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Metamaterials have been receiving an increasing amount of interest in recent years. As a type of meta-
material, pentamode materials (PMs) approximate the elastic properties of liquids. In this study, a
finite-element analysis was conducted to predict the mechanical properties of PM structures by altering
the thin wall thicknesses and layer numbers to obtain an outstanding load-bearing capacity. It was found
that as the thin wall thickness increased from 0.15 to 0.45 mm, the compressive modulus of the PM struc-
tures increased and the Poisson’s ratio decreased. As the layer number increased, the Poisson’s ratio of the
PM structures increased rapidly and reaches a stable value ranging from 0.50 to 0.55. Simulation results
of the stress distribution in the PM structures confirmed that stress concentrations exist at the junctions
of the thin walls and weights. For validation, Ti–6Al–4V specimens were fabricated by selective laser
melting (SLM), and the mechanical properties of these specimens (i.e., Poisson’s ratio and elastic modu-
lus) were experimentally studied. Good consistency was achieved between the numerical and experi-
mental results. This work is beneficial for the design and development of PM structures with
simultaneous load-bearing capacity and pentamodal properties.

� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Metamaterials are rationally designed materials with periodic/
aperiodic structures and unusual physical properties, such as a
negative Poisson’s ratio, negative elasticity, negative refractive
index, or negative thermal expansion [1–4]. A pentamode material
(PM), as one type of metamaterial, is characterized by five eigen-
values of zero, which means that only one direction can bear a load
[5]. Experiments have revealed that the Poisson’s ratio of PM struc-
tures is 0.5, which is the same as that of fluid. Hence, pentamode
structures are sometimes called ‘‘metafluids” [6]. Given their par-
ticular physical properties of isotropy, a large bulk modulus, a
low shear modulus, and a Poisson’s ratio of 0.5, PM structures have
been employed in many fields, especially for the applications of
acoustic absorbers and cloaking devices [7,8]. In past decades,
various PM structures, including diamond, hexagonal, and
honeycomb shapes, have been investigated experimentally and
theoretically [9–13]. The mechanical and acoustic properties of
PM structures have also been investigated [14–16].

Recent studies have explored the acoustic application of PM
structures. For example, Cai et al. [17] studied the mechanical
properties and acoustic performance of novel PM honeycomb
structures with solid bulky weights. Their numerical results indi-
cated that the mechanical properties of PM structures cannot be
simply translated to their acoustic properties. Chen et al. [13]
designed hexagonal PM structures and used an electrical discharge
machining (EDM) technique to fabricate an annular PM cloak
machined from an aluminum block. The cloaking performance of
the cloak was also demonstrated experimentally. Zhao et al. [16]
designed a two-dimensional (2D) honeycomb PM structure using
homogenization theory and fabricated a Ti–6Al–4V PM structure
using a wire-cut EDM low-speed (WEDM-LS) process. The simula-
tive and experimental results demonstrated that the designed
water-like PM structure had an acoustic function. However, the
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abovementioned traditional manufacturing processes are slow and
expensive, which is not beneficial for scaled engineering
applications.

Additive manufacturing (AM) technology, a state-of-the-art
manufacturing method, is currently popular and has become an
important processing method in the last decade for the production
of a wide variety of components and complex engineering struc-
tures [18,19]. Kadic et al. [14] first fabricated a PM with diamond
structures using dip-in direct laser writing (DLW) optical lithogra-
phy, and found that the mechanical properties of the PM—that is,
the ratio of the bulk modulus to the shear modulus—could realisti-
cally be made to approach 1000. Schittny et al. [20] further inves-
tigated the elastic properties of polymer-based three-dimensional
(3D) pentamode metamaterials, and revealed that the Young’s
modulus and the shear modulus are both positively correlated
with the ratio of the minimal diameter to the lattice constant.
However, the mechanical properties of polymeric materials
(E = 3 GPa) [21] are greatly inferior to those of metallic alloys such
as titanium alloy (Ti–6Al–4V, E = 120 GPa) [22]. Amendola et al.
[22] experimentally studied the mechanical response of Ti–6Al–
4V PM diamond structures fabricated by electron-beam melting
(EBM) technology; their results showed that the geometry of the
PM unit cell and the macroscopic aspect ratio of the lattices influ-
ence the lateral and vertical stiffness of PM structures. It is worth
mentioning that selective laser melting (SLM) is considered to be
one of the most promising AM technologies because it can manu-
facture near-net shape components with complex geometries
directly from loose metal powders [23–26]; thus, SLM is suitable
for preparing delicate and intricate metallic PM structures.
Hedayati et al. [27] implemented a vector-based energy-
distribution strategy developed for SLM to additively manufacture
Ti–6Al–4V PM diamond structures, and found that the mechanical
properties of the PM diamond structures were independent of the
relative density (i.e., the ratio of the solid volume to the total
volume of a unit cell) and were merely related to the minimal
geometry size. Thus, the mechanical and mass-transport properties
of PM structures can be decoupled from each other, giving such
structures great potential for biomedical application.

In summary, the previous published work revealed that 2D PM
honeycomb structures can exhibit promising frequency-
independent acoustic properties. Nevertheless, little work has been
devoted to analyzing the effects of the structural parameters of 2D
PM structures on the mechanical properties—that is, the elastic
modulus and Poisson’s ratio. The relationship between geometric
size and mechanical properties is not yet fully understood, espe-
cially in terms of the thin walls, which denote the minimal dimen-
sion in the PM structures. The effect of multilayer numbers on the
mechanical properties of 2D PM structures is still unclear. Due to
the limited resources in this project, only static mechanics were
investigated by theoretical mechanical calculations, semi-
analytical finite-element (FE) optimization, and partly experiments
verifications. The further dynamic mechanics and yield behaviors
were also analyzed in another our publication by fully-coupled
simulated and experimental method [28]. The two part works in
static and dynamic mechanical analyses, respectively, would
improve the comprehensive mechanical research on PM
configurations.

This paper extends the acoustic properties of the 2D PM struc-
tures presented by Ref. [16] to the static mechanical properties. As
previously mentioned, metallic PM structures possess good
mechanical properties and are suitable for engineering applica-
tions in comparison with polymeric PM structures. Due to its good
processability, corrosion resistance, high specific strength, and bio-
compatibility, Ti–6Al–4V has been widely applied in the field of
aerospace equipment and medical implants [29–32]. Therefore,
Ti–6Al–4V metallic PM structures were studied in this work. To
be specific, the mechanical properties and stress distribution of
2D PM honeycomb structures with different thin wall thicknesses
and different layer numbers were investigated by the FE analysis
using COMSOL Multiphysics software. The simulated mechanical
properties of the PM structures were compared with the experi-
mental testing results, and the reasons for discrepancies between
the simulation results and experimental results were explained.
2. Numerical models

2.1. Computer-aided design model

A 2D PM honeycomb structure and its static mechanical proper-
ties were studied in this work; its unit cell shape and dimensional
marks are shown in Fig. 1(a). This PM microstructure has two
whole star weights, four semi-star weights, two half-length thin
walls, two half-thickness thin walls, and four full thin walls. Each
weight is connected to three independent thin walls, and the angle
between every two thin walls is 120�. The length of the unit cell (L),
the height of the unit cell (H), the length of the thin walls (l), the
thin wall thickness (t), the length of the star weight edge (w), the
vertical height of the weight center to the edge (h), the length
between two centers of a star weight (a), and the angle (h) have
the following mathematical relationship:

L ¼ 2asinh; H ¼ 2acoshþ 2a; w ¼ a� lð Þ � sinh ð1Þ
When the honeycomb structure is established, h is fixed at 60�.

The building direction is set as the z-direction in order to fabricate
PM structures with fine surface integrity and without support
materials, which can improve the manufacturing quality and
reduce the post-treatment steps.

The geometric parameters are as follows: the building thickness
Hz in the z-direction is 10 mm, the length of the star weight edge w
is 2.25 mm, the height of the weight center to the edge h is 1.3 mm,
the length between two centers of the star weight a is 5 mm, and
the thin wall thickness t is set as a variable. These structural styles
were also adopted to analysis the dynamic mechanics and yield
behaviors of PM configurations in another relevant work [28].

2.2. Finite-element model

Simulations of static compression processes were performed to
explore how changes in the geometric characteristics of the PM
structures—such as the thin wall thickness and layer number—
affect the mechanical properties. PM structures usually possess a
small ratio of shear modulus G to bulk modulus B (G/B) meaning
that the Poisson’s ratio v of the PM structures is close to 0.5,
according to the equation below [33].

v ¼ 3� 2 G=Bð Þ
2 G=Bð Þ þ 6

ð2Þ

In the simulation, which was conducted using COMSOL Multi-
physics, the computer-aided design (CAD) model was simplified
as a 2D plane structure, as shown in Fig. 1(b). The steady-state sol-
ver was added to the solid mechanics module because only the lin-
ear elastic stage of the uniaxial compression process was studied in
this work. Each PM structure model was placed between two paral-
lel rigid plates, as shown in Fig. 1(c). The contact condition between
the plates and the PM model was set at a static friction of 0.15. The
displacement of the bottom plate was fixed in all directions, while
the top plate moved downward to compress PM structures with a
tiny force, F = 10 N. The boundary on the left edge was set as sym-
metric, while the right middle edge denoted the trace surface.

Recently, Cho et al. [34] studied the microstructural inhomo-
geneity in SLM-built Ti–6Al–4V and the consequent changes in



Fig. 1. (a) 2D PM unit cell with star weights and thin walls; (b) 3D model of the 4 � 2 unit cells of the PM structure; (c) schematic diagram of the boundary conditions;
(d) characteristic of the displacement map of the PM structures under compression tests calculated by COMSOL Multiphysics; (e) schematic diagram of the relationship of the
displacement contour, displacement in the x-direction, and displacement in the y-direction. L: the length of the unit cell; H: the height of the unit cell;w: the length of the star
weight edge; l: the length of the thin walls; t: the thin wall thickness; h: the vertical height of the weight center to the edge; a: the length between two centers; h: angle;
F: force; Ux: the displacement of the trace surface in the x-direction; Uy: the displacement of the upper plate in the y-direction; Ux: the average displacement of the trace
surface in the x-direction; Uy: the average displacement of the upper plate in the y-direction.
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the elastic modulus, and noted that the elastic modulus of
Ti–6Al–4V is approximately 120 GPa, although this value can
increase with different types of quenching and aging treatments
[35]. Thus, in the material properties, the Young’s modulus of
Ti–6Al–4V was manually set to 120 GPa. The material was
assumed to have a mass density of 4.42 g�cm�3 and a Poisson’s
ratio of 0.34 [22,32]. The computed displacement contour of a
PM structure subjected to a compressive load of 10 N is shown in
Fig. 1(d), where Uy is the average displacement of the upper plate
in the y-direction and Ux is the average displacement of the trace
surface in the x-direction. The same methods were also found in
recent studies [36–38]. The displacement contour can be divided
into an x-direction displacement contour and a y-direction
displacement contour by the vector relation, which is convenient
for calculating the transverse strain ex and longitudinal strain ey
(Fig. 1(e)).
The original length and height of the PM structures were mea-
sured and marked as DNx � L and DNy � H, respectively, where
DNx and DNy are the column number and layer number, respec-
tively. Thus, the Poisson’s ratio can be calculated using Eq. (3).

vxy ¼ � ex
ey

¼
U
�
x

���
���= DNx � Lð Þ

U
�
y

���
���= DNy � H
� � ð3Þ
3. Experimental study

3.1. SLM process

The powder size distribution of the raw material Ti–6Al–4V is
homogeneous, with a particle diameter range (D10–D90) of
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27.4–51.1 lm and an average particle size (D50) of 37.4 lm; the
material was plasma atomized and produced by Falcon Tech Co.
Ltd., China. The morphological characteristics are shown in Fig. 2.
It can be observed that this Ti–6Al–4V powder has a narrow parti-
cle size distribution and that the particles show a highly spherical
morphology, which is suitable for the SLM manufacturing process.
The PM structures, with 4 � 4 unit cells, were designed with a unit
cell size of 5 mm and thin wall thicknesses of 0.18, 0.25, 0.35, and
0.45 mm, respectively. Ti–6Al–4V PM specimens with a size of
approximately 34.64 mm � 60 mm � 10 mm were fabricated
using a Renishaw AM250 system consisting of a continuous
single-mode ytterbium fiber laser (maximum output of 500 W,
k = 1070 nm, beam spot size of approximately 0.075 mm). The
experimental protocol is outlined in Section 5. The processing
parameters were set as follows: The laser power was 200W, the
layer thickness was 30 lm, the point distance was 75 lm, the
exposure time was 50 ls, and the hatch distance was 80 lm.
3.2. Mechanical and morphology characterizations

Quasi-static uniaxial compression tests were performed at
room temperature with a constant engineering strain rate of
approximately 1 � 10�4 s�1 using an INSTRON E8862 testing
instrument (Instron Ltd., UK). The vertical displacement and hori-
zontal displacement were captured by an advanced video exten-
someter (AVE) during the loading process. The real-time image
processing algorithm locates the center of four gauge markers,
two of which are horizontal markers and two of which are vertical
markers. The transverse and longitudinal strains of the specimen
are then calculated from the mark separation at the start of the test
and the current mark separation. For each specimen, an average
value of two independent measurements was used to calculate
the strains, which were subsequently used to determine the
Poisson’s ratio. The surface morphology of the as-built samples
and raw powder features was characterized using scanning elec-
tron microscopy (SEM, JSM-7600F) and optical microscopy (OM).
4. Numerical results and discussion

4.1. Effects of the thin wall thickness

An analytical calculation was conducted in advance of the
simulationworks to analyze the relationship between the compres-
sive modulus and the thin wall thickness. The schematic in Fig. 3
shows that the PM unit cell is initially supported by a uniaxial com-
pressive load. Let F act as the compressive force. Every diagonal thin
wall, such as the AB thin wall, exhibits stretching deformation and
Fig. 2. (a) Scanning electron micrograph of Ti–6A
bending deformation, which are caused by an axial stress r, and a
bending moment M, respectively. The total deformation d, consists
of axial deformation in the x-direction dx and longitudinal deforma-
tion in the y-direction dy, exhibits stretching deformation and bend-
ing deformation, which are caused by an axial force and a bending
moment, respectively. We calculated the total deformation of a PM
unit cell in the y-direction, including the deformation of two verti-
cal half-thickness thin walls, two half-length thin walls, and four
diagonal thin walls. In the analytical calculation, the deformation
of weights was ignored.

The total deformation along the y-direction consists of three
parts. First, the deformation of the diagonal thin walls in the y-
direction resulting from the axial force is given by Eq. (4):

d1 ¼ 4Flsin2ðh=2Þ
EsA

ð4Þ

where Es is the elastic modulus of the matrix material and A is the
cross-section area of the thin walls. Using the Euler‒Bernoulli beam
theory to analyze the bending deformation, called the second part,
the deflection c of the diagonal thin wall caused by the bending
moment is calculated as follows:

c ¼ Fl3

3EsI
ð5Þ

where I is the second moment of inertia, which can be expressed as
follows for a rectangular cross-section:

I ¼ 1
12

Hzt3 ð6Þ

Thus, the deformation in the y-direction is obtained by Eq. (7):

d2 ¼ 2Fl3 cos2ðh=2Þ
12EsI

ð7Þ

Finally, the third part is obtained from the deformation of the
vertical half-thickness thin walls and the half-length thin walls in
the loading direction, which is given by Eq. (8):

d3 ¼ 2Fl
EsA

ð8Þ

The sum of the deformation of each part in the loading direction
is the total deformation of a PM unit cell obtained by Eq. (9):

duc ¼ d1 þ d2 þ d3 ¼ 4Fl sin2ðh=2Þ
EsA

þ 2Fl3cos2ðh=2Þ
12EsI

þ 2Fl
EsA

ð9Þ

Under compression, the stress–strain relationship for a PM unit
cell can be shown as follows:

ruc ¼ Euceuc ð10Þ
l–4V powder; (b) particle size distribution.



Fig. 4. Plots and comparison of calculated and simulated compressive modulus of
PM structures with various thin wall thicknesses, along with the Poisson’s ratio
versus thin wall thickness.

Fig. 3. Schematic of a PM structure loaded in the y-direction. (a) The boundary
conditions of the PM structure; (b) the force applied to a third model of a PM unit
cell; (c) cross-section diagram of an arbitrary thin wall; (d) diagram of a diagonal
thin wall. r: axial stress; F: the compressive force; AB: a representative diagonal
thin wall; M: bending moment; d: total deformation; dx: longitudinal deformation
in the x-direction; dy: longitudinal deformation in the y-direction.
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where the ruc, Euc, and euc are the stress, elastic modulus, and strain
of a PM unit cell, respectively.

The compression stress of a PM unit cell is obtained as follows:

ruc ¼ F
2aHzsinh

ð11Þ

The compression strain of a PM unit cell can be calculated by
dividing the deformation of the unit cell in the y-direction by the
height of the PM unit cell:

euc ¼ duc
2acoshþ 2a

ð12Þ

The total deformation of a PM unit cell is obtained by Eq. (13):

duc ¼ 1
tanðh=2Þ :

F
EucHz

ð13Þ

Taking Eqs. (9) and (13) together, the ratio of the elastic modu-
lus of the PM unit cell to the elastic modulus of the parent materi-
als is shown as follows:

Euc

Es
¼ 1

sinðh=2Þcosðh=2Þ : t=lð Þ3: 1

1þ 2
cos2ðh=2Þ þ 4tan2ðh=2Þ
h i

t=lð Þ2

ð14Þ
Substituting the value of h, the following equation is obtained:
Euc

Es
¼ 4

ffiffiffi
3

p

3
t=lð Þ3: 1

1þ 4 t=lð Þ2
ð15Þ

Using Eq. (15), it can be determined that the compressive mod-
uli of the PM structures correlates well with t/l. The analytical rela-
tionship between the thin wall thickness and the compressive
modulus is shown in Fig. 4 as the blue curve. It is theoretically
verified that the compressive modulus of the PM structures is
closely associated with the minimal geometric size in PM
structures, which was also demonstrated by Hedayati et al. [27].

In Fig. 4, the compressive moduli of the PM structures gained by
the FE results were compared with those of the analytical results. It
is worth noting that the compressive moduli obtained from the FE
results and the analytical results both increase monotonically as
the thin wall thicknesses increase and are in good agreement with
each other, with deviations under 25%. The distinction between
them is that the theoretical calculation ignored theweights inwhich
plastic hinges can more easily form under load conditions. In addi-
tion, the analytical compressivemodulus of a PMunit cell is derived
based on the assumption of a finite space in which there are no con-
strained boundary conditions fromone unit cell to another. They are
only effective for a single unit cell. As there are numerous unit cells,
the mechanical properties of multilayer lattices differ from those of
traditional single-unit cells. Li et al. [39] revealed the relationship
between a single unit cell and numerous unit cells to predict the
compressive modulus and strength of a multilayer lattice. Thus,
the results of the analytical calculations are inevitablydifferent from
those of the simulations. As the thin wall thicknesses increase, the
constraints between the unit cells are more significant; therefore,
the blue and black curves have a tendency to diverge.

The red curve in Fig. 4 also shows the influence of the thin wall
thicknesses of the PM structures on the Poisson’s ratio. It is
intuitively seen that the Poisson’s ratio continues to descend as
the thin wall thickness increases from 0.15 to 0.45 mm. The blue
and red curves intersect at a point that corresponds to the horizon-
tal ordinate, x = 0.35 mm.When the thin wall thickness varies from
0.15 to 0.35 mm, not only do the PM structures have higher strength
to resist deformation compared with normal PM structures [22,27],
but their Poisson’s ratios also does not get much lower than 0.5.

Fig. 5 shows the computed displacement maps of the PM struc-
tures with different thin wall thicknesses for the deformation of the
x-direction and y-direction. The level of deformation is lowest for
the PM structure with a thin wall thickness of 0.45 mm and highest
for the PM structure with a thin wall thickness of 0.18 mm. The
compressivemodulus gradually increases when the thin wall thick-
ness increases from 0.18 to 0.45 mm. This phenomenon corre-
sponds with the analytical results. Fig. 5(a) also shows that a



Fig. 5. Variation of the displacement of the designed PM structures along the x-direction and y-direction with different thin wall thicknesses t: (a) t = 0.18 mm;
(b) t = 0.25 mm; (c) t = 0.35 mm; and (d) t = 0.45 mm.
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relatively large deformation occurs on the upper half of the PM
structure in the y-direction, while the maximum deformation
occurs on the right side of the middle part in the x-direction. As a
result, the horizontal and longitudinal deformations show an
apparent lamination phenomenon, which is represented by short
dashed lines. For PM structures with different thinwall thicknesses,
the deformation levels of the same zone differ, which illustrates the
effect of geometrical characteristics—especially thin wall thick-
ness—on the mechanical properties. A similar result was observed
in the layered pentamode structures designed by Amendola et al.
[40]. They concluded that the mechanical properties of pentamode
lattice structures primarily depend on the geometry of the unit
cell—even more than on the nature of the employed materials.

4.2. Effects of the layer number

Fig. 6 summarizes the plots of the simulation results for
layer number versus Poisson’s ratio (Fig. 6(a)) and versus the
Fig. 6. Effect of layer number on (a) Poisson’s ratio and (b) c
compressive modulus of the PM structures (Fig. 6(b)). In Fig. 6(a),
for PM structures with different thin wall thicknesses, all the plot-
ted curves of layer number versus Poisson’s ratio exhibit a sharp
rising trend when the number of layers increases from one to
three. After three layers, the Poisson’s ratio of the PM structures
progressively tends toward a stable value ranging from 0.50 to
0.55. The two parameter combinations for closing to a 0.50
Poisson’s ratio are as follows: 0.25 mm thickness with 4 � 3 unit
cells and 0.35 mm thickness with 4 � 4 unit cells (for a Poisson’s
ratio of 0.51 and 0.50, respectively); these combinations are
respectively referred to as ‘‘4 � 3–0.25” and ‘‘4 � 4–0.35” in this
section. The structure with thickness of larger than 0.35 mmwould
not be considered to construct the PM due to weaken pentamodal
property based on the result of Section 4.1.

Fig. 6(b) plots the layer number versus the compressive modu-
lus curves obtained from the FE results. The curves have a down-
ward trend as the layer number increases. In other words, an
increase in the layer number of the PM structure will sacrifice
ompressive modulus for different thin wall thicknesses.
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the integral structural strength to some extent. This is because, for
finite unit cells, the interlayers are the main component parts to
resist external forces, aside from the constrained boundaries. Fur-
thermore, as the layer number increases, the freedom of the inter-
layered thin walls and weights decreases by degrees, resulting in a
decrease in the compressive modulus.

Further investigations of two sets of parameters are needed.
Fig. 7 shows the computed deformation maps of the PM structures
with the above parameters. In order to compare the strength of
resistance to deformation between different structures, the nor-
malized deformation is defined and compared by dividing the
maximum deformation by the number of cells. It can be calculated
that the normalized deformation peak of 4 � 3–0.25, at
5.1 � 10�4 mm�cell�1 and 3.2 � 10�4 mm�cell�1, is more than
double that of 4 � 4–0.35, at 2.2 � 10�4 mm�cell�1 and
1.0 � 10�4 mm�cell�1. The deformation contours have the same
tendency to vary the displacement level within the PM structure.
Therefore, the latter has a higher capacity to resist deformation
than the former. Considering the compressive strength related to
the thin wall thicknesses, in Fig. 6(b), the compressive modulus
of 4 � 4–0.35 is higher than that of 4 � 3–0.25. Thus, it can be
determined that the PM structure with four layers and a thin wall
Fig. 7. Comparison of displacement contours for (a) a layer number of three and a
thin wall thickness of 0.25 mm, and (b) a layer number of four and a thin wall
thickness of 0.35 mm.
thickness of 0.35 mm theoretically possesses both a Poisson’s ratio
of 0.5 and a higher load-bearing capacity.
4.3. Stress distribution

In the mechanical simulations, we monitored the change in the
stress distribution in the PM structures. The CAD simulation mod-
els were as follows: two layers and thin wall thicknesses of
0.18 mm, three layers and thin wall thicknesses of 0.25 mm, and
four layers and thin wall thicknesses of 0.35 mm, named P-1, P-2,
and P-3, respectively.

Fig. 8 depicts the Von Mises stress distribution in the thin wall
zone of the PM structures with the P-1, P-2, and P-3 models under
a compressive load. It shows that, overall, the thin walls are the
main load-bearing element, while the stress at the weights is
nearly zero. For the stress distribution of the thin wall zone, the
stress distribution of the thin walls is approximately axisymmetric,
and the symmetry axis is perpendicular to the thin walls. The
maximum stress of the PM unit cell is concentrated at the junc-
tions of the weights and the diagonal thin walls. Thus, the fracture
mechanism of the PM structures in an engineering context could
be a buckling failure occurring primarily at the diagonal thin walls,
caused by a large plastic deformation that would give rise to buck-
ling. This phenomenon was also observed in the gyroid lattices
studied by Yang et al. [41] using the FE analysis. Those scholars
proposed that reinforcement could be used in the area with the
highest stress. Furthermore, for the same area, the local stress of
P-3 is lowest in comparison with the others.

To thoroughly understand the stress distribution in the PM
structures, the quantitative results of the VonMises stress at differ-
ent zones are reported in Table 1 for P-1, P-2, and P-3. The average
stress is the arithmetic mean value of the Von Mises stress in the
same zone; that is, the weight average stress is the arithmetic
mean value of the stress of all weights in the PM structure, which
was extracted from the FE analysis. For all structures, the average
stress at the thin walls is much higher than that at the weights;
the latter remains approximately constant in different PM struc-
tures. The average stresses of the first layer and diagonal thin walls
are superior to those of the layers below and the vertical thin walls.
For example, the first layer average stress of the P-1 structure,
20.77 MPa, is 19.85% higher than the second layer average stress,
17.33 MPa. The average stress of the diagonal thin walls for the
P-1 structure, 26.96 MPa, is approximately three times that of
the vertical thin walls, 9.02 MPa. It can be concluded that the
diagonal thin walls located in the first layer are more likely to
break in the PM structures when subjected to a compressive load.
The variation of stress in different PM structures is mainly caused
by different layer numbers and thin wall thicknesses.
5. Experimental results and discussion

The purpose of the experiments was to verify the results
obtained from the FE analysis. Instead of using the experiments
as a primary means of studying the mechanical properties of the
PM structures, the experiments were performed to validate the pri-
mary factors—especially the effect of the thin walls on the static
mechanical properties.

We fabricated 4 � 4 PM unit cells (Fig. 9) with different thin
wall thicknesses using SLM in order to study the mechanical prop-
erties. The thin wall thicknesses in the PM structures were 0.18,
0.25, 0.35, and 0.45 mm, respectively, which can be consistent with
our previous work on dynamic mechanical properties [28]; for
each PM structure, two specimens were fabricated and tested to
verify the repeatability of the performed experimental results.
The embedded OM images at the bottom of Fig. 9 show that the



Table 1
Numerical results of average Von Mises stress for different zones in PM structures.

Type Stress (MPa)

Weight Thin wall First layer Second layer Third layer Fourth layer Diagonal thin walls Vertical thin walls

P-1 0.16 19.95 20.77 17.33 — — 26.96 9.02
P-2 0.12 6.85 7.10 6.45 6.25 — 8.92 3.42
P-3 0.12 3.41 3.61 3.22 3.25 3.15 4.37 1.99

Fig. 8. Stress distribution under a compressive load. (a) P-1 structure with two layers and thin wall thicknesses of 0.18 mm; (b) P-2 structure with three layers and thin wall
thicknesses of 0.25 mm; (c) P-3 structure with four layers and thin wall thicknesses of 0.35 mm.

Fig. 9. SLM-built samples; the embedded figures are OM images corresponding to the different PM samples.
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as-built PM specimens corresponded well with the intended
designs, without apparent defects or broken cells. Four points
marked in white in the PM samples were used to determine the
transverse strain and longitudinal strain by AVE (Fig. 10(a)). The
distance between two horizontal markers was 17.32 mm, while
the distance between two vertical markers was 25 mm. The speci-
fic setup of the compression tests is shown in Fig. 10(b).

The stress–strain curves of the PM samples with different thin
wall thicknesses are depicted in Fig. 11(a). However, there is an ini-
tial nonlinear strain stage, which is ascribed to the rough surface of



Fig. 10. (a) SLM-built sample. (Four points marked in white were used to determine
the transverse strain and longitudinal strain.) (b) Experimental setup of quasi-static
uniaxial compression tests.
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the top. Then, the linear strain stage is achieved. The compressive
modulus is defined as the slope of the linear part of the stress–
strain curve. As shown in Fig. 11(b), the compressive modulus of
the experiments ranges from 163.63 to 1556.07 MPa, and the simu-
lated compressive modulus ranges from 98.2 to 1340 MPa. It can
be observed that the compressive modulus of the PM structures
Fig. 11. (a) Stress–strain curves of the PM samples; (b) experimental compressive modu
(c) comparison of the Poisson’s ratio of the FE analysis and the experiments; (d) compar
[27]. E*: the elastic modulus of the PM structure; q*: equivalent density of the PM str
density; DL: the diameter of low-energy density; FGPS: functionally graded porous scaf
has a monotonically increasing trend with thin wall thicknesses
ranging from 0.18 to 0.45 mm under uniaxial compression tests.
The experimental compressive moduli are slightly higher than
those of the simulations. In Fig. 11(c), it is clearly seen that the
Poisson’s ratio of the experiments, which ranges from 0.42 to
0.35, is slightly lower than that of the simulations, which ranges
from 0.54 to 0.47.

The variation of the relative elastic modulus of the PM struc-
tures with relative density is shown in Fig. 11(d). In view of the
good agreement between the SLM-built samples and the CAD
model, when calculating the relative density, we only calculated
the theoretical value of the CAD model’s relative density. The cal-
culation equation is shown as follows:

q�=qs ¼ V�=V s ¼ 6at � 3
ffiffiffi
3

p
t2 þ 12wh�

ffiffiffi
3

p
w2

3
ffiffiffi
3

p
a2

ð16Þ

where V� and V s are the volume of the as-designed PM lattice struc-
ture and the volume of the square area occupied by the PM struc-
ture, respectively; q� and qs are equivalent density of the PM
structure and density of fully dense solid material, respectively.

Taking the values of w, h, t, and l into the equation, the
theoretical relative density for the PM structures with thin wall
thicknesses of 0.18, 0.25, 0.35, and 0.45 mm are 0.2222, 0.2296,
0.2399, and 0.2581, respectively. In general, the relative elastic
modulus is defined by the ratio of the elastic modulus (E*) of the
PM structure to the elastic modulus (Es) of the parent material.
li compared with those of the simulations (the error bar is the standard deviation);
ison of the mechanical performance of various PM structures and lattice structures
ucture; qs: density of fully dense solid material; DH: the diameter of high-energy
fold.
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Ref. [27] noted that diamond PM structures decouple the relative
elastic modulus with relative density. Similarly, the 2D PM honey-
comb structures with different thin wall thicknesses show approx-
imately the same relative density; however, the relative elastic
modulus of the PM structures increases gradually with increasing
thin wall thickness. In addition, the relative elastic moduli of the
2D PM structures are approximately two orders of magnitude
higher than those of 3D PM structures [27], and are equal to those
of traditional lattice structures, such as the structures by the
Schwartz diamond [42] and the Gyroid unit cell [43], which are
basically in accordance with the Gibson–Ashby model [44].

The compressive moduli and Poisson’s ratios from the FE anal-
ysis were slightly lower and higher, respectively, than those from
the experiments, which can be attributed to the adhered powder
particles on the thin walls. The simulations did not capture micro-
scopic defects and dimensional errors, such as adhesive powder
particles, which can increase the thin wall thickness and can be
observed in the SEM images of the PM structures (Figs. 12(a–d)).
The thin wall thicknesses of the as-built SLM samples were slightly
higher than the designed value, with deviations of approximately
30 lm. The increased thickness of the thin wall could enhance
the load-bearing capacity, which is also positively correlated with
the compressive modulus of the PM structure. The compressive
stiffness of the experiments would then be higher, resulting in
smaller deformation in the loading direction. Thus, the experimen-
tal Poisson’s ratio would be lower than that of the FE analysis.
More accurate prediction models can be obtained through equiva-
lent wall thickness or reconstruction of the as-built model. The for-
mer has been partly proved in another our work [28], while the
latter is rarely used due to the huge computational cost.

The SLM processing conditions at the thin wall parts are
significantly different from those of the bulk components. First,
the specific surface area (the ratio of surface area to whole volume)
of the PM structures is lower than that of the bulk components
under the same whole volume. In the SLM process, the laser
Fig. 12. SEM micrographs of PM structures with different thin wall thicknesses: (a) t =
designed thin wall thickness with the thin wall thicknesses of the as-built model.
interacts with the metal powder to form a molten pool, which is
surrounded by the heat-affected zone (HAZ). The higher the speci-
fic surface area of the model is, the more adhered particles there
are [45]. PM structures with through-holes easily form sticky pow-
der. Second, under the same SLM process parameters, the thin wall
parts have a higher laser energy input compared with the bulk
components, which is ascribed to the fact that the thermal conduc-
tivity of the powder is lower than that of the bulk component of
the same material. The PM structures with thin walls have more
heat accumulated in the molten pool, resulting in better fusion
and a larger temperature gradient [41]. Thus, the modulus of solid
material in the thin wall zones is likely to be larger than the
assumed values (in the simulation, we assumed that the elastic
modulus of Ti–6Al–4V was 120 GPa).

In summary, the influence of the geometric characteristics of
PM structures on the mechanical properties can be utilized to
design PM structures with customized mechanical properties by
adjusting the thin wall thickness and layer number. Morphological
observations were used to unravel the differences between the
experiments and simulations of the mechanical properties. This
study will pave the way for the AM of PM structures with simulta-
neous pentamodal properties and load-bearing capacity via SLM.
6. Conclusions

In this work, a honeycomb unit cell was used to rationally
design pentamode lattice structures. Ti–6Al–4V PM structures with
different thin wall thicknesses were manufactured by SLM. The
mechanical properties of the Ti–6Al–4V PM structures with differ-
ent thin wall thicknesses and layer numbers were studied by the FE
analysis and by using partial quasi-static compression tests.

(1) A calculated analysis was used to examine the relationship
between the geometric size and the compressive modulus, which
indicated that the thin wall thickness was the key dimension
0.18 mm; (b) t = 0.25 mm; (c) t = 0.35 mm; and (d) t = 0.45 mm. (e) Comparison of
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affecting the mechanical properties. The effect of thin wall thick-
ness and layer number of PM structures on the mechanical proper-
ties obtained by FE analysis showed that the compressive modulus
and Poisson’s ratio of the PM structures increases and decreases,
respectively, with thin wall thicknesses ranging from 0.15 to
0.45 mm.

(2) The stress distribution obtained from the FE results showed
that each unit cell has almost the same distribution. The Von Mises
stress level was lowest at the weights and highest at the junction of
the weights and thin walls, indicating that the junction of the
weights and thin walls has a tendency to form stress concentra-
tion; thus, reinforcement should be used here. Moreover, the
maximum stress differed for different thin wall thicknesses and
layer numbers of the PM structures.

(3) From the stress–strain curves of the PM samples under
quasi-static compression tests, the obtained compressive modulus
values were slightly higher than those of the FE results, and the
experimental Poisson’s ratio values were slightly lower than the
results of the simulations. This can be attributed to the presence
of adhered powder particles, resulting in an increase in the
mechanical properties. Despite the deviations, it was demon-
strated that 2D PM honeycomb structures decouple the relative
elastic modulus with relative density and have a load-bearing
capacity approximately two orders of magnitude higher than that
of diamond PM structures.
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