKM 10.0766 15.0187 10.1657 14.0593 — —
Amended structure 6.2521 13.9768 7.6852 9.6341 15.1288 13.4102
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