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Recent advances in automation and digitization enable the close integration of physical devices with their
virtual counterparts, facilitating the real-time modeling and optimization of a multitude of processes in
an automatic way. The rich and continuously updated data environment provided by such systems makes
it possible for decisions to be made over time to drive the process toward optimal targets. In many man-
ufacturing processes, in order to achieve an overall optimal process, the simultaneous assessment of mul-
tiple objective functions related to process performance and cost is necessary. In this work, a multi-
objective optimal experimental design framework is proposed to enhance the efficiency of online
model-identification platforms. The proposed framework permits flexibility in the choice of trade-off
experimental design solutions, which are calculated online—that is, during the execution of experiments.
The application of this framework to improve the online identification of kinetic models in flow reactors
is illustrated using a case study in which a kinetic model is identified for the esterification of benzoic acid
and ethanol in a microreactor.

� 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With digitization of manufacturing currently at the forefront of
a new industrial revolution, process industries are in the transition
toward a smart manufacturing era, popularly called Industry 4.0
[1]. Industry 4.0 aims to create smart factories, wherein① physical
devices have virtual counterparts that are integrated with intelli-
gent computing algorithms carrying models to mimic real pro-
cesses; ② such devices are interconnected in real and virtual
worlds and are connected to a centralized database; and ③ with
limited human intervention, the connected devices will automate
processes based on integrated decision-making using real-time
information, thus driving production processes toward the optimal
target values [2]. In order to materialize the aforementioned con-
cepts of Industry 4.0, new continuously operated robotic devices
have been developed in all sectors of engineering to guarantee fas-
ter transfer of reliable scientific information from first feasibility
studies to pilot plants [1]. An example in chemical engineering
applications is the use of automated continuous-flow microreactor
systems for understanding and modeling the kinetic phenomena of
chemical processes from real-time experimental data. In the study
of chemical processes, automated microreactor systems with
online analysis and feedback control loops for optimal experimen-
tal design have been successfully applied for ① online optimiza-
tion of a performance criterion of the process, such as the
percentage yield of a chemical reaction (referred to as ‘‘self-
optimization”) [3–7];② discrimination between competing kinetic
models [8,9]; and ③ precise estimation of the parameters of a
kinetic model [7,10,11].

When the aim is to identify kinetic models online—that is, dur-
ing the execution of experiments—the automated microreactor
system employs sequential model-based design-of-experiments
(MBDoE) methods in the feedback loop for designing new experi-
ments. In sequential MBDoE [12], data from past experiments are
used to gain information (Fisher information) about the system,
which is related to the uncertainty in the estimation of parameters
of a candidate model structure. The past information is then used
to design future experiments in such a way as to maximize the
expected information or minimize the uncertainty in successive
parameter estimation. This process of designing experiments for
minimizing parametric uncertainty is iterated until a desirable pre-
cision on the parameter estimates is achieved. In most of the pre-
vious studies [10,11] on model identification, the optimal
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http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.eng.2019.10.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:f.galvanin@ucl.ac.uk
https://doi.org/10.1016/j.eng.2019.10.003
http://www.sciencedirect.com/science/journal/20958099
http://www.elsevier.com/locate/eng


1050 A. Pankajakshan et al. / Engineering 5 (2019) 1049–1059
experimental design problem was formulated as single objective
optimization problem based on some measure of the expected
Fisher information matrix (FIM). In the case of steady-state pro-
cesses, the maximum amount of information gained per experi-
ment is limited by the time and cost of the experiments. In such
cases, it is worth analyzing the information gained per experiment
and the associated economic and operational performance through
multi-objective optimal experimental design approaches. This will
help to design experiments for model identification in an overall
optimal way and can answer questions such as what level of infor-
mation can be achieved given a certain expense or time.

A typical multi-objective optimization problem involves the
determination of a set of nondominated trade-off solutions, called
Pareto-optimal solutions. The set of corresponding objective vec-
tors is called a Pareto front [13]. The methods for solving multi-
objective optimization problems can generally be classified into
classical and evolutionary methods. In classical methods, a solution
set close to the Pareto optimal is obtained by solving the multi-
objective problem as a number of single-objective optimization
problems in which either all the objectives are aggregated together
(weighted sum method [14]) or all the objectives except one are
constrained (e-constraint method [15]). On the other hand, evolu-
tionary methods produce a solution set that is close to the Pareto
optimal in each single run of the optimization algorithm [16].
The choice of the algorithm is mostly problem-specific and is
related to a compromise between the convergence and computa-
tional time. For a more detailed description of the various algo-
rithms and their choices, the interested reader is referred to Refs.
[13,17].

Previously, in the identification of kinetic models, a multi-
objective optimal experimental design approach was employed
to study the trade-off between different FIM-based criteria for
improving the parameter estimation problem in bioprocess sys-
tems [18]. Other applications of multi-objective optimization in
optimal experimental design for model identification include
the joint model-based experimental design approach [19] for
simultaneously improving parameter estimation and model dis-
crimination, and experimental design approaches for improving
parameter precision and minimizing parameter correlation [20].
For highly nonlinear systems, multi-objective optimal experimen-
tal design approaches for maximizing the FIM-based metric while
minimizing the model curvature have been applied to improve
FIM-based model identification procedures [21]. In addition, the
implementation of multi-objective optimization with efficient
decision-making steps in a software interface for process simula-
tion is discussed in Ref. [22]. This method allows the efficient
design of processes with conflicting objectives through the analy-
sis of trade-off solutions with the help of a flexible decision-
support facility. The advantages offered by multi-objective opti-
mization in the optimal experimental design for model develop-
ment is discussed in Ref. [23]; these scholars applied statistical
design-of-experiment (DoE) methods in the most desirable
regions of the Pareto front of conflicting objectives in order to
design optimal experiments. Recently, a machine-learning-based
multi-objective optimal experimental design approach was
applied to an automated flow reactor system for self-
optimization [4]. This approach employs a Bayesian optimization
algorithm to train and refine Gaussian process surrogate models
that approximate the response surfaces of the objectives. In
another recent study [24], a multi-objective optimal experimental
design approach was applied to compare the information gained
with the associated cost using different experimental design cri-
teria for the design of carbon-labeling experiments. None of these
previous works explored the possibility of applying multi-
objective optimal experimental design frameworks in online
model identification platforms. Such a framework will provide a
flexible optimization platform that facilitates the analysis of dif-
ferent trade-off solutions between the information-based objec-
tive function and other conflicting objectives in each iteration of
the experimental design problem, and makes it possible to select
the desired trade-off solution, leading to an overall optimal sce-
nario for model identification.

In this work, a multi-objective optimal experimental design
framework is proposed to improve the efficiency of online
model-identification platforms. In the framework, an optimal
experimental design problem is solved as a multi-objective MBDoE
(MBDoE-MO) optimization problem using the e-constraint method
[15], in which one of the objective functions (process economics) is
optimized while the other (information-based objective function)
is constrained by different values. The framework is applied in a
simulated case study to design optimal experiments for the identi-
fication of kinetic models in automated flow reactors operated at
steady state. This case study is derived from a real system of kinetic
model identification for the esterification of benzoic acid (BA) with
ethanol (E) in a microreactor operated at a steady state [25].
Despite being simple, experimentation in flow systems that are
operated at steady state involves unnecessary material consump-
tion [26–29], which is generally at its maximum during the most
informative conditions, making the overall process economically
suboptimal. The proposed multi-objective optimal experimental
design framework makes it possible to overcome this limitation
in kinetic studies by using an information-based objective function
alongside a cost-based objective function that accounts for mate-
rial consumption.
2. Materials and methods

2.1. System model

An identifiable model (i.e., a model whose parameters can be
uniquely estimated from sufficient experimental data) [30] for
the system of interest is represented by a set of differential and
algebraic equations (DAEs) in the general form given in Eq. (1).

f _x; x;u; h; z; tð Þ ¼ 0
ŷ z; tð Þ ¼ h x;u; h; z; tð Þ ð1Þ

In Eq. (1), f and h are respectively the Nf � 1 and Ny � 1 set of
equations forming the kinetic model, x is the Nx � 1 array of state
variables, _x is a set of derivatives of the state variables in time and
space (i.e. _x � dx=dt for x tð Þ and _x � dx=dz for x zð Þ), u is the Nu � 1
array of manipulated inputs, h is the Nh � 1 array of model parame-
ters, t is the time, z is the axial domain, and ŷ is the Ny � 1 array of
model predictions for the Ny variables that are measured in the
process.

The aim of the online model-identification task is to obtain the
most appropriate form of Eq. (1) and to estimate the unique val-
ues of its parameter set h using real-time data generated by auto-
mated devices. Once an appropriate model structure is identified
from the data, the model identification task is reduced to the
problem of estimating the parameters h of the model as precisely
as possible. This is achieved by solving the parameter estimation
problem and optimal experimental design problem sequentially
until a unique estimation of the parameters is confirmed by a sta-
tistical hypothesis test. The experimental design problem is
solved as an optimization problem to find the optimal set of
Nu-dimensional experimental design vector u = [y0, u, tsp, s] that
generally contains the Ny-dimensional set of the initial conditions
y0 of the measured response variables, the Nu-dimensional set of
manipulated inputs u, the Nsp-dimensional set of the sampling
times tsp of the output variables and, potentially, the experiment
duration s.
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2.2. Proposed framework

A multi-objective optimal experimental design framework is
proposed to carry out the experimental design problem of online
model identification platforms in order to identify the set of
experimental design vectors that improves the parameter estima-
tion with minimum experimental cost. The algorithm scheme for
the proposed framework is shown in Fig. 1.

As shown in Fig. 1, the automated device initially performs pre-
liminary experiments that are designed using statistical DoE meth-
ods [31]. The actual data from the preliminary experiments are
stored in a digital database. From the digital record of actual data,
the process performance is evaluated using predefined objective
functions. The online model identification framework proposed
here is based on two objectives: ① minimization of cost; and
② maximization of expected information. The process perfor-
mance is evaluated during each sequence of the experimental
design by calculating the experimental cost and the confidence
region of the model parameters. This step is illustrated in Block 1
(performance matrix) in Fig. 1. Future experiments are designed
to identify the conditions corresponding to trade-off solutions with
respect to the two objectives. The trade-off conditions are obtained
by solving the experimental design problem as a multi-objective
optimization problem for minimizing cost and maximizing infor-
mation, as represented by Block 2 in Fig. 1. In the next step (Block
3 in Fig. 1), the appropriate condition for the next experiment is
selected from the generated trade-off solutions and executed auto-
matically. The entire sequence of operations is performed online
and iterates until a termination criterion is met. Termination crite-
ria are decided by the user. Common termination criteria include
① reaching the allowed experimental budget or ② a predefined
threshold value for the primary objective of the study. In the pre-
sent work, criterion ① is chosen as the termination criterion. The
whole framework is implemented in Python [32] and operates as
an independent module with a single function call. The multi-
objective optimal experimental design framework constitutes the
core part of the implemented algorithm; details on its formulation
are explained in the following sections. The optimal experimental
design problems for MBDoE methods for improving parameter
estimation (MBDoE-PE) and MBDoE method for minimizing exper-
Fig. 1. Proposed framework for the online multi-objective optimal experimental desig
experiments that improve the precision of online parameter estimation with minimum
imental cost (MBDoE-cost) are discussed first, which is then fol-
lowed by the formulation of MBDoE-MO and its solution method.

2.3. MBDoE-PE

The FIM, whose inverse provides an estimate of the lower
bound of parameter variance–covariance by the Cramer–Rao
inequality [33,34], has been commonly used to define the objective
function in optimal experimental designs for improving parameter
precision [35]. Conventional MBDoE-PE are formulated as an opti-
mization problem of the form:

uPE ¼ argmin
u 2 D

wPE V̂h h;uð Þ
� �

s:t: Eq:ð1Þ and u�
i � ui � uþ

i ; 8i ¼ 1; . . . ;Nu

ð2Þ

In Eq. (2), wPE refers to some measure of the predicted parame-

ter variance–covariance matrix V̂h, which is minimized to obtain
the optimal experimental design vector uPE which is an array with
the dimensions N � Nu corresponding to the N designed experi-
ments. Commonly used choices for wPE include the trace, eigen-
value, or determinant of the parameter variance–covariance
matrix, which respectively form the alphabetic optimal design cri-
teria called A-, E-, and D-optimal designs [36]. In the present study,
the maximum eigenvalue of the parameter variance–covariance
matrix was chosen as the metric of parametric uncertainty, and
the E-optimal MBDoE for improving parameter precision was for-
mulated by minimizing this objective function. The constraints of
the optimization problem are the model equations and the N � Nu

dimensional bounds on the design variables that are allowed to
vary within the design space D, defining the operational range
for these variables. The predicted parameter variance–covariance

matrix V̂h in Eq. (2) is calculated from the observed FIM according
to Eq. (3).

V̂h ¼
Xn
i¼1

Hi ĥ
� �

þ
XN
j¼1

Ĥj ĥ;uj

� �" #�1

ð3Þ

In Eq. (3), Hi represents the observed FIM obtained from the ith
performed experiment, and the summation represents the total
observed information from all previous n experiments. Similarly,
n in automated model-identification platforms. The framework is used to design
experimental cost.
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Ĥj represents the expected FIM for the jth experiment to be
designed, and the summation provides the total predicted informa-
tion contained in N experiments to be designed. The observed FIM
is evaluated at the maximum likelihood estimate ĥ [34] of model
parameters. The expected FIM for the jth designed experiment is
calculated using Eq. (4), as given below.

Ĥj ¼
XNsp

k¼1

XNy

l¼1

r2
kl jj

� ��1r ŷkl jj
� �r ŷkl jj

� �T
; 8j ¼ 1; . . . ;N ð4Þ

In Eq. (4), rkl jj denotes the standard deviation of the measure-
ment error associated with the measurement of the lth response

variable in the kth sampling of the jth experiment, and r ŷkl jj
� �

denotes the Nh � 1 dimensional column vector of the first deriva-
tives of the lth response variable in the kth sampling with respect
to the model parameters, and represents the first-order sensitivi-
ties of the responses with respect to the parameter values,

r ŷkl jj
� �T

is the transpose of r ŷkl jj
� �

.

2.4. MBDoE-cost

To improve the process economics associated with performing
the experiments, MBDoE-cost is formulated as follows:

ucost ¼ argmin
u 2 D

PN
j¼1

wcost
j uj;c

� �
s:t: Eq:ð1Þ and u�

i � ui � uþ
i ; 8i ¼ 1; . . . ;Nu

ð5Þ

where wcost
j represents the cost function associated with the execu-

tion of jth experiment, the summation is the total cost of perform-
ing N experiments, and c represents the set of constant parameters
in the cost function. The definition of the optimization decision
variables and the constraints related to the model equations and
design space remain the same as in the MBDoE-PE.

2.5. Formulation of the multi-objective optimal experimental design
problem

The MBDoE-MO for improving the precision of the parameter
estimation with minimum experimental cost is solved by the e-
constraint method, in which the cost function is minimized by
restricting the FIM-based objective function within different values
of e. The MBDoE-MO optimization problem is formulated as:

uMO ¼ argmin
u 2 D

PN
j¼1

wcost
j uj;c

� �

s:t: wPE V̂h h;uð Þ
� �

� e; emin � e � emax

s:t: Eq:ð1Þ and u�
i � ui � uþ

i ; 8i ¼ 1; . . . ;Nu

ð6Þ

The unique solution uMO of the MBDoE-MO optimization prob-
lem stated in Eq. (6) is Pareto optimal for any given Nk-dimensional

upper bound vector: e ¼ e1; . . . ; ep�1; . . . ; ep; . . . ; eNk

� �T. It is possible
to find different Pareto-optimal solutions using different e values.
Ideally, the e vector must be chosen such that each e lies between
the minimum and maximum values of the objective function that
is restricted to constraints. This means that e1 and eNk

should
respectively be the minimum and maximum values of the
restricted objective function, which is the maximum eigenvalue
of the parameter variance–covariance matrix wPE in the present
problem. Thus, the minimum value of e, that is, e = e1, is the value
of wPE in the solution of the MBDoE for improving the parameter
estimation, that is, wPE(uPE) and the maximum value of e, that is,
e ¼ eNk

is the value of wPE in the solution of the MBDoE for improv-
ing process economics, that is, wPE(ucost).
2.6. Selection of the Pareto-optimal solutions

The solution vector uMO obtained by solving Eq. (6) is an
Nk � N � Nu array, when N number of experiments are designed
by solving the multi-objective optimization problem. In order to
navigate within the online model-identification framework, it is
necessary to select one solution from uMO as the condition for the
next experiment. For this purpose, an algorithm based on a mea-
sure called the trade-off index (referred to herein as the
‘‘TO-index”)—which indicates the distance of any point on the
Pareto curve from the point that corresponds to theminimumvalue
of two objective functions if the functions were not mutually con-
flicting—is proposed to analyze the set of optimal trade-off solu-
tions uMO and to select the desired trade-off solution for the next
experiment. The TO-index is evaluated using the normalized values
of the objective functions denoted by wPE0

and wcost0 contained in
the normalized objective vectors wPE0

and wcost0. The objective
functions are normalized using the formula given in Eq. (7).

wobj0
i ¼

wobj
i �min wobj

i ; i ¼ 1; . . . ;Nk

n o
max wobj

i ; i ¼ 1; . . . ;Nk

n o
�min wobj

i ; i ¼ 1; . . . ;Nk

n o ; 8i ¼ 1; . . . ;Nk

ð7Þ
In Eq. (7), obj refers to PE or cost. The two-step algorithm for

calculating the TO-index of each of the Pareto-optimal solutions
is given below.

2.7. Algorithm for calculating the TO-index

(1) Normalize the two Nk-dimensional objective vectors to form

the normalized objective vectors wPE0 ¼ wPE0
1 ; . . . ;wPE0

p�1; . . . ;w
PE0
p ;

h
. . . ;wPE0

Nk
�T and wcost0 ¼ wcost0

1 ; . . . ;wcost0
p�1 ; . . . ;w

cost0
p ; . . . ;wcost0

Nk

h iT
corre-

sponding to the trade-off solutions, such that all values of wPE0

and wcost0 lie between 0 and 1.
(2) The TO-index for each of the trade-off points in the objective

space is evaluated as:

TO-indexi ¼ x1 wPE0
i

� �2
þx2 wcost0

i

� �2
; 8i ¼ 1; . . . ;Nk ð8Þ

where x1 and x2 are weight factor 1 and weight factor 2, respec-
tively, used to select trade-off solutions by acting on wPE.

(3) The Pareto-optimal solution with the smallest value of the
TO-index is chosen as the condition for the next set of experiments.

The whole solution procedure described above for solving a
multi-objective optimal experimental design problem in each
sequence of the optimal experimental design is illustrated in Fig. 2.

The method is developed on the basis of geometrical interpre-
tation of the Pareto front. As shown in Fig. 2, when the Pareto
objective vectors are normalized, the worst trade-off points for
the objective functions, which are mutually conflicting, can be rep-
resented by the coordinates (0,1) and (1,0). The distance between
any point on the Pareto curve and a minimum point (0,0), which
would have become the optimal point if the functions were not
mutually conflicting, is indicated by the value of the TO-index.
In the decision-making step involved in each run of the MBDoE-
MO optimization problem, the algorithm selects the Pareto-
optimal point from the set of nondominated trade-off points with
the lowest value of the TO-index. The next experiment is carried
out under the conditions corresponding to the selected Pareto
point. When the weight factors x1 and x2 in Eq. (8) are set to 1,
the algorithm selects the Pareto-optimal solution by giving equal
importance to both objective functions. However, in each
sequence of the multi-objective optimal experimental design
problem, it is also possible to select the Pareto-optimal point with
the desired degree of trade-off between the objective functions.



Fig. 2. Illustration of the decision-making step in the proposed multi-objective optimal experimental design framework. The set of trade-off points in the objective space
obtained from the e-constraint method are shown in the left panel. From the normalized trade-off points (shown in the right panel), appropriate conditions for the next
experiment are obtained using different values of the weight factors x1 and x2; this facilitates a desired degree of trade-off solution to be chosen according to the user’s
interest.
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This is achieved by changing the value of one of the weights
within the closed interval [0, 1], while keeping the other equal
to 1, thus providing a flexible platform to choose the desired
trade-off solution at any sequence of the operation. For example,
when setting the value of x1 = 0, while keeping x2 = 1 in Eq. (8),
the algorithm becomes a single-objective one in terms of the min-
imization of cost (MBDoE-cost), and selects the condition with
minimum cost as the condition for the next experiment. Similarly,
when x2 is set to 0, while keeping x1 at 1 in Eq. (8), the algorithm
converges to the MBDoE-PE and proceeds with the most informa-
tive conditions regardless of experimental cost. In cases when
x1 = 0 and x2 = 1, or x1 = 1 and x2 = 0, that is, when the
decision-making process becomes a single-objective one, if there
are several possible trade-off solutions with the same TO-index
value, then the algorithm selects the solution that is also a mini-
mum for the objective function whose weight is set to 0. In order
to ensure an efficient local search routine in the optimization algo-
rithm, a stochastic initialization step using Latin hypercube sam-
pling was included in all the optimal experimental design
problems solved in the framework, and no numerical issues
related to convergence were observed. The impact of initialization
and upper bound constraints on the distribution and convergence
of Pareto-optimal solutions is discussed in the Supplementary
data. The computational time required for the algorithm to solve
each optimization problem is on the order of seconds. The scien-
tific Python (SciPy) package was used for the integration of the
system of ordinary differential equations in the model (using the
odeint tool) and for solving optimization problems (parameter
estimation and experimental design). All the array operations
were performed using the NumPy library. The optimization prob-
lems of parameter estimation and optimal experimental design
were solved using the Nelder–Mead and sequential least squares
programming methods, respectively.

2.8. Case study

The proposed framework for multi-objective optimal experi-
mental design is applied to a simulated case study related to the
identification of a kinetic model for the esterification of BA with
E in a microreactor. The kinetic model, objectives, modeling
assumptions, and methods used in the case study are described
in the following subsections.

2.8.1. Kinetic model
The esterification reaction between BA with E produces ethyl

benzoate (EB) as the main product, with water (W) as a side pro-
duct [37], and can be represented as follows:

BAþ E ! EBþW ð9Þ
The reaction is assumed to take place in a microreactor oper-
ated under steady-state and isothermal conditions. It is assumed
that the microreactor behaves as an ideal plug flow reactor due
to a large axial to radial dimension ratio, making the radial diffu-
sion fast. The reactor length is assumed to be 2 m. The process is
modeled as a first-order reaction with respect to BA and forms a
set of DAEs given by the equation.

v dCi

dz
¼ mik CBA; 8i ¼ 1; . . . ;Ny

k ¼ exp ln A�
Ea=10

4
� �

104

RT

2
4

3
5 ð10Þ

In Eq. (10), Ci is the concentration of the ith species, z is the axial
coordinate along the reactor length, v is the axial velocity of the reac-
tion mixture which is defined as the ratio of volumetric flowrate of
reaction mixture f and cross-sectional area of reactor Acs, vi is the
stoichiometric coefficient of the ith species, and k is the reaction rate
constant. The Arrhenius equation is written in the reparametrized
form given in Eq. (10), where T is the reaction temperature and R is
the ideal gas constant. This form of reparametrization reduces the
parameter correlation and improves the parameter estimation and
the quality of the statistical tests [38]. The parameters of the
Arrhenius equation—namely, the activation energy Ea and pre-
exponential factor A—form the set of model parameters that need
to be estimated, and are estimated as ln A and Ea � 10�4, respec-

tively; that is, h ¼ h1; h2½ �T ¼ ln A; Ea � 10�4
h iT

.

2.8.2. Objectives, assumptions, and methods
The objective of the case study is to estimate the kinetic

parameters precisely by minimizing experimental cost. For this
purpose, the proposed multi-objective optimal experimental
design framework is applied to design an optimal set of experi-
ments. As the reactor is operated under steady-state conditions,
for each experiment, the measured values correspond to the
steady-state concentrations of BA and EB sampled at the reactor
outlet. Thus, each experiment involves one measurement sample

denoted by y ¼ Cout
BA ;C

out
EB

� �T
. It is assumed that the measurement

errors associated with Cout
BA and Cout

EB are normally distributed ran-
dom variables with 0 mean and standard deviations of 0.03 and
0.01 mol�L�1, respectively; that is, the standard deviation vector
r = [0.03 0.01]T.

The experimental design space D is a three-dimensional region
bounded by the ranges of the operating conditions of the experi-
mental design variables, which are the reaction temperature T
(343–423 K), inlet stream flowrate f (7.5–30 lL�min�1), and inlet

concentration of BA Cin
BA(0.9–1.55 mol�L�1). When called upon, the
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experimental design problem identifies the optimum conditions
within the design space D for the future experiments by solving
either Eq. (2) or Eq. (6), depending on whether MBDoE-PE or
MBDoE-MO is used. It is assumed that a maximum number of
seven experiments is allowed in a campaign. The two preliminary
experiments are designed using a factorial DoE method. This is to
ensure that before starting the application of MBDoE, an estimate
of the parameter is available and a minimum threshold on infor-
mation is guaranteed. The conditions of the two preliminary

experiments are T = 413 K, f = 20 lL�min�1, Cin
BA= 1.5 mol�L�1 and

T = 393 K, f = 20 lL�min�1, Cin
BA= 1.5 mol�L�1 respectively. The online

multi-objective optimal experimental design is then employed to
design the next five experiments sequentially in an automated
manner in a loop that iterates five times.

In real systems that are operated automatically for online model
identification, if the reaction mixture analysis is not sufficiently
quick, delays are introduced in accessing the information from
the system after sampling. This delay can be overcome to an appre-
ciable extent by overlapping the experiments such that every time
the sample from the running experiment is sent to the analytical
instrument, a new experiment is available to start. To incorporate
this concept in the present problem, the first experimental design
problem is solved for designing two experiments (i.e., N = 2 in
Eqs. (3), (5), and (6) in the first sequence of the experimental
design problem), so that when the steady-state concentrations
from the first designed experiment are sampled, the second experi-
ment is ready to start. In other words, this means that although five
experiments are designed in sequence, only four optimal experi-
mental design problems are solved. In order to perform the simu-
lation study, in-silico measurements are generated by integrating
the kinetic model in Eq. (10) using the parameter values of
h*=[19.99 7.85]T. Here, it is assumed that the parameter set h* rep-
resents the true value of the model parameters; the corresponding
values of the pre-exponential factor A and the activation energy Ea
are 8.0 � 106 s�1 and 7.85 � 104 J�mol�1, respectively.
2.8.3. Evaluation of cost function
In the kinetic study using flow reactors operated under steady-

state conditions, the reaction mixture is flushed out until a steady
state is achieved, and only the measurements made at a steady
state are used for fitting the model and estimating the parameters.
Thus, to evaluate the cost, the amount of material flushed out until
a steady state is achieved must be determined, which in turn
requires an estimate of the time needed to reach the steady state.
The cost function for the flow reactor system was formulated by
accounting for the cost of the materials flushed out in any experi-
ment j as given by:

wcost
j ¼

sj � f j
� � � Cin

BAj

106 � unit cost ð11Þ

In Eq. (11), sj is the calculated time to reach the steady state for

experiment j, the product sj � f j
� � � Cin

BAj
represents the moles of BA

in the volume flushed up to time sj, f and Cin
BA respectively denote

the flowrate and inlet concentration of BA, and unit cost is the cost
of 1 mol of BA, which is assumed to be 59 GBP (about 74 USD).

In order to calculate the approximate time s to reach steady state
for each experiment, an offline method using time series data (i.e.,
data collected at regular intervals during the transient period) gen-
erated during a previous campaign of steady-state experiments for
the esterification reaction (carried out in a real flow reactor system
identical to the simulated system)wasemployed. Theprevious cam-
paign consisted of factorial experiments with the same experimen-
tal design variables and ranges described in the previous section. All
the experiments in the campaign were run for 1 h in order to guar-
antee steady-state operation. During this time, samples were taken
every 7 min, yielding 7–8 samples for each experiment. This process
resulted in time series data. An expression for the time needed to
reach a steady state in terms of the experimental design variables
was obtained from the time series data through the following steps:

Step 1: Estimation of the time to reach a steady state. In this
step, the approximate time s to reach a steady state for each
experiment was calculated from the time series data. An algorithm
based on a fixed window (window size = 3 in the present study)
moving average method was used to calculate the standard devia-
tion of the measurement error in the time series data. The fixed
window size corresponds to the number of consecutive samples
used to calculate the standard deviation of error. If the calculated
value of the standard deviation of error is less than the assumed
standard deviation of the measurement error, then it is concluded
that the system has reached a steady state and the algorithm stops.
For each experiment, the algorithm becomes active after a resi-
dence time equivalent to 1.5 times the combined volume of the
reactor and the analysis loop divided by the volumetric flowrate,
which is a recommended rule of thumb for achieving a steady-
state condition [26].

Step 2: Development of empirical model for the time to reach a
steady state. In this step, an empirical model with the steady-state
time as the response variable and the experimental conditions as
the factors was developed by fitting the data generated in Step 1.
It is assumed that the inlet concentration has a negligible effect
on the time required to reach a steady state. A polynomial function
was used to describe the relationship between the time needed to
reach a steady state and the experimental conditions, which is
given in Eq. (12).

sj ¼ c1 �
DTj

Tj
þ c2 �

V
f j
; 8j ¼ 1; . . . ;npast ð12Þ

In Eq. (12), sj represents the time to reach a steady state for the
jth experiment with temperature Tj and flowrate fj, DTj is the tem-
perature difference between the jth and (j–1)th experiment, V is
the total volume of the reactor and the analysis loop (i.e., the sec-
tion between the reactor outlet and the HPLC sampling valve), npast
is the number of steady-state experiments belonging to a previous
campaign of experiments, and c1 and c2 are parameters of the
empirical model and are related to the length of time that the sys-
tem would require to reach the steady state after a change in tem-
perature or flowrate, respectively. The parameters were estimated
by fitting the polynomial model to the data generated in Step 1
using the maximum likelihood estimation method [34]. The esti-
mated value for the parameter set is c ¼ c1; c2½ �T ¼ 18:38;1:83½ �T.
3. Results and discussion

Two experimental design campaigns are compared below.
(1) MBDoE-PE: This is an optimal experimental design for

improving the parameter estimation by minimizing the uncer-
tainty of the estimated values of the model parameters.

(2) MBDoE-MO: This is an MBDoE for designing multi-objective
optimal experiments to improve the parameter estimation with a
simultaneous reduction of experimental cost.

The results are reported in Section 3.1 (MBDoE-PE) and Sec-
tion 3.2 (MBDoE-MO).

3.1. MBDoE-PE: An MBDoE for improving parameter estimation

The designed experimental conditions and the corresponding
value of the parameter estimates with a 95% confidence interval
(CI) in each sequence of the execution of the designed experiments
are reported in Table 1. The approach involved the solution of four



Table 1
Results of the online MBDoE-PE campaign, including experimental settings, posterior statistics on parameter estimates, and experimental cost for each designed experiment.

Experiment Temperature (�C) Flowrate (lL�min�1) Inlet conc. (mol�L�1) Parameter 1 ĥ1 � CI
� �

Parameter 2 ĥ2 � CI
� �

Cost (GBP)

E1 (factorial) 140.0 20.0 1.50 — — 0.0277
E2 (factorial) 120.0 20.0 1.50 20.05 ± 11.85 7.87 ± 4.11 0.0285
E3 (MBDoE-PE) 140.0 17.1 1.55 19.14 ± 7.03 7.56 ± 2.44 0.0279
E4 (MBDoE-PE) 114.4 7.50 1.55 22.29 ± 3.03 8.65 ± 1.05 0.0266
E5 (MBDoE-PE) 114.3 7.50 1.55 20.47 ± 2.07 8.02 ± 0.71 0.0238
E6 (MBDoE-PE) 115.8 7.50 1.55 19.87 ± 1.70 7.81 ± 0.58 0.0239
E7 (MBDoE-PE) 140.0 15.4 1.55 19.75 ± 1.51 7.76 ± 0.52 0.0283

Conc.: concentration.
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parameter estimation and experimental design problems (Eq. (2))
sequentially in the online platform. As shown in Table 1, the
parameter estimates quickly converged to the assumed true value
of the model parameters h* = [19.99,7.85]T after the two prelimi-
nary experiments. This shows the close agreement of the selected
model to the data. However, the 95% CI, which is a measure of the
variance of parameter estimates [34], suggest that the uncertainty
in parameter estimation is large at the beginning. In order to
improve the confidence in the estimated parameter values, five
more experiments with the objective of minimizing the uncer-
tainty in the parameter estimates are designed online. In the first
experimental design problem, two experiments are designed
simultaneously using the parameter estimates obtained from the
preliminary factorial experiments. The remaining three experi-
ments are then designed each time a new experiment is executed
and the parameter estimates are updated. The designed experi-
ments and the corresponding value of parameter estimates with
95% CI are given in Table 1.

It is clear from the results that the uncertainty in parameter
estimation has been greatly reduced over the course of the
designed experiments. The experimental cost for the preliminary
experiments and for each of the designed experiments for compar-
ing the conventional MBDoE to improve the parameter estimation
with the proposed MBDoE-MO have been calculated and are
reported in Table 1.

3.2. MBDoE-MO: An MBDoE for improving multi-objective parameter
estimation while minimizing cost

In the MBDoE-MO, experiments are designed to improve the
parameter estimation with minimum experimental cost. Similar
to the MBDoE-PE, this approach involves solving four parameter
estimation and optimal experimental design problems (Eq. (6))
online to design five optimal experiments. In the first experimental
design problems, two experiments are designed using the parame-
ter updates obtained from preliminary factorial experiments. In
the subsequent experimental design problems, one experiment
was designed each time the parameter estimates were updated
from a new experiment. A set of seven trade-off solutions corre-
sponding to seven different upper bound values of e (i.e., setting
Nk = 7) was obtained during each experimental design problem,
from which a Pareto-optimal point was chosen by the decision-
maker. The set of trade-off points and the selected point in each
experimental design problem are illustrated in Fig. 3.

As indicated in the figure, a multi-objective optimal experimen-
tal design problem involves the solution of Nk (here, Nk = 7) opti-
mization problems corresponding to Nk different values of the
upper bound variable e; this was solved online in the proposed
platform. The appropriate solution for the next experiment is
selected from the set of trade-off solutions by assigning appropri-
ate values to the weight factors x1 and x2 (see Section 2.5). In the
present problem, bothx1 andx2 were set at 1 in Eq. (8) in order to
select the best trade-off solution (giving equal importance to both
objectives). By assigning appropriate values to the weights, it is
possible to select Pareto-optimal solutions according to the
required degree of trade-off between the two objective
functions. The results of theMBDoE-MO are summarized in Table 2.
As shown in the table, a significant reduction of the experiment
cost has been achieved with only a slightly lower precision
of parameter estimation, compared with the results of the
MBDoE-PE campaign.
3.3. Comparison of results

The results of both the campaigns of experimental design
(MBDoE-PE and MBDoE-MO) are compared. In terms of precision
in the estimation of the model parameters, both the MBDoE-PE
and the MBDoE-MO improve the estimation of the model parame-
ters in the successive experimental design problems. This is illus-
trated in terms of the CIs of the parameter estimates in Fig. 4
and using the parameter statistics (95% t-value) in Fig. 5(a). The
CI for any parameter estimate ĥi with significance level a can be
computed as:

CI ¼ ĥi � t
a
2
;n � Ny � Nh

� � ffiffiffiffiffiffiffi
Vhii

q
ð13Þ

In Eq. (13), t a=2;n � Ny � Nh

� �
is the two-tailed t-value of a t-

distribution with (n�Ny–Nh) degrees of freedom and a signifi-
cance, and

ffiffiffiffiffiffiffi
Vhii

p
represents the standard deviation of the ith

parameter estimate ĥi. The t-value for any parameter estimate
is computed as the ratio between the parameter estimate and
the CI:

ti ¼ ĥi
t a=2;n � Ny � Nh

� � ffiffiffiffiffiffiffi
Vhii

p ð14Þ

The reference t-value is the t-value of a t-distribution with
(n�Ny–Nh) degrees of freedom and a significance; that is,
t(a, n�Ny–Nh). For any parameter estimate, a t-value higher than
the reference t-value indicates a statistically precise estimation of
that parameter. As expected, the MBDoE-PE produces a more pre-
cise estimation of both model parameters in comparison with the
MBDoE-MO. This is evident from the width of the CIs for the
parameter estimates shown in Fig. 4, which indicates the margin
of error around the estimated value. As shown in Fig. 4, in the
MBDoE-PE campaign, both parameters have approached to the
true values with a minimum uncertainty defined by the narrow
CI. The small fluctuations of parameter estimates around the true
value can be attributed to the random noise added in the simulated
experiments. Compared to the MBDoE-PE campaign, in the
MBDoE-MO campaign, the parameter estimates are relatively far
from the true values and the CIs are wider. The higher t-values of
the parameter estimates obtained in the MBDoE-PE campaign
compared with the MBDoE-MO campaign also indicate that the
parameters are estimated more precisely in the MBDoE-PE cam-
paign. This is shown in Fig. 5(a). In contrast, the information-rich
experiments designed by the MBDoE-PE are more expensive than



Fig. 3. MBDoE-MO procedure for the design of five experiments. (a) Design of the first two experiments of the campaign, where each point of the curve corresponds to two
optimal experimental conditions; (b) MBDoE-MO procedure for the design of the third experiment; (c) MBDoE-MO procedure for the design of the fourth experiment;
(d) MBDoE-MO procedure for the design of the fifth experiment of the campaign. The black squares are the different trade-off points (nondominated/dominated)
corresponding to different values of the upper bound variable e. The green diamond is the selected point from the set of trade-off points, such that the solution at this point is
chosen as the conditions for the next set of experiments. In all the cases, the selected point is Pareto optimal.

Table 2
Results of the online MBDoE-MO campaign. Optimal settings of experiments, posterior statistics on parameter estimates, and experimental cost for each designed experiment are
shown.

Experiment Temperature (�C) Flowrate (lL�min�1) Inlet conc. (mol�L�1) Parameter 1 ĥ1 � CI
� �

Parameter 2 ĥ2 � CI
� �

Cost (GBP)

E1 (factorial) 140.0 20.0 1.50 — — 0.0277
E2 (factorial) 120.0 20.0 1.50 20.26 ± 11.93 7.95 ± 4.14 0.0285
E3 (MBDoE-MO) 118.2 7.5 1.21 18.23 ± 4.27 7.29 ± 1.46 0.0187
E4 (MBDoE-MO) 128.7 21.3 0.90 18.94 ± 3.49 7.49 ± 1.19 0.0155
E5 (MBDoE-MO) 140.0 12.3 1.03 21.03 ± 3.17 8.19 ± 1.09 0.0169
E6 (MBDoE-MO) 140.0 14.3 1.07 21.51 ± 3.08 8.37 ± 1.07 0.0164
E7 (MBDoE-MO) 140.0 17.9 0.95 21.29 ± 2.93 8.29 ± 1.01 0.0147
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those designed by the MBDoE-MO. A comparison of the cost of
each of the experiments designed through both approaches is
given in Fig. 5(b).

By analyzing Figs. 4 and 5, it is clear that in situations of critical
constraints on cost, the multi-objective optimal experimental
design framework can provide the best trade-off solutions with
respect to improving the parameter estimation and minimizing
cost. The profiles of the experimental design variables (tempera-
ture, flowrate, and inlet concentration) in the designed experi-
ments by both approaches are compared in Fig. 6. The
differences in the experimental conditions of the designed experi-
ments by both approaches are more apparent in terms of the flow-
rate and reactant (BA) concentration. This is due to the fact that the
amount of reagent used is directly related to the inlet concentra-
tion, whereas the flowrate is the most significant factor affecting
the time required to reach a steady state. The profiles of the reac-
tion temperature and flowrate follow a similar trend in the
MBDoE-PE campaign, such that the combinations of high tempera-
ture (T 	 140 �C) and low residence time (high flowrate;
f 	 17 lL�min�1) as well as low temperature (T 	 115 �C) and high
residence time (low flowrate; f 	 7.5 lL�min�1) appear to be favor-
able conditions to gain information about the reaction system. In
the case of the MBDoE-MO campaign, the optimal conditions shift
to a high flowrate and low concentration in order to minimize the
material consumption.
4. Conclusion

The emergence of robotic devices with real-time data-based
feedback loops provides a suitable environment for the online
modeling and optimization of chemical processes. Optimal exper-
imental design can play a significant role in such modeling and
optimization, since it acts as an approach to plan future process
conditions based on current data and desired objectives. When
the optimal experimental design problem involves mutually



Fig. 4. Parameter estimates with 95% CIs for the model parameters in each experiment of (a) the MBDoE-PE campaign and (b) the MBDoE-MO campaign.

Fig. 5. A comparison of the results from the MBDoE-MO and MBDoE-PE campaigns in terms of (a) parameter statistic (95% t-value) and (b) the cost of materials in each
experiment. In (a), a t-value greater than the reference t-value indicates a precise estimation of the model parameter. A higher t-value indicates more precise estimation.
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conflicting objectives, a fair compromise can represent the best
solution. In this work, a framework was proposed for online
multi-objective optimal experimental design that makes it possible
to find the best trade-off solutions for designing experiments when
the process is subjected to multiple constraints. A solution strategy
composed of a decision-making step is proposed to solve the
multi-objective optimization problem online. This strategy, which
uses a FIM-based metric to analyze the degree of trade-off solu-
tions, makes it possible to select the desired Pareto-optimal point
from the vector of trade-off solutions as the condition for the next
experiment. The benefits of the application of this framework were
demonstrated using a simulated case study on the identification of
a kinetic model for the BA esterification. The results from the case
study suggest that optimal experimental design using the MBDoE-
MO represents an improved way of conducting reaction kinetic
studies in flow systems operated under steady-state conditions.
This approach makes it possible to identify the best trade-off con-
ditions to improve the information gained from the reaction sys-
tem, while minimizing the cost of the materials consumed. This
framework was implemented as a general function in Python,
and can be extended to a large variety of real online multi-
objective optimization problems.



Fig. 6. A comparison of the optimal sequence of the experiments designed using the MBDoE-PE and MBDoE-MO methods. (a) Optimal temperature profiles; (b) optimal
flowrate profiles; (c) optimal inlet BA concentration profiles for both MBDoE-PE (solid lines) and MBDoE-MO (dash lines).
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Nomenclature
Latin Symbols
A pre-e
xponential factor

Ci conce
ntration of species i
Cin
i

conce
ntration of species i at the reactor inlet
Cout
i

conce
ntration of species i at the reactor outlet

Ea activa
tion energy

f volum
etric flowrate

k kinet
ic constant

n numb
er of designed experiments already performed

N numb
er of experiments designed in one sequence of

MBDoE methods

Nf numb
er of differential and algebraic equations

constituting the model

Nk numb
er of upper bound variable in one sequence of

MBDoE-MO optimization problem

Nu numb
er of manipulated inputs

Nx numb
er of state variables

Ny numb
er of measured variables

Nu numb
er of design variables

Nh numb
er of model parameters

Nsp numb
er of sampling points

R ideal
 gas constant

t time

T react
ion temperature

v flow
 velocity along the axial coordinate of reactor

V volum
e of reactor

z axial
 domain
Matrices and vectors

D Nu di
mensional experimental design space that bounds

the admissible range of values of design variables

f array
 of functions in kinetic model Nf � 1

h set of
 relations between the measured response

variables ŷ tð Þ and the state variables x tð Þ
Hi obser
ved Fisher information matrix obtained from the
ith performed experiment Nh � Nh
Ĥj
expec
ted Fisher information matrix for the design of jth
experiment Nh � Nh
tsp array
 of sampling times Nsp � 1

u array
 of manipulated control inputs Nu � 1
V̂h
param
eter variance–covariance matrix Nh � Nh
x array
 of state variables Nx � 1

y array
 of measured output variables Ny � 1

y0 array
 of initial conditions of the measured response

variables Ny � 1

ŷ array
 of model predictions of the measured output

variables Ny � 1

h array
 of model parameters Nh � 1

ĥ maxi
mum likelihood estimate of model parameters

Nh � 1

h* array
 of true value of model parameters Nh � 1

e uppe
r bound vector for MBDoE-MO optimization

problem Nk � 1

u exper
imental design vector Nu � 1

ucost optim
al experimental design vector for MBDoE-cost

problem N � Nu
uPE optim
al experimental design vector for MBDoE-PE
problem N � Nu
uMO optim
al experimental design vector for MBDoE-MO
optimization problem Nk � N � Nu
wcost0 norm
alized objective vector fromMBDoE-cost problem
Nk � 1
wPE0
norm
alized objective vector for MBDoE-PE problem
Nk � 1
Greek symbols

hi ith m
odel parameter

ĥi maxi
mum likelihood estimate of the ith model

parameter

vi stoich
iometric coefficient of the ith species

e uppe
r bound variable in MBDoE-MO optimization

problem

si time
 to reach the steady state in ith experiment

r gradi
ent operator

x1 weigh
t factor 1, used to select trade-off solutions by

acting on wPE
x2 weigh
t factor 2, used to select trade-off solutions by
acting on wcost
c1,c2 param
eters of empirical model for estimating time to
reach steady state
wPE objec
tive function for MBDoE-PE problem
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wcost objec
0

tive function for MBDoE-cost problem

wPE norm
alized value of objective function for MBDoE-PE

problem

wcost0 norm
alized value of objective function for MBDoE-cost

problem
Acronyms

BA benz
oic acid

DAE differ
ential and algebraic equation

DoE desig
n of experiments

EB ethyl
 benzoate

FIM Fishe
r information matrix

MBDoE mode
l-based design of experiments

MO mult
i-objective

PE param
eter estimation
Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.eng.2019.10.003.
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