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This paper presents a transactive demand response (TDR) scheme for a network of residential customers
with generation assets that emphasizes interoperability within a transactive energy architecture. A com-
plete laboratory-based implementation provides the first (to our knowledge) realization of a comprehen-
sive TDR use case that is fully compliant with the Institute of Electrical and Electronics Engineers (IEEE)
2030.5 standard, which addresses interoperability within a cybersecure smart energy profile (SEP) con-
text. Verification is provided by a full system integration with commercial hardware using Internet
Protocol (IP)-based (local area network (LAN) and Wi-Fi) communication protocols and transport layer
security (TLS) 1.2 cryptographic protocol, and validation is provided by emulation using extensive resi-
dential smart meter data. The demand response (DR) scheme is designed to accommodate privacy con-
cerns, allows customers to select their DR compliance level, and provides incentives to maximize their
participation. The proposed TDR scheme addresses privacy through the implementation of the SEP 2.0
messaging protocol between a transactive agent (TA) and home energy management system (HEMS)
agents. Customer response is handled by a multi-input multi-output (MIMO) fuzzy controller that man-
ages negotiation between the customer agent and the TA. We take a multi-agent system approach to
neighborhood coordination, with the TA servicing multiple residences on a common transformer, and
use a reward mechanism to maximize customer engagement during the event-based optimization.
Based on a set of smart meter data acquired over an extended time period, we engage in multiple TDR
scenarios, and demonstrate with a fully-functional IEEE 2030.5-compliant implementation that our
scheme can reduce network peak power consumption by 22% under realistic conditions.

� 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

High penetration of distributed energy resources (DERs) and
deferrable loads, such as electric vehicles (EVs), is introducing
new challenges to the modern grid, due substantially to the uncer-
tainties that are inherent in their intermittency [1,2]. This is
expected to greatly influence the operation and control of the
power system [2]. The indeterminacy of load profile and supply
from DERs calls for a more flexible approach on the customer side.
Demand response (DR), traditionally used by utilities with their
larger customers, may now—with advances in two-way communi-
cation—be brought to the residential level [3]. The fundamentals of
DR are noted in Ref. [4], and comprehensively discussed in Ref. [5].
For a discussion of DR in the context of demand-side management,
see Nadel [6]. For an extensive survey of the DR literature, please
see Vardakas et al. [7]. DR addresses consumption modification
through particular methodologies. DR approaches range from
those without dispatch capability, such as time-of-use (TOU)
[8,9], critical peak pricing (CPP) [4,10,11], and real-time pricing
(RTP) [12], to those with dispatch capability, such as available
demand-side resource capacity control (ADSRCC) [13,14] and
available demand-side reserve management (ADSRM) [15–17].

Existing approaches to DR can be categorized as either
centralized or decentralized/hierarchical [18]. In the centralized
approach, an optimum solution is sought using extended data
across the grid, with the aim of maximizing DR outcomes. Desired
grid states are then pursued using direct control strategies in
which, based on agreements between the distribution system
operator (DSO) and customers, remote regulation of customer
assets by the operator is permitted [19]. By contrast, hierarchical/
decentralized DR is an indirect control strategy, where controllers
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are local agents with some degree of intelligence and decision-
making autonomy. Hierarchical DR schemes can be implemented
through a master–slave approach, where a local controller is
responsible for balancing local generation and consumption [20].

Control strategies that enable utilities to engage customer DER
can take a number of approaches [21]. Among these, the transac-
tive framework takes an agent-based approach to motivate and
manage system behavior [22–24]. Similar to conventional DR pro-
grams, transactive platforms may use incentives to secure the nec-
essary resources. Behboodi et al. [25] proposed a transactive
control paradigm that enabled thermostatically controlled loads
to participate in real-time retail electricity markets. A transactive
approach was recently used in commercial building heating, venti-
lation, and air-conditioning (HVAC) systems for DR [26]. Daneshvar
et al. [27] proposed transactive energy integration for different
rural areas, partially equipped with DERs, to reduce total commu-
nity energy cost. The transactive approach commonly addresses
DER management through some price signal, which could be the
market clearing price provided by the independent system opera-
tor. Barriers to practical implementation still remain: most promi-
nently, a lack of customer participation in the incentive
approaches, and the lack of uniform standards for DR in the elec-
tricity market.

Practical DR implementation is not straightforward. Significant
challenges must be addressed before its full potential can be reali-
zed within a grid edge context, where DER and nontraditional
loads are expected to proliferate. Existing centralized and decen-
tralized approaches assume that necessary customer data are
available, which may jeopardize customer privacy [28]. Moreover,
there are two significant hurdles to practical implementation: how
to address dynamic system state regulation, and how to ensure
scalability. Most approaches are therefore deficient in one or more
of the following factors: ① accurate control with low latency
across a range of time scales; ② flexibility in response while main-
taining interoperability; ③ control law sufficiency while adhering
to privacy requirements; ④ communication reliability while keep-
ing marginal costs low; and ⑤ cyber-security. A clustering method
was proposed in Refs. [29,30] to address the resiliency of customer
lifestyle and responses. Employing distributing controllers in the
grid with transactive approaches helps to reduce latency and
increase flexibility and scalability, but addressing all needed fac-
tors in one platform is still an ongoing research activity.

We address the above challenges within a transactive energy
(TE) framework that exploits interoperability as a reference archi-
tecture to realize our DR scheme. The TE framework provides an
approach to addressing smart grid operational objectives from
the joint perspectives of economics and control systems, using
value as a key operational parameter [31]. It is characterized by
attributes that describe the characteristics of the particular
approach. Chen and Liu [22] reviewed the state of the art of
research and industry practice on DR and the new methodology
of TE, noting the outstanding barriers that remain to be overcome
to advance performance, particularly regarding technology, scala-
bility, system management, and consumer behavior. Nunna and
Srinivasan [32] proposed an agent-based TE framework for an
inter-microgrid auction-based electricity market that incorporates
DR within its energy management strategy. Good et al. [33]
recently addressed the TE modeling and assessment framework
for DR business cases. Zia et al. [34] very recently presented a mul-
tilayer TE architecture along with the distributed ledger
approaches needed for the validation of economic transactions.

Interoperability is the critical TE attribute [35], so in contrast to
the top-down approaches noted above, and to address the
observed deficiencies, we implement our transactive demand
response (TDR) scheme using the Institute of Electrical and
Electronics Engineers (IEEE) 2030.5 standard for smart energy
profile (SEP) application protocol [36] as central to our reference
architecture. This standard uses an Hypertext Transfer Protocol
(HTTP) request/response model over Transmission Control Proto-
col (TCP)/Internet Protocol (IP), and adopts extensible mark-up
language (XML) as the data-exchange format. Transport layer secu-
rity (TLS) 1.2 provides confidential message exchange, to ensure
authenticity of the different parties communicating and to ensure
message integrity. The information (semantic) and cyber–physical
(syntactic) interoperability expressed in our TDR design realization
ensure that the pragmatics of economic and business objectives
can be met in a secure and scalable fashion if we can functionally
demonstrate, through lab-based emulation with real load data on
actual hardware, that aggregate customer DR compliance can be
driven by price signals through transaction.

We use an event-driven autonomous distributed architecture
with real-time communication between a transactive agent (TA)
and multiple home energy management system (HEMS) agents
[37,38] compliant with the IEEE 2030.5 standard. Residential cus-
tomers possess both generation and storage assets, in addition to
diverse loads, that are subject to HEMS control. Our TDR scheme
takes a multi-agent systems approach [37] to the neighborhood
coordination of these agents. Transaction is hierarchical, between
an aggregating TA and each HEMS agent. That is, the HEMS agents
do not directly interact; they cooperate with the TA, but not with
each other. This approach promotes privacy by design, while
engaging the cognitive intelligence of the HEMS in finding the best
voluntary accommodation of the DR request in coordination with
all other homes in the TA neighborhood. The TA seeks to maximize
the DR request across this network by negotiation with each HEMS
agent, subject to the constraint set by each homeowner regarding
the degree to which they may be willing to cooperate with such
requests. Enhanced cooperation will be fiscally motivated by the
TA through an evolving price signal communicated to each home-
owner/customer as a reward for positive participation in the trans-
active negotiation.

The paper is structured as follows. In Section 2, we describe the
system architecture and its communication hierarchy; we relegate
a brief overview of IEEE 2030.5 requirements, and a summary of
the function sets and essential elements necessary for TDR, to
the Appendix A. In Section 3, HEMS agent operation is presented.
Section 4 quantifies customer behavior in both past and present,
the former through a description of customer consumption for pre-
dictive use, and the later via a reward function that is used to
mediate transactive negotiation. In Section 5, our TDR algorithm
is presented, and the optimization approach to negotiation is
detailed. Emulation results are shown in Section 6 for various sce-
narios, and concluding remarks are presented in Section 7.
2. System architecture and SEP 2.0 messaging

Here, we describe our TE framework that exploits interopera-
bility as a reference architecture to realize our DR scheme. We
use an event-driven autonomous distributed architecture with
real-time communication between agents. It exploits the IEEE
2030.5 SEP 2.0 standard [36] for interoperability. With SEP 2.0
as the data model, which is based on an International Electrotech-
nical Commission (IEC) 61968 common information model [39],
our application programming interface (API) engages the grid edge
resources in a ‘‘RESTful” (where REST stands for representational
state transfer) [40] manner. A public key infrastructure (PKI)
[41] is used to provide protection against non-repudiation attacks.

The structural configuration of the TDR system, shown in
Fig. 1(a), consists of a TA and an aggregation of HEMS agents as
the primary grid edge agents. The TA is physically co-located with
the neighborhood distribution transformer. TA communication



Fig. 1. (a) The TDR structural architecture. (b) Physical implementation of the TDR system in a laboratory test configuration. The top panel shows ① the TA, ② the
transformer, ③ the photovoltaic (PV) inverter, and ④ the battery; the bottom panel shows ⑤ the user interface and ⑥ the HEMS agent; and ⑦ the HEMS, smart thermostat,
and switches. CCL: customer cooperation level; CSR: customer scheduled return; DRR: dynamic DR request; Pcap: the residential capacity; DPava: load shed availability;
DP: potential load reduction; D P

�
: requested load reduction during TDR negotiation; Pk: here, the power consumption of load k for this customer (formally, PðiÞ

k , where the sum
over all loads gives the current power consumption for customer i, denoted Pi in the text.

Fig. 2. Communication hierarchy using SEP 2.0 between the DSO, TA, and HEMS
agent for TDR.
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with the utility provides centralized grid condition monitoring and
control. TA communication with HEMS agents coordinates all DR
requests and returns, and monitors the local microgrid on the
low-voltage side of the transformer. As illustrated in Fig. 1(a), the
TA takes an optimization approach to apportioning the DR request
by transactive negotiation with each customer, as further
described below.

The HEMS agent is a residential unit responsible for the control
and scheduling of customer assets (here, ‘‘loads” for simplicity). It
operates within a SEP 2.0 framework to address TA requests, based
on customer choices of consumption mode, comfort level, and load
priorities, as further described in Section 3. The HEMS agent trans-
lates data from such services to a SEP 2.0-recommended XML file
for TDR purposes (see the cyan box in Fig. 1(a)), including local
power measurements so that DR action can be verified. It main-
tains customer privacy by design, acting as a customer agent to
firewall any knowledge of load-specific activities and customer
behavior from the TA. HEMS agents negotiate with the TA to deter-
mine their best response to the DR request, using a fuzzy inference
engine to accommodate customer preferences and comfort levels
in response to rewards offered by the TA (it may also be directed
to comply with a mandatory DR event). This behavior will be more
fully described in the next section.

Fig. 1(b) shows a physical implementation of the TDR system in
a laboratory test configuration. In the left panel, DC power is
brought down from the photovoltaic (PV) panels on the roof to a
transformer, and thence to a Tabuchi Electric Eco Intelligent
Battery System [42] (inverter and battery). The TA is mounted onto
the electrical panel. The bottom panel shows the HEMS agent, with
which the TA communicates, and the HEMS agent interacts with
Energate [43] HōlHōm smart thermostats and load controllers
(the HEMS); also shown is the user interface.

Fig. 2 describes the SEP 2.0 messaging sequence via GET
commands for XML files. High-level DR events are initiated by
the utility server and are communicated to the TA. Low-level DR
events are initiated by the TA in response to local asset monitoring,
such as transformer health. The TA communicates with individual
HEMS agents, sending XML function sets with their corresponding
elements in the sequence shown. HEMS agents send similar
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messages to the TA as part of the transactive negotiation and moni-
toring process, and the TA likewise sends messages to the DSO. In
our architecture, HEMS agent is a client while the TA is either client
or server, as required by the downstream devices. Since the TA is
firewalled from engaging customer assets directly, we take a dis-
tributed intelligence [44] approach to agent-based energy manage-
ment [45]. In the following sections, we explain how the
information retrieved through SEP is used by HEMS and the fuzzy
logic controller (FLC) as a HEMS agent to perform negotiations. The
SEP 2.0 function sets used to implement the required TDR activities
are described in the Appendix A. Having implemented a complete
SEP server, we stress that all agents are fully compliant with the
IEEE 2030.5 smart grid interoperability standard, although the pre-
sent TDR scheme uses but a fraction of its capabilities.
Fig. 3. Membership functions (vertical axis) for the input (DRR, CSR) or output
(~x, the defuzzified value) membership values (horizontal axis). Also shown are the
linguistic variables, LL, L, M, H, and HH, associated with each membership function.
3. HEMS agent operation

The HEMS agent is responsible for transactive negotiation with
the TA. This agent is implemented using an FLC. It communicates
with a HEMS to determine aggregate load and load shed
availability, and to pass on the DR request for implementation.
Below, we describe how the cognitive intelligence of the FLC is
engaged by the TA to find the best voluntary accommodation of
the DR request in coordination with all other HEMS agents in the
neighborhood. Once the DR negotiation with the HEMS agent is
done, it sends this information to the HEMS, which is responsible
for accommodating the loads in response.We have used a commer-
cial off-the-shelf HEMS from Energate [43] to do so, ensuring IEEE
2030.5 compatibility with this proprietary HEMS through a sepa-
rate application programming interface. Given a residential capaci-
ty Pcap (i.e., the aggregate nameplate powers of all controllable
loads), it does this based on data provided by the HEMS for the load
shed availability, DPava (i.e., the aggregate consumption of all con-
trollable loads presently in use, which is the maximum DR avail-
ability), for the scheduling interval. The HEMS agent determines
the most efficacious way to achieve this reduction, whether it be
through direct curtailment, the change of load set points and duty
cycles, or local DER dispatching (treated here as a negative load).

The IEEE 2030.5 standard describes the process by which smart
grid functionalities may be realized, but it does not define the man-
ner by which they are to be realized. This distinction lies at the
heart of the interoperability framework. Our implementation of
the standard is within a transactive profile, using the normalized
quantities described below to better reveal how the HEMS agent
demonstrates cognitive intelligence during the transactive process.
Customer constraints are implemented heuristically through a cus-
tomer cooperation level (CCL) [46] to indicate the degree of will-
ingness to comply with TDR requests. Without loss of generality,
it is sufficient to define only two modes: ① good, used when
customers will accommodate some behavior modification to
comply with TDR requests; and ② poor, used when customers
want minimal impact on their usage behavior during TDR events.
That is, the CCL is a HEMS agent operation mode, set by the
customer, that defines how the FLC will respond to DR requests.

During transactive negotiation, we need to identify the load
reduction DPi that the HEMS agent for customer i is willing to
accommodate, which is less than or equal to the load shed
availability DPava. We normalize DPi by the residential capacity
(i.e., the sum of the nameplate powers of all controllable loads),
Pcap, to define the customer scheduled return (CSR) as

CSR ¼ DPi

Pcap
ð1Þ

In a complementary fashion, the dynamic DR request (DRR) is
defined as the ratio of a potential demand reduction during
negotiation, DP, to the residential capacity as
DRR ¼ DP
Pcap

ð2Þ

where DP is described more fully in Section 5 and is initiated by the
TA from individual customer histories (see Section 4).

We use a multi-input multi-output (MIMO) fuzzy control
approach [47] to extract, for each home and specified CCL, the

requested demand reduction during TDR negotiation, D P
�
, as

D P
�
¼ x

�
Pcap ð3Þ

where x
�
is the normalized output of the FLC. A three-step process is

followed to determine this output: fuzzification, fuzzy inference,
and defuzzification, with Eqs. (1) and (2) providing the universe
of discourse.

Fuzzification operates on the crisp data of the FLC input, con-
verting these data into linguistic variables, chosen here to be
Low–Low (LL), Low (L), Medium (M), High (H), and High–High
(HH). Each variable is associated with a membership function
defined by a triangular wave function, lðxÞ, where x is a member-
ship value between zero and one that describes a point in the input
space (CSR or DRR). Fig. 3 gives the membership functions for the
input (as well as the output) that define how each point in the uni-
verse of discourse is mapped to a membership value (or degree of
membership) between zero and one.

The fuzzy inference process combines the membership func-
tions with control rules to present fuzzy outputs in a lookup table,
which describes the functional mapping between input and output
using the linguistic variables. Using a rule-based FLC allows us to
best capture the knowledge variety about the problem, as well as
the interactions and relationships between its variables, and best
accommodates uncertainties in the system [48]. Tables 1 and 2
give the rule bases for the poor and good CCL modes, respectively.

Defuzzification is used to convert fuzzy outputs into crisp val-
ues. Given the symmetry of the membership functions, the cen-

troid of area (COA) approach is used to determine x
�

from the
evaluated membership functions. The negotiated load reduction
is then determined via Eq. (3), and the information is sent to the
TA using LoadShedAvailability, DrResponse, and the DER function
sets, as explained in Appendix A.
4. Quantifying customer behavior

We use real-world data to model customer consumption behav-
ior. Smart meter data within Hydro Ottawa’s [49] service area was
collected for ten anonymized residential customers at 1 min inter-
vals over 45 d. The customers were then classified using k-means
clustering. This information is used by the TA to initiate the
transactive negotiation process with each HEMS agent—see
Eq. (7) in Section 5.



Table 1
Fuzzy rule base for poor compliance with TDR requests, where inputs are DRR and
CSR, with the resulting output shown in the gray area.

Table 2
Fuzzy rule base for good compliance with TDR requests, where inputs are DRR and
CSR, with the resulting output shown in the gray area.
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The k-means method partitions data into clusters, where cluster
membership is determined by minimizing an objective function
defined by the sum of the squared distances between all N data
points and cluster centers for each time t [50]; hence

J tð Þ ¼
XK
i¼1

Xn ið Þ

j¼1

P ið Þ
j tð Þ � P ið Þ

C tð Þ
h i2

ð4Þ

where at each time t, PC tð Þ is a K element vector of cluster centers,

P ið Þ tð Þ is an n ið Þ element vector of consumption data, and N ¼PK
i¼1

n ið Þ.

The results of the cluster analysis for N = 470 and K = 3 are shown in
Fig. 4. Individual cluster sizes n are 3, 2, and 5.

To further quantify customer behavior, and to enable efficient
negotiation, our TDR algorithm (described in detail in Section 5)
incorporates a flexible reward function to accommodate diversity
in both power consumption and TDR compliance. It may also be
used to monetize participation in TDR requests, and may be
adjusted to accommodate market signals. For each negotiation
time interval, we define for each customer i a reward function
Fig. 4. Customer consumption behavior clustered in three groups.
ri ¼ r0 þ c0 c1 P � Pi
� �

=PT þ c2 di � d
� �

=dT

h i
ð5Þ

where r0 is the base reward for TDR participation, Pi is the cus-
tomer’s current power consumption, P is the average power con-
sumption for all participants over the previous 24 h, PT is the
total current power consumption for all participants, di is the cus-

tomer’s DR compliance at any stage of the negotiation process, d
is the average compliance for all participants, and dT is the total
compliance for all participants. Relative power consumption and
compliance are scaled by positive coefficients c1 and c2, respec-
tively, where c1 þ c2 ¼ 1. This permits dynamic weighting in the
TDR negotiation toward either power reduction or increased com-
pliance, as may be necessary to improve the negotiation process;
here, we default to equal static weighting. Finally, to address cluster
membership, c0 is chosen as an overall weighting factor that intro-
duces a slight bias toward a history of reduced consumption; we
take a range of ½1:0;1:3�, with c0 inversely dependent on customer
consumption. This promotes inter-cluster competition.

The reward function is continuously updated during negotia-
tion (through r0) to encourage a trend toward increased DR com-
pliance. It is also incorporated within the MirrorUsagePoint
function set in Appendix A to update and record the power usage
metrics, and to calculate the present consumption and reward for
each residence. We will use these data to make the DR request
via an optimization approach.
5. The TDR algorithm

We now describe how our TDR scheme is implemented algo-
rithmically, using a flowchart representation in which the negotia-
tion between the TA and the HEMS agent is operationally
Fig. 5. Flowchart representation of the TDR algorithm, showing the HEMS agent on
the left, and the TA flow on the right. The central block indicates the communication
process. PARSE refers to decoding the XML files using the SEP2.0 protocol
implemented by the IEEE 2030.5-compliant TDR platform. GET and POST are HTTP
methods corresponding to read and create operations, respectively.
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accomplished via the TCP/IP exchange of the IEEE 2030.5 SEP 2.0
function sets. DR requests may originate from either the utility
side or at the transformer level, and are addressed using
EndDeviceControl in Appendix A. We denote the target DRR value
by the TA as DPDR, for a particular deployment time t across a time
horizon th, which is a SEP 2.0-defined time interval.

A simplified TDR algorithm is given in Fig. 5. On the TA side, if
a new DRR value is received, the TA will initiate the TDR
negotiation with the HEMS agents. As the HEMS agents confirm
compliance, negotiation continues with the remaining HEMS
agents, as further detailed below. On the HEMS agent side, if a
HEMS agent GETs a DRR value with drProgramMandatory = FALSE,
it determines load reduction availability and POSTs it to the TA.
Negotiation continues with noncompliant HEMS agents until the
evolving DRR value is confirmed (or the iteration limit is reached)
and negotiation is terminated. The final DRR value is then allo-
cated to each HEMS agent by setting drProgramMandatory = TRUE,
and the HEMS agents then implement their requests. The TDR
algorithm optimizes the target DR reduction for each HEMS agent
at each stage of the negotiation. Optimization is based on
model predictive control (MPC) using a linear programming
approach [51]. This event-based DR optimization is a good
approach for systems such as ours with complex dynamics and
constraints [52].

For each negotiation j 1 � j � 10ð Þ, the individual potential
load reductions DPi (the control variable) are determined via

max
Xk
i¼1

viriDPi

 !
ð6Þ
s:t:
Xk
i¼1

viDPi � DPdr; 0:8DP
�

� DPi � 1:2DP
�

where k is the number of available customers in the transactive net-
work; DPdr ¼ DPDR � DPa is the evolving DRR value, with DPa as the
aggregate demand reduction for those customers who have agreed
to comply with their individual requests; and DP is the mean DR
availability of the customers remaining for that negotiation. For
successful TDR operation, note that DPdr should tend to zero as j
increases. An indicator function v has been introduced to show
whether customers are still in negotiation (v ¼ 1 for still negotiat-
ing, v ¼ 0 for reduction confirmed). The first constraint asserts that
the sum of the individually requested load reductions meets the tar-
get DR request, while the second moderates individual requests to
within an interval governed by the mean DR availability. The latter
constraint maintains request fairness while accommodating the CCL
mode chosen by the customer, thus permitting early ‘‘lock-in” dur-
ing the negotiation process by customers who exceed their request
by more than 20%.

Allocation is determined by an iterative process that incorpo-
rates the reward function of Eq. (5) to drive HEMS agent operation
in order to determine the set of optimal possible load reductions
for each j > 1 as per Eq. (3). The process is initiated for j ¼ 1 by
load prediction using the k-means clustering data (see Fig. 4)
at the endpoints of the DR time interval, and then advanced
via negotiation to determine each customer’s DR availability;
whence

DPi ¼
Pi t þ thð Þ � Pi tð Þ j ¼ 1

DP
�
i tð Þ j > 1

(
ð7Þ

Note that, as per Eq. (3), DP
�
i tð Þ is the load reduction at time t

confirmed by the HEMS agent for customer i during negotiation j
using the output of the FLC. Negotiations continue until the target
DR request has been met, or until no further progress toward
improving individual demand reduction can be made, at which
point the control variable is applied to each household by setting
drProgramMandatory = TRUE. Note that this does not force the DR
request to be obeyed. This is a purely voluntary transaction,
although failure to follow through may incur a penalty (see
EndDeviceControl in Appendix A). We also define a compliance
metric,

S ¼ DPa

DPDR
ð8Þ

to quantify the efficacy of the transactive process in achieving the
target DR request.

For our 10 customers in three clusters (as described in
Section 4), negotiations are initiated as per Eq. (7), with each load
prediction determined from the cluster consumption behavior
(see Fig. 4) across the given time horizon. Reward diversity in the
negotiation process is ensured by differences in the customers’ cur-
rent power consumption and by their TDR compliance. Realistic
values of the latter are generated by running multiple different
demand cases, initiated with fixed reward r0, to construct a nomi-
nal set of compliance histories. Negotiations proceed via Eq. (6) by
engaging each HEMS FLC, which defuzzifies for the given CCL mode
the fuzzy outputs generated from the CSR ratio (i.e., DPi) and the
evolving DRR ratio (i.e., DP). This introduces the necessary ‘‘give
and take” in the dialogue between the TA and the HEMS agent,
with ongoing negotiation providing input variation for a quasi-
deterministic response.
6. Emulation results

Having developed our TDR scheme and physically realized it
using the equipment shown in Fig. 1, we now perform a full
operational validation, including negotiation and communication
with all agents and loads. We demonstrate the efficacy of our
TDR platform by system emulation using real residential energy-
use data, as described earlier. These data are used to define the
load shed availability (ordinarily provided to the HEMS agent by
the HEMS), as further described below. Emulations are performed
across a transactive network of 10 customers, with aggregate
capacity fixed at 20 kW and aggregate DR availability at 12 kW.
All participants are assumed to have the same individual capacities
Pcap. As stringent tests of our transactive approach, two specific DR
scenarios are investigated across the afternoon/evening demand
peak from 5 pm to 8 pm (see Fig. 4): ① target DR reductions equal
to aggregate DR availability (i.e., 12 kW), and ② target DR reduc-
tions of about 90% of the aggregate DR availability (i.e., 11 kW).
We consider three different CCL mode scenarios: good—all cus-
tomers; poor—all customers; and mixed—a random distribution
of good and poor CCL mode customers (i.e., the average of 10 such
scenarios, evenly distributed about an equal balance of good and
poor modes). Ten different load profiles are derived for each cus-
tomer by applying a random perturbation to the hourly consump-
tion of the source profile while leaving the daily energy unchanged.
This creates a dataset of statistically independent but nominally
equivalent profiles for each customer that mimics day-to-day vari-
ation in consumption. The mean compliance ratio, S—see Eq. (8)—is
found by averaging the ten different load assignment simulations.

Fig. 6 shows the evolution of negotiation for the 11 kW target
DR request within a CCL mixed mode network, where triangle
symbols denote the increasing aggregate demand reduction DPa

for all households at each negotiation step, and squares denote
the evolving target DR request DPdr. Note that after the first nego-



Table 3
Efficacy of transactive energy target DR requests for a 20 kW aggregate capacity and
12 kW aggregate DR availability, assessed over an ensemble of load demand
distributions across the ten home networks.

Target DR request (kW) CCL mode Actual reduction (kW) S (%)

12 Good 11.40 94.6
Poor 11.03 92.0
Mixed 11.27 93.9

11 Good 11.00 100.0
Poor 10.50 95.6
Mixed 10.82 98.3

Fig. 7. Comparison of the evolution of negotiation between CCL good and poor
modes for a target DR request of 11 kW, with specific load demands that differ
across the network.

Fig. 6. Evolution of negotiation for a target DR request of 11 kW in CCL mixed
mode, with specific load demands that differ across the network.
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tiation, many customers have already confirmed their requested
reduction, for an aggregate reduction of 5 kW. The algorithm then
addresses a reduced DR request of 6 kW to the remaining partici-
pants, and negotiation continues. After the fifth negotiation, no fur-
ther progress is seen, so the algorithm reduces the request by 10%
and negotiation continues. This results in an immediate marked
increase in compliance, but ongoing negotiations affect no further
change. Negotiations are terminated after ten iterations, and the
final network compliance is determined to be 98%.

Behavior similar to that of the CCL mixed mode is seen in Fig. 7,
where the negotiation responses for all residences with CCL good
modes and all residences with CCL poor modes are compared.
Overall, the responses are similar—they are nearly equal for the ini-
tial negotiations—but significant divergence is seen by the fourth
negotiation. The subsequent reduction in the DR request after the
fifth negotiation moderates, but does not fully eliminate, this
divergence. As with all of our negotiations, after the sixth iteration,
no significant compliance improvement is found. The end result is
a 95% compliance for the network responding with only CCL poor
modes, and perfect compliance for the network responding with
only CCL good modes.

Repeating the above for different load demand distributions
across the ten home network creates an ensemble of statistically
equivalent results, whose average reflects the probability that the
target DR request can be accommodated. Evolution of the negotia-
tions for all individual circumstances are found to be similar. The
mean compliance ratio, S, are summarized in Table 3 for all the sce-
narios introduced above. For even the most stringent of requests,
where the DR target equals the network availability, the compli-
ance exceeds 90% regardless of the compliance mode. For target
requests of about 90% of aggregate DR availability, compliance
exceeds 95% in even the worst case, and is perfect in the best case.
CCL mixed mode results are uniformly found to fall midway
between good and poor modes, suggesting that there may be a lin-
ear relationship between the degree to which customers agree to
cooperate and the degree to which the target DR request is filled.
All this suggests that our approach may be able to accommodate
customers with even less capacity to comply.

Having seen the DR response in aggregate, let us now consider
more generally the individual compliance with ongoing DR
requests. For our network of ten customers, the aim is to gain
insight into the range of responses under nominally independent
DR events, but with an evolving reward function. Specifically, we
wish to know, under operationally realistic conditions, how a cus-
tomer’s historical compliance influences both negotiation and
compliance, as well as the reward implications. To that end, for
each DR event, we again randomly adapt the measured load profile
for each customer to create datasets of statistically independent
but nominally equivalent profiles that mimic day-to-day variation
in consumption. We then repeat the above analysis for an 11 kW
target DR request in CCL mixed mode (i.e., averaging over ten dif-
ferent combinations of CCL poor and CCL good) for 30 successive
DR events, updating the reward function after each DR event.

Fig. 8 shows, for each customer, the incremental compliance
with ongoing negotiation. Fig. 8(a) gives the results for the first
DR event, and Fig. 8(b) for the 30th. Customer DR compliance is
indicated in Watts by the color bar. Note first that negotiation
begins with differing requests to each customer, as a consequence
of their differing consumption rates and histories—see Eq. (6). Sec-
ond, note that many customers typically lock-in their compliance
early in the negotiation process, which is indicated in the plots
by the varying horizontal color bar lengths. Third, we see that there
is some variation in customer response during the negotiation pro-
cesses (both increasing and decreasing responses, and seen in the
color changes), as a consequence of the second constraint in Eq.
(6). This variation promotes more optimal network response.
Finally, comparison between Figs. 8(a) and (b) (DR events #1 and
#30, respectively) reveals changes in individual compliances, both
in magnitude and in the number of negotiations required. Cus-
tomers 2, 3, and 10 engaged in one or two more rounds of negoti-
ation, yielding modest increases (about 10%) in their DR response,
while other customers were effectively unchanged. Let us consider
more specifically how individual behaviors drive—and are driven
by—reward evolution.

We consider three representative customers: 3, 7, and 10. Fig. 9
shows how their rewards (black lines) evolve with ongoing DR



Fig. 8. Evolution of customer compliance with ongoing negotiation in CCL mixed mode for (a) the first DR event, and (b) the last DR event (#30).
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requests (i.e., events): Figs. 9(a), (c), and (e) show this as a function
of their consumption (red lines), while Figs. 9(b), (d), and (f)
show this as a function of their compliance (red lines). Also shown
are consumption and compliance averages (green lines) for com-
parison. Note that fluctuations in the consumption between events
(and hence compliance variation) arise from the random perturba-
tion of the load profile used to produce the datasets for each DR
request; hence, it is only the overall trends that are meaningful.
Customer 3 (Figs. 9(a) and (b)) is both high-consumption and
high-compliance, with trends well above their means. Its reward
is effectively unchanging, fluctuating close to the base reward of
r0 ¼ 1000. Customer 7 (Figs. 9(c) and (d)) has slightly higher con-
sumption (by about 5%), but its compliance is indistinguishable
from the mean. Its reward sees a near-factor-of-two decrease. Cus-
tomer 10 (Figs. 9(e) and (f)) is low-consumption but with initially
Fig. 9. Evolution of reward ri (black curve) with successive DR requests, shown against co
shown are their average behaviors (green curves). (a,b) Customers 3 and (c,d) 7 belo
consuming).
low compliance that trends toward the mean. Consequently, its
reward trends modestly upward. These observations demonstrate
the reward bias toward low-consumption customers who maintain
meaningful participation, and against high-consumption cus-
tomers whose participation is proportionally similar (i.e., average).
High-consumption users must participate at better-than-average
rates to even maintain reward parity; otherwise, they incur a sub-
stantial penalty over time. By contrast, low-consumption users are
not negatively impacted, and will preferentially benefit as their
compliance increases. These reward trends, which have influenced
the negotiation process, are controlled through the consumption
and compliance coefficients, c1 and c2, respectively, of Eq. (5). We
have chosen an equal weighting to demonstrate what may be
described as a fair allocation process, without explicit bias toward
either consumption or compliance. These coefficients may be
nsumption (left column) and compliance (right column) behavior (red curves); also
ng to class III (high-consuming), while (e,f) customer 10 belongs to class I (low-



Fig. 11. The peak-to-average ratio (PAR) for all participants before and after the DR
event.
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adjusted, with the effect that both slope and direction of the
reward curves may be altered to promote or penalize specific
behaviors.

Network consumption diversity drives the optimization process
by interaction with individual customer constraints (i.e., CCL, CSR,
and DRR). This interaction is with the FLCs as the local agents that
implement the demand reductions. Bounded outputs are ensured
by the inherent input bounds on capacity and availability, as incor-
porated within the functional constraints of Eq. (6). A transparent
illustration of algorithm robustness for the bounded response
may be obtained by considering the subpopulation statistics (i.e.,
the sampling of the load distribution dataset) of Table 3 data,
and verifying that the uncertainties decrease with increasing size
of the transactive network (10 and 50). We consider, for CCL mixed
mode (again averaging over ten different combinations of CCL poor
and CCL good), target DR reductions equal to aggregate DR avail-
ability. We determine the mean compliance ratio, S, for three cases,
each with its distinct load distribution. The results, presented in
Table 4, confirm the behavior expected for bounded outputs. The
mean is largely insensitive to the number of participants, but the
uncertainties (i.e., the standard deviations) decrease for increasing
network size while remaining nominally unchanged across the
three cases (with the possible exception of one outlier).

Fig. 10 shows the impact of transactive negotiation on the total
demand trend before and after applying the 11 kW DR request to
the ten-home-network in CCL mixed mode across the afternoon/
evening demand peak. A peak reduction of 22% (from 45 to
35 kW) is observed, with the demand shifted to later in the eve-
ning. This demand shift, enabled by the individual HEMS agents,
was accomplished by rescheduling an equal weighting of typical
residential interruptible and non-interruptible loads. Fig. 11 pro-
vides a complementary view of the impact of the DR event across
the network using the peak-to-average ratio (PAR) [53]. The PAR is
shown for each customer, without and with the DR request, and for
Table 4
Dependence of customer compliance statistics (CCL mixed mode) on network size and
load distribution sampling.

Number of participants S with standard deviation (%)

Case I Case II Case III

10 91:0 � 3:5 90:5 � 2:5 91:0 � 2:4
50 91:6 � 1:6 91:0 � 1:5 91:0 � 1:5

Fig. 10. The total demand trend before and after applying the 11 kW DR request for
the CCL mixed mode response.
the aggregate network. All customers are seen to contribute to the
demand reduction, with the heaviest users seeing the greatest
impact. Across the network (all customers), PAR is reduced by
14% (from 3.42 to 2.92). Note that PAR, because it is in reference
to the average demand, is a metric that is less sensitive to the
immediacy of the DR event, and therefore somewhat undervalues
its impact.
7. Conclusion

We presented a DR scheme that employed transactive negotia-
tion across a residential network at the transformer level. We took
a multi-agent approach that emphasized customer comfort and
privacy. A TA negotiated DR requests with customer agents (their
HEMS agent), using an event-based optimization technique and a
flexible reward mechanism. The agents responded to the DR
requests by reducing their consumption based on compliance
levels associated with their comfort expectations (expressed via
fuzzy rule bases). We showed that our transactive DR scheme
was able to reduce the peak demand by 22%, which is equivalent
to a 14% PAR reduction. The results were based on anonymized
smart meter data from real customers. Notably, our scheme used
the IEEE 2030.5 SEP interoperability standard to transfer data
between the agents, and thus constitutes the first known TDR
use case for this standard. Although we have only used a portion
of IEEE 2030.5 functionality within this TDR scheme, a complete
SEP server was developed to ensure full agent compliance with
the standard. The demonstrated efficacy within this restricted con-
text strongly suggests that its full capabilities—including aggrega-
tion for distributed energy resource management systems and
virtual power plant control, with market access and all necessary
monetization requirements—are within imminent reach of all ven-
dors and solution providers that choose to follow this scalable
approach to achieving the smart grid vision.
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