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Setting up a knowledge base is a helpful way to optimize the operation of the polyethylene process by
improving the performance and the efficiency of reuse of information and knowledge—two critical ele-
ments in polyethylene smart manufacturing. In this paper, we propose an overall structure for a knowl-
edge base based on practical customer demand and the mechanism of the polyethylene process. First, an
ontology of the polyethylene process constructed using the seven-step method is introduced as a carrier
for knowledge representation and sharing. Next, a prediction method is presented for the molecular
weight distribution (MWD) based on a back propagation (BP) neural network model, by analyzing the
relationships between the operating conditions and the parameters of the MWD. Based on this network,
a differential evolution algorithm is introduced to optimize the operating conditions by tuning the MWD.
Finally, utilizing a MySQL database and the Java programming language, a knowledge base system for the
operation optimization of the polyethylene process based on a browser/server framework is realized.

� 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Due to significant development in the field of modern informa-
tion technology, the traditional manufacturing industry is facing
severe challenges, and urgently requires upgrading and transfor-
mation through advanced information technology. Accordingly,
industrialized countries have proposed policies such as the corre-
sponding initiative in China and Industry 4.0 [1]. Naturally, as a
typical traditional industry, the petrochemical industry will benefit
from these initiatives, which will generate new demands and
opportunities [2].

The corresponding initiative in China strongly focuses on smart
manufacturing, which involves the application of artificial intelli-
gence and network technology—such as advanced process control
and real-time optimization—to traditional manufacturing informa-
tion systems [3]. Zhuang et al. [4] previously proposed conflict pre-
diction based on fuzzy temporal knowledge reasoning, which can
provide helpful information for use in train operation adjustment
and train timetable improvement. Regarding semantic representa-
tion of equipment, Yu et al. [5] proposed a method to display and
analyze equipment knowledge. Due to the increasing number of
reusable solutions on the electronics market, Subbotin et al. [6]
designed a knowledge base recommendation system to help devel-
opers select a hardware–software platform for embedded systems
automated design. Although knowledge representation and rea-
soning are applied in many research fields, their use is less com-
mon in industrial plants. Compared with conventional
manufacturing, smart manufacturing provides the opportunity to
analyze the various influencing factors of an operation by combin-
ing intelligent technologies in depth, such as big data processing
and neural network-based modeling. Smart manufacturing can
also adjust the operating conditions and production plan to realize
flexible and efficient production. Thus, it enables industrial plants,
especially in the petrochemical industry, to make timely adjust-
ments according to market demand and process status, thereby
improving their market competitiveness. In order to enhance the
reuse of manufacturing knowledge, the knowledge base system
has been introduced into the field of industrial manufacturing
and applied in some simple, discrete manufacturing fields [7,8].

However, there is no universal framework for domain knowl-
edge for the polyethylene process at present, either in the litera-
ture or on the market, due to its complex reaction mechanisms,
various types of polyethylene products, and flexible production
process. The selection of different equipment and production
designs for the polyethylene production process results in different
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choices for the parameters of the molecular weight distribution
(MWD) calculation, which require many rules known only to
experts. Particularly for the optimized operation of the production
process, it is necessary to recalculate the optimized operating
parameters for each optimization calculation. In this calculation
process, experiences accumulated by experts cannot be effectively
utilized. Solving the problem of expert experience knowledge
reuse is key in improving production intelligence. Consequently,
this absence restricts not only the sharing of polyethylene opera-
tion knowledge, but also the development of smart manufacturing
in the polyethylene industry.

The knowledge base system has been applied effectively to
equipment selection for the styrene process [9], which indicates
a promising possibility of application to the polyethylene process
as well. Hence, in this paper, we introduce the techniques of the
domain knowledge base to the polyethylene industry and propose
a framework of a domain knowledge base for the polyethylene pro-
cess. Using this framework as a basis to integrate the knowledge of
the polyethylene process, equipment operation, and operation
optimization, we propose an operation optimization knowledge
base system (OOKBS) for a practical polyethylene process.
2. System architecture of the OOKBS

The structure of the OOKBS for the polyethylene process con-
tains three layers, where each layer is designed to focus on specific
tasks to facilitate the operation of higher layers. Fig. 1 provides a
diagram of the structure of the OOKBS.

The bottom layer is the ontology layer, which consists of the
polyethylene ontology, expert rules for the polyethylene process,
and ontology reasoning and analysis. The polyethylene ontology
describes polyethylene process-related knowledge, such as chemi-
cal equipment, optimal operation conditions, and operation vari-
ables. The expert rules preserve past experience related to
parameter selection for optimization calculations of molecular
weight under various process conditions. The ontology reasoning
and analysis provide the recommendation capability to select suit-
able operation parameters for the optimized MWD based on the
real-time production status.

The middle layer is the model layer, which comprises the poly-
ethylene process model, along with the prediction and optimiza-
tion algorithms for the MWD of the polyethylene process.
Fig. 1. Architecture of the operation optimization knowledge base system (OOKBS).
UI: user interface.
The top layer is the application layer, which provides knowl-
edge application services to users, including an information over-
view service, an operation optimization service, and a user
management service.

3. Construction of the ontology of the polyethylene process

In this section, the definition and attributes of the ontology of
the polyethylene process are given, and a construction method is
introduced based on the characteristics of the polyethylene pro-
duction domain knowledge.

3.1. Description of ontology

Ontology is an important tool representing knowledge and con-
cepts; it can describe domain objects and corresponding interrela-
tionships and rules [10]. With the development of information
technology, the idea of ontology was introduced into the field of
informatics, and researchers have given newmeanings to ontology.

Since an ontology is simply a description of a specific domain,
there is no universal method for ontology construction. Therefore,
a common method is to manually construct it according to the
specific demands of the corresponding application.

Examples of commonly applied manual construction methods
include the seven-step [11], Enterprise Ontology [12], Toronto Vir-
tual Enterprise (TOVE) [13], METHONTOLOGY [14], and KACTUS
[15] methods. The Enterprise Ontology and TOVE methods focus
on enterprise and commercial activities. Implementation of the
METHONTOLOGY and KACTUS methods is complex, and lacks
effective tool support. In most cases, the seven-step method is
simpler and more effective than other ontology modeling methods,
and is more suitable for building a domain ontology with a Jena
application programming interface (API) [16]. The seven-step
method was originally proposed by Natalya F. Noy and Deborah
L. McGuinness to solve ontological construction problems, and
has been applied to chemical equipment-related description and
reasoning [11,17]. Hence, the seven-step method is used for
ontology modeling in this work.

3.2. Construction of the ontology of the polyethylene process

Considering the aforementioned characteristics of the polyethy-
lene process domain knowledge, the seven-step method was
adopted to construct an ontology of the domain knowledge.

As the ontology library must cover polyethylene process-
related knowledge, the ontology of the polyethylene process is
divided into five subclasses: chemical equipment, product craft,
polyethylene types, variables, and optimal conditions.

(1) Chemical equipment. This class defines the equipment
involved in the ethylene polymerization reaction, such as the reac-
tor and transmission equipment, as listed in Table 1.

(2) Product craft. This class describes the polyethylene process,
which can be divided into four types of process. Each process
method consists of many cell process methods. Table 2 presents
the class hierarchy of the polyethylene process.
Table 1
Chemical equipment class.

Parent class Child class

Chemical equipment Reactor
Transmission equipment
Heat-exchange equipment
Recycling equipment
Product tank
Mass transfer



Table 2
Product craft class.

Parent class Child class

Product craft Vapor process
Slurry process
Solution process
High-pressure process
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(3) Polyethylene types. This class describes the type of poly-
ethylene product. Different polymerization schemes produce vari-
ous types of polyethylene products. Based on the density
distribution range, polyethylene products can be divided into
high-density polyethylene (HDPE), medium-density polyethylene
(MDPE), low-density polyethylene (LDPE), and linear low-density
polyethylene (LLDPE), as listed in Table 3.

(4) Variables. This class describes the control variables and pro-
duct quality indexes used in the polyethylene process. It contains
the hydrogen feed quantity (f H2

), ethylene feed quantity (f C2H4
),

butene feed quantity (f C4H8
), temperature, pressure, mole ratio of

hydrogen to ethylene (mH2=mC2 ), and mole ratio of butene to ethy-
lene (mC4=mC2 ). The quality indexes of the products include the
melt index, density, and MWD. Table 4 shows the structure of
the variable class.

(5) Optimal conditions. This class defines the optimal operating
conditions of the operation optimization class. The structure of this
class is provided in Table 5.
Table 3
Polyethylene type class.

Parent class Child class

Polyethylene type HDPE
MDPE
LDPE
LLDPE

Table 4
Variable class.

Parent class Child class

Control variable Reactor temperature
Reactor pressure
fH2

f C2H4

f C4H8

mH2 =mC2

mC4 =mC2

Quality index Melt index
Density
MWD

Table 5
Optimal conditions class.

Parent class Child class

Optimal condition OP of reactor temperature
OP of reactor pressure
OP of fH2

OP of f C2H4

OP of f C4H8

OP of mH2 =mC2

OP of mC4 =mC2

OP: operating point.
3.3. Construction of ontology attributes

The Web Ontology Language (OWL), which is an ontology
description language standard, has two main property types: data
property and object property. Object property is usually used to
represent the relationship between instances, whereas data prop-
erty is usually utilized to represent the data properties that an
object possesses. Based on the core concept glossary for chemical
field equipment, Table 6 presents the data properties and Table 7
lists the object properties.

3.4. Ontology storage

After the reasoning and analysis of the ontology of the poly-
ethylene process is complete, the information obtained from the
analytical results must be stored. The OWL can be stored using
three methods: professional management tools, plain text, and a
database system. To facilitate the integration of the system, a
MySQL database was utilized to store the ontology information,
while a Jena API was used to provide a rationale and analyze the
ontology.

4. Prediction and optimization of polyethylene MWD

In this section, the polyethylene MWD is defined based on the
relative quantity of different molecular weight polymers. Predic-
tion and optimization of the polyethylene MWD is illustrated
[18,19].

4.1. Description of polyethylene MWD

The MWD is the relative quantity distribution of each different
molecular structure in the polymer. The relative quantity is based
on a probability function, which can usually be fitted by the distri-
bution function. As the Schulz–Flory distribution is applicable to
describe the MWD of a linear poly-condensation [20], it is often
used to calculate the chain length distribution generated at a cer-
tain active site. The Schulz–Flory distribution can be modeled as
follows:

wrðjÞ ¼ rsðjÞ2expð�rsðjÞÞ j ¼ 1;2; . . . ;N ð1Þ
where N is the number of active sites of the catalyst; wr (j) is the
molecular chain length distribution of polyethylene; r is the molec-
ular chain length of polyethylene; and sðjÞ is the ratio of the chain
transfer rate to the chain growth rate, also known as the distribution
Table 6
Data property

Domain Data property Range

Chemical equipment Has pressure Float
Chemical equipment Has temperature Float
Variable Has flow Float
. . . . . . . . .

Optimal condition Has value Float
Variable Increase value Float
Variable Decrease value Float

Table 7
Object property

Domain Object property Range

Control variable Affect Product craft
Product craft Produce Polyethylene type
Polyethylene type Apply process Product craft
Variable Happen in Chemical equipment



Table 8
Input variables for the model.

Variable Description Unit

f C2H4
Ethylene feed kg�h�1

f C4H8
Butene feed kg�h�1

fH2
Hydrogen feed kg�h�1

mH2 =mC2 Mole ratio of hydrogen to ethylene mol�mol�1

mC4 =mC2 Mole ratio of butene to ethylene mol�mol�1

T Reaction temperature �C
P Reaction pressure MPa
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function parameter. By mathematical transformation, the above
formula can be written in the following logarithmic form:

wlogMWðjÞ ¼ 2:3026
MW
MnðjÞ

 !2

exp � MW
MnðjÞ

 !
ð2Þ

where wlogMW(j) is the logarithmic expression of wr(j), MnðjÞ is the
average molecular weight, and MW is the molecular weight of
polyethylene.

We take the Ziegler–Natta catalyst as the polymerization cata-
lyst. It has multiple active sites, and the MWD of each active site
is subject to the Schulz–Flory distribution. The logarithmic MWD
formula of polyethylene is obtained by superimposing the MWD
of each active site as follows:

wlogMW ¼
XN
j

mðjÞwlogMWðjÞ j ¼ 1;2; :::;N ð3Þ

where m(j) is the weight of the jth active site in the distribution
function.

4.2. Prediction of polyethylene MWD

Considering the complex structure of polyethylene products,
state-of-art modeling and detection methods for MWD are not
effective enough. Among these is gel permeation chromatography;
however, although this method can be used to detect polyethylene
products offline, it cannot reflect product performance in real time
and is not conducive to the online optimization control of product
quality. A model based on the MWDmechanismwill be more accu-
rate and will solve the problem of MWD online prediction.

The influencing factors are analyzed based on the cumulative
distribution function (CDF) of the polymer. A model is then estab-
lished based on the relationship among the operating conditions,
the parameters, and the weights of the distribution function.
Fig. 2 depicts a diagram of the modeling process. In the upper part,
a back propagation (BP) neural network model is used to train the
data under the reactor operating conditions in order to obtain the
model. In the lower half of the diagram, based on the model gener-
ated in the upper part, the MWD is calculated based on the actual
operating conditions.

A neural network model of the polyethylene MWD is estab-
lished to obtain the relationship between the operating conditions
and the parameters of the MWD. This relationship can be obtained
by combining the distribution function parameters obtained from
the model with the MWD function.

Because a cross analysis between the analysis model data and
industrial data can improve the MWD prediction, datasets of these
variables for ethylene polymerization using the Aspen model and a
historical production database were collected, and 500 datasets
were selected. Table 8 lists the input variables for the model.
Fig. 2. Diagram of the MWD modelin
Four active sites of the catalyst in this polymerization system
are selected as the input variables, and the distribution of molecu-
lar weight of the Aspen model and sample is analyzed to obtain the
distribution function parameters, which are used as the output of
the neural network. Therefore, the output variable Y of the model
is defined as Y ¼ p1; p2; p3; p4

� �
(p: parameter).

We select 85% of the data from the 500 datasets in the sample
set as the training sample. The remaining 15% of the sample data
(75 datasets) is used as test samples to verify the model. A BP
model is used to establish the model between the operating condi-
tions and the parameters of the MWD, in order to obtain the rela-
tionship between the operating conditions and the parameters. The
MWD can be predicted by combining the distribution function
with the above results.

Fig. 3 shows a comparison between the test values analyzed
from the sample and the predicted values from the four distribu-
tion function of the model parameters. In the polyethylene produc-
tion process, the MWD is only related to the distribution function
parameters. The parameters of the four subfigures in Fig. 3 corre-
spond to p1; p2; p3; andp4 of the output variable Y of the model,
as defined above. It can be seen that the predicted value curve cal-
culated by the model fits well with the value curve analyzed from
the sample. Therefore, by establishing a model between the pro-
duction variables and the distribution function parameters, the
MWD can be predicted.

4.3. Optimization of polyethylene MWD

The optimization problem of the MWD is described as follows:
based on a given expected MWD, suitable production conditions of
polyethylene is found such that the MWD of the polyethylene
products produced under these conditions is the closest to the
expected distribution (expressed as MWD in Eq. (4)).

The MWD of polyethylene is a curve, which is divided into 100
sample points. The objective function for the optimization problem
of MWD is

min
X100
i¼1

MWDi �MWDi
� �2 ð4Þ
g process. BP: back propagation.



Fig. 3. Comparison between the test values and the model’s predicted values of the parameters. (a) Curve for p1; (b) curve for p2; (c) curve for p3; (d) curve for p4.
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where MWDi is the value of the optimized polyethylene MWD
curve at sample point i, and MWDi is the value of the expected poly-
ethylene MWD curve at sample point i.

Differential evolution algorithms can be applied to this MWD
optimization problem. Table 4 lists the decision variables of the
optimization problem. In order to achieve better results, based
on the expert rules of the ontology layer, the main parameters of
the differential evolution algorithm are set as follows: population
size NP is set to 50, mutation operator F is set to 0.5, and crossover
probability CR is set to 0.8.

Based on the prediction model of the polyethylene MWD, the
difference between the expected MWD and the optimal MWD is
minimized using the differential evolution algorithm. Fig. 4 shows
a comparison between the optimized polyethylene MWD curve
and the expected polyethylene MWD curve when the optimization
operation is completed, where dW/dlgMWD is the probability den-
sity distribution function of molecular weight. The expected poly-
ethylene MWD curve is basically consistent with the optimized
polyethylene MWD curve. Thus, the optimization of the differential
evolution algorithm on MWD is satisfactory.
5. Implementation of the OOKBS

The construction, reasoning, and analysis of the ontology library
of the knowledge base system, in addition to the prediction and
optimization of the polyethylene MWD, provide support for the
application of the OOKBS for the polyethylene process. Based on
Fig. 4. Comparison between the optimized polyethylene MWD curve and the
expected polyethylene MWD curve.
the requirements obtained from optimizing the polyethylene pro-
cess, the system performs the following functions:

(1) The OOKBS provides knowledge management of the poly-
ethylene process, including information on equipment, raw mate-
rial, and the process.

(2) The OOKBS autonomously extracts the rules from experi-
ences accumulated by experts, production manual, technical speci-
fication, and relevant technical literature in the field of the
polyethylene process. It also provides logical reasoning-based rules.

(3) According to the operating condition data inputted by a
user, the OOKBS can predict the MWD of the product correspond-
ing to the operating conditions. Based on the expected MWD data
uploaded by the user, the system can provide optimized working
conditions using the optimization algorithm.

(4) The OOKBS provides system maintenance, database man-
agement, and user management, in addition to a user behavior
record to ensure system security.

5.1. Functions of the OOKBS

The application layer of a knowledge base system is the
human–computer interface of the system. To improve the system
accessibility and scalability, this layer is developed using brow-
ser/service architecture.

There are three main functions of the system: information over-
view, operation optimization, and user information. Information
overview mainly evaluates information on the equipment, raw
materials, and production process. Operation optimization consists
of the process flow, model information, expert information man-
agement, exception information, and MWD optimization. User
information primarily provides user management and an operation
log view. Fig. 5 depicts the structure of the application layer.

5.2. Structure of the OOKBS database

To improve system availability, the application database is
designed to store product information, rules, MWD data from
experts, and other information.

(1) Product information. To address the issues related to inte-
grating the data analysis with the association analysis of the equip-
ment and the historical data analysis for the polyethylene
production process, we designed Table 9 to store data about the
equipment, craft, variable, and optimal value of the polyethylene
products. Thus, Table 9 shows the structure of the product



Fig. 5. Diagram of the application layer. DCS: distributed control system.

Table 9
Product information structure.

Field name Type of field Description

Equipment Integer ID of equipment
Craft Integer ID of craft
Variable name Varchar (50) Variables of polyethylene produce
Optimal value Varchar (50) Optimal value of polyethylene products
Hptime Datetime The datetime of the event

Table 11
MWD data from experts.

Field name Type of field Description

ID Varchar (20) Series number
Yuce Varchar (20) Predicted MWD
Youhua Varchar (20) Optimal MWD
Qiwang Varchar (20) Expected MWD
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information: chemical equipment, product craft, polyethylene
types, variables, and optimal conditions.

(2) Rules. In order to obtain a more effective data analysis abili-
ty, we constructed data prediction inference rules to provide com-
puting constraints and reduce the size of the solution space, based
on the correlation analysis between the design data and the actual
production data from the polyethylene production process.
Table 10 is designed to store the ontology reasoning rules analyzed
by the Jena API, including the rule name, rule content, and rule pre-
condition, among others. Thus, Table 10 shows the rule structure.

(3) MWD data from experts. In the polyethylene production
process, in addition to equipment data, data based on expert expe-
rience plays an important role. In the prediction process, the accu-
racy of the MWD prediction can be improved by a correlation
analysis between experts’ operational experience data and the pre-
dicted value of the model; therefore, we designed Table 11 to store
the expert experience-related data.

5.3. Implementation of the OOKBS

The OOKBS was developed in Java and deployed on a Tomcat
server for an industrial polyethylene process.
Table 10
Rule structure.

Field name Type of field Description

Rule number Varchar (20) Series number
Rule name Varchar (40) Name
Rule body Varchar (40) Rule content
Rule head Varchar (40) Precondition
Rule mark Varchar (40) Mark of rule
Based on the polyethylene ontology information, the polyethy-
lene process model information and process data are displayed on
the page through the data access interface. Users can modify the
operation parameters on the page and browse the polyethylene
process information. Fig. 6 provides the process flow diagram.

The MWD optimization module includes three parts: MWD pre-
diction, MWD setting, and MWD optimization. When the current
working conditions or previously known working conditions are
inputted, the BP neural network model is invoked to predict and
display the MWD curve and detailed data. The MWD curve of the
product based on the input working conditions is listed in the
chart. The working conditions can be adjusted (Table 8) in order
to observe the products’ MWD conveniently.

Regarding optimization, when the dataset of the expected
MWD is fed into the system, the optimization algorithm is pro-
cessed and the optimized results are produced. Fig. 7 shows a com-
parison between the expected curve and the optimized curve,
along with details of the MWD optimization.

The results of the key operation parameters for the optimized
MWD and the targeted MWD are compared in Table 12. The opti-
mized operation parameters are very close to the targeted values,
which demonstrates that the system could be used to develop a
new product in industry. The results of the optimization operation,
based on the calculation parameters recommended by the knowl-
edge base system and expert experience, are in good agreement
with the expected results. Although this optimization parameters
are not completely consistent with the targeted values, this
method improves the efficiency of the MWD calculation, and pro-
duces optimized operating parameters that better match the actual
polyethylene process.



Fig. 6. Process flow diagram.

Fig. 7. A comparison between the expected curve and the optimized curve.

Table 12
A comparison of the key operation parameters for the optimized MWD and the targeted MWD.

Operation parameter

Situation T (�C) P (MPa) f C2H4
f C4H8

fH2
mH2 =mC2 mC4 =mC2

Optimized result 94.97 2.41 24983 2235.39 3.93 0.104 0.447
Expected value 93.58 2.44 25208 2321.59 4.11 0.128 0.565

W. Zhong et al. / Engineering 5 (2019) 1041–1048 1047
6. Conclusions

In this paper, a knowledge base system, OOKBS, designed for the
operation optimization of a polyethylene process is proposed, in
which an ontology is introduced to represent and share knowledge
on the polyethylene process. The seven-step method is then used
to construct the ontology of the polyethylene process and to unify
the relevant knowledge. In the ontology library layer, the system
realizes the description and storage of the ontology knowledge
along with its reasoning and analysis using a Jena API, which
improves the utilization ability of the knowledge base system. In
the model layer, the MWD is optimized using a differential
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evolution algorithm, which optimizes the operating conditions. In
the application layer, the system functions are designed for the
operation optimization needs of the polyethylene process.

Through application to practical industrial production, the
OOKBS can universally manage the process knowledge, improve
the intelligence level of the polyethylene process, optimize the
working conditions of the industrial process, and regulate the pro-
duct structure.

Acknowledgements

This work was supported by the National Natural Science
Foundation of China (61890933, 61803157), the Shanghai Sailing
Program (18YF1405200), the Fundamental Research Funds for
the Central Universities (222201814041), and the International
Postdoctoral Exchange Fellowship Program (20170096).
Compliance with ethics guidelines

Weimin Zhong, Chaoyuan Li, Xin Peng, Feng Wan, Xufeng An,
and Zhou Tian declare that they have no conflicts of interest or
financial conflicts to disclose.

References

[1] Zhou J. Intelligent manufacturing—main direction of ‘‘Made in China 2025”.
China Mech Eng 2015;26(17):2273–84. Chinese.

[2] Pan AH. ‘‘Made in China 2025” points out the direction of the development of
China’s petrochemical industry. Process 2015;25(19):14–8. Chinese.

[3] Popescu M, Ungureanu-Anghel D, Filip I. Designing complex Petri nets using
submodels with application in flexible manufacturing systems. In: Proceedings
of 2013 IEEE 8th International Symposium on Applied Computational
Intelligence and Informatics; 2013 May 23–25; Timisoara, Romania. New
York: IEEE; 2013. p. 257–62.

[4] Zhuang H, Feng L, Wen C, Peng Q, Tang Q. High-speed railway train timetable
conflict prediction based on fuzzy temporal knowledge reasoning. Engineering
2016;2(3):366–73.

[5] Yu S, Wu L, Zhang X. Research on equipment knowledge representation based
on visual analytics. In: Proceedings of the 13th International Conference on
Semantics, Knowledge and Grids; 2017 Aug 14–15; Beijing, China. New
York: IEEE; 2017. p. 208–12.
[6] Subbotin S, Gladkova O, Parkhomenko A. Knowledge-based recommendation
system for embedded systems platform-oriented design. In: Proceedings of
2018 IEEE 13th International Scientific and Technical Conference on Computer
Sciences and Information Technologies; 2018 Sep 11–14; Lviv, Ukraine. New
York: IEEE; 2018. p. 368–73.

[7] Zhang D, Hu D, Xu Y. A framework for ontology-based product design
knowledge management. In: Proceedings of the 7th International Conference
on Fuzzy Systems and Knowledge Discovery; 2010 Aug 10–12; Yantai, China.
New York: IEEE; 2010. p. 1751–5.

[8] Gao X. Research of knowledge base system based on ontology for drilling
accident emergency decision. In: Proceedings of 2012 International Conference
on Computer Science and Electronics Engineering; 2012 Mar 23–25;
Hangzhou, China. New York: IEEE; 2012. p. 230–4.

[9] Zhong W, Liu S, Wan F, Li Z. Equipment selection knowledge base system for
industrial styrene process. Chin J Chem Eng 2018;26(8):1707–12.

[10] Zhang R, Guo L. Knowledge management based on ontology modeling in
collaborative learning environment. In: Proceedings of 2008 International
Conference on Computer Science and Software Engineering; 2008 Dec 12–14;
Wuhan, China. New York: IEEE; 2008. p. 337–40.

[11] Noy NF, McGuinness DL. Ontology development 101: a guide to creating your
first ontology. Palo Alto: Knowledge Systems Laboratory, Stanford University;
2001. Report No.: KSL-01-05.

[12] Fernández-López M. Overview of methodologies for building ontologies.
In: Proceedings of the IJCAI99 Workshop on Ontologies and Problem-Sloving
Methods; 1999 Aug 2; Stokolm, Sweden; 1999.

[13] Grüninger M, Fox MS. Methodology for the design and evaluation of
ontologies. In: Proceedings of the IJCAI95 Workshop on Basic Ontological
Issues in Knowledge Sharing; 1995 Aug 19–20; Montreal, Canada; 1995.

[14] Fernández M, Gómez-Péres A, Juristo N. METHONTOLOGY: from ontological
art towards ontological engineering. In: Proceedings of the Spring Symposium
Series on Ontological Engineering; 1991 Mar 24–26; Palo Alto CA., USA; 1997.
p. 33–40.

[15] Bernaras A, Laresgoiti I, Corera J. Building and reusing ontologies for electrical
network applications. In: Proceedings of the 12th European Conference on
Artificial Intelligence; 1996 Aug 11–16; Budapest, Hungary. Chichester: John
Wiley and Sons; 1996. p. 298–302.

[16] Uschold M, Gruninger M. Ontologies: principles, methods and applications.
Knowl Eng Rev 1996;11(2):93–136.

[17] Yu Y. Research on knowledge base of typical chemical equipment based on
ontology [dissertation]. Shanghai: East China University of Science and
Technology; 2016. Chinese.

[18] Soares JBP, Kim JD, Rempel GL. Analysis and control of the molecular weight
and chemical composition distributions of polyolefins made with metallocene
and Ziegler–Natta catalysts. Ind Eng Chem Res 1997;36(4):1144–50.

[19] Soares JBP. The use of instantaneous distributions in polymerization reaction
engineering. Macromol React Eng 2014;8(4):235–59.

[20] Zhao W, Zhang H. Discuss of polymerization degree distribution function
formula of different polymerization mechanism. Polym Mater Sci Eng 2013;29
(8):186–90.

http://refhub.elsevier.com/S2095-8099(19)30827-6/h0005
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0005
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0005
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0010
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0010
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0010
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0015
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0015
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0015
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0015
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0015
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0020
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0020
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0020
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0025
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0025
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0025
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0025
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0030
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0030
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0030
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0030
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0030
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0035
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0035
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0035
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0035
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0040
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0040
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0040
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0040
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0045
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0045
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0050
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0050
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0050
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0050
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0055
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0055
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0055
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0060
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0060
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0060
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0065
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0065
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0065
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0070
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0070
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0070
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0070
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0075
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0075
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0075
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0075
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0080
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0080
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0085
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0085
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0085
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0090
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0090
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0090
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0095
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0095
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0100
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0100
http://refhub.elsevier.com/S2095-8099(19)30827-6/h0100

	A Knowledge Base System for Operation Optimization: Design and Implementation Practice for the Polyethylene Process
	1 Introduction
	2 System architecture of the OOKBS
	3 Construction of the ontology of the polyethylene process
	3.1 Description of ontology
	3.2 Construction of the ontology of the polyethylene process
	3.3 Construction of ontology attributes
	3.4 Ontology storage

	4 Prediction and optimization of polyethylene MWD
	4.1 Description of polyethylene MWD
	4.2 Prediction of polyethylene MWD
	4.3 Optimization of polyethylene MWD

	5 Implementation of the OOKBS
	5.1 Functions of the OOKBS
	5.2 Structure of the OOKBS database
	5.3 Implementation of the OOKBS

	6 Conclusions
	ack18
	Acknowledgements
	Compliance with ethics guidelines
	References


