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Induced pluripotent stem cells (iPSCs) are considered to be ideal and promising cell sources for various
applications such as regenerative medicine and drug screening. However, effective mass production
systems for the stable supply of desired numbers of iPSCs are yet to be developed. This review introduces
the various approaches that are currently available for stable iPSC production. We start by discussing the
limiting factors to be controlled during iPSC culture, such as nutrient supply, waste removal, and oxygen
availability. We then introduce recent investigations on iPSC culture systems based on adhesion,
suspension, and scaffolds. We also discuss the downstream processes that follow the culture process,
such as filling and freezing processes, which limit the production scale due to decreased cell viability
during suspension in cryopreservation medium. Finally, we summarize the possibility of the stable mass
production of iPSCs and highlight the limitations that remain to be overcome. We suggest that multidis-
ciplinary investigations are essential to understand the different factors that influence cell growth and
quality in order to obtain an optimal and stable iPSC mass production system.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Since the initial reports on their generation in 2006 [1,2], induced
pluripotent stem cells (iPSCs) have been investigated as promising
cell sources for regenerative medicine [3–6], drug screening [6,7],
and the food industry [8]. They serve as a renewable source for var-
ious cell types in the body due to their extensive proliferation and
differentiation capacities, which are similar to those of embryonic
stem cells (ESCs). In addition, as they are derived without embryo
sacrifice, their generation is devoid of ethical concerns and their
autologous transplantation does not cause immune-related compli-
cations. With these high expectations, iPSC investigations have
advanced rapidly during the decade following their invention.

However, clinically or industrially relevant iPSC applications
demand a considerable number of cells, and the methodology for
stable mass production is in the developmental stages. For exam-
ple, pancreatic islet transplantation requires at least 6 � 108 b cells
per patient, and their generation requires approximately 0.6 m2 of
culture surface [9], which is equal to 80 flasks that are 75 cm2 in
size. In extreme cases, the preparation of 30% liver tissue requires
6 � 1010 hepatocytes per patient; these can be obtained from
60 m2 of culture area, which is equal to 8000 of such dishes. In
addition, considering the differentiation process, more than twice
the number of cells is required. According to research on cell ther-
apy cost estimation, the assumed lot scale is approximately
1 � 1010–1 � 1011 cells per lot, which is equal to 100–10 000 vials
per lot [10–12]. These requirements cannot be fulfilled via the
laboratory-followed conventional adherence cultures involving
manual operation. Therefore, it is necessary to develop a stable
iPSC manufacturing process.

Various culture systems have been developed to produce large
numbers of cells. Cell-based mass production systems have
traditionally been developed for cell-derived products such as
dyes, vaccines, and antibodies [13]. A different approach is essen-
tial for cell therapy applications because the cells themselves are
the products. Although iPSCs are anchorage-dependent cells, they
can also be cultured in suspensions via aggregate formation. Thus,
iPSCs can be cultured using two different culture systems:
adhesion-based culture system and suspension-based culture
system. In addition, the scaffold-based approach is being devel-
oped to control the stem cell niche and stabilize iPSC quality.

During mass production, the downstream processes for cell
filling and freezing are potentially critical for developing a stable
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iPSC production system. As the quality of cells changes in a time-
dependent manner during the production process, immediate
filling and freezing is essential for stable production. A high-
throughput filling and freezing system for cell therapy is still being
developed; therefore, the lack of a suitable downstream process is
currently limiting the lot scale. Although downstream processes
have not been reported as widely as upstream processes such as
expansion, the importance of downstream processes as the limit-
ing factors for scaling up cell production is now being recognized.

In this review, we summarize the investigations on and
developments in stable iPSC mass production systems in terms of
upstream and downstream processes. First, we discuss the general
limiting factors in iPSC culture, such as nutrient supply, waste
removal, and the presence of growth factors. With respect to the
upstream process, we introduce the features of and developments
in culture systems based on adhesion culture, suspension culture,
and scaffolding. We then discuss the downstream processes as a
limiting factor for scaling up. Finally, we summarize recent
progress on stable iPSC production and highlight the problems
involved in the development of stable production systems for
new industrial applications such as regenerative medicine.

2. General limiting factors in iPSC culture

2.1. Nutrient supply and waste removal

As iPSCs mostly rely on glycolysis to meet their energy demands
[14–17], a glucose feeding strategy is important for iPSC culture.
Some studies have reported that maintaining a high glucose
concentration in the medium enhanced proliferation and the
expression of pluripotency markers in iPSCs [18,19]. The mecha-
nism underlying these positive effects remains unclear; however,
Fig. 1. Schematic image of glucose and glutamine metabolism in human pluripotent ste
aconitase 2; IDH2/3: isocitrate dehydrogenase 2/3; aKG: a-ketoglutarate; G6P: glucose-6
from Ref. [21], with permission of Elsevier Inc., �2016.
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some reports indicate that glucose-induced hyperosmolarity plays
an important role [19,20]. In addition, some reports have
mentioned that glutamine oxidation is also essential for the
survival of human PSCs [21]. Glutamine metabolism contributes
not only to the synthesis of nucleotides and glutathione, but also
to adenosine triphosphate (ATP) production by oxidative phospho-
rylation. During glucose depletion, glutamine oxidation is
activated for the tricarboxylic acid (TCA) cycle to produce ATP.
Based on these investigations, iPSC production requires glucose
and glutamine control, and a stable supply of both is important
for stable production (Fig. 1 [21]).

During culture, a considerable amount of lactate is secreted as a
waste product of glycolysis. Lactate decreases the pH of the culture
medium, and the resulting low pH causes iPSC death. In addition,
previous research has shown that lactate decreases the growth
rate, even in pH-controlled conditions [18].

These reports indicate that timely glucose supply and lactate
removal are essential for a successful iPSC culture. Previous studies
have also demonstrated that continuous feeding improved iPSC
growth and pluripotency [22,23]. In particular, the use of a dialysis
system for the effective and continuous transportation of nutrients
and wastes is a successful technology for maintaining preferable
culture conditions in terms of nutrients and waste concentration
[23]. However, such systems need additional equipment, and thus
require more space and complex operations. Therefore, it is essen-
tial to assess and meet the requirements of such systems during
cell culture.

2.2. Oxygen supply

Oxygen is essential for cell culture, especially large-scale and
high-density cultures. Some reports on two-dimensional cultures
m cells (hPSCs) in (a) glucose-existence and (b) glucose-depleted conditions. ACO2:
-phospate; 3PG: 3-phosphate glyceraldehyde; ACLY: ATP citrate lyase. Reproduced
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specify that cultivation on oxygen-permeable membranes resulted
in the formation of a multilayer tissue and improved cell function
[24–26]. However, in three-dimensional cultures, tissue thickness
is limited by oxygen diffusion because the inner cells sometimes
undergo necrosis due to a lack of oxygen [27].

As mentioned in Section 2.1, iPSCs produce their required
energy via glycolysis, which does not require oxygen. Therefore,
a low oxygen concentration (< 10%) is preferable for the mainte-
nance of iPSCs, and has been reported to prevent iPSC differentia-
tion [28,29]. However, oxygen depletion (< 1%) delays proliferation
[29]. Thus, maintaining the oxygen concentration at 3%–10% is cru-
cial for the effective production of iPSCs with a stable quality and
in a stable quantity. Although oxygen is supplied from the top sur-
face of the culture medium in most actual iPSC cultures, some
investigations have utilized supplemental oxygen through a gas-
permeable membrane, such as a closed system [30,31]. Sparging
is also an effective method to supply oxygen; however, in the case
of iPSC culture, sparging is currently rarely used because the
medium flow caused by bubbles affects iPSC viability.

2.3. Other supplements

The addition of supplements such as growth factors is impor-
tant in controlling cell fates such as growth, maintenance, and dif-
ferentiation, and this holds true for iPSC culture. Rho-dependent
protein kinase (ROCK) inhibitors such as Y-27632 and thiazovivin
have important roles in the production of human iPSCs. In the past,
human iPSCs could not survive if they were dissociated into single
cells; therefore, when passaging human iPSCs, the cells should be
harvested as small clumps. The passaging of human iPSCs is very
difficult and requires expertise. A previous study demonstrated
that the death of dissociated single human iPSCs is caused by
ROCK-dependent apoptosis [32]. Recently, the addition of a ROCK
inhibitor was shown to significantly improve the cell survival rate
after passaging, and simplified the passaging process. ROCK inhibi-
tors have other effects on iPSCs beyond improving the survival rate
after passaging. A previous report mentioned the following addi-
tional effects of ROCK inhibitors on human iPSC cultures: improv-
ing the efficiency of cryopreservation, supporting undifferentiated
growth, and enhancing differentiation [33]. Thus, ROCK inhibitors
are useful in various situations for the stable production of human
iPSCs.

Basic fibroblast growth factor (bFGF) is essential for pluripo-
tency and the self-renewal of human iPSCs [34–36], so it is gener-
ally added to iPSC culture media. However, the lack of thermal
stability in bFGF necessitates frequent medium changes, which
increases the cost of mass production [37]. Nevertheless, several
approaches, such as the sustained release of bFGF and improve-
ment in bFGF thermal stability [37–39], have been suggested to
decrease the frequency of the medium changes required for effec-
tive bFGF supplementation.

Transforming growth factor-b (TGF-b) superfamily proteins,
such as TGF-b proteins, activin, nodal, and bone morphogenetic
proteins (BMPs), also have an important role to play in maintaining
the pluripotency of iPSCs. TGF-b1 has been shown to contribute to
maintaining the pluripotency of human iPSCs [40,41]. Nodal and
activin A activate the same receptor and signaling to suppress
human iPSC differentiation and maintain pluripotency. However,
a high concentration (approximately 100 ng�mL�1) of activin A also
promotes the differentiation of human iPSCs into mesoendodermal
cells [41,42]. Therefore, the activin A concentration should be
maintained at below 50 ng�mL�1 in order to maintain the pluripo-
tency of human iPSCs. BMP4, which belongs to the TGF-b super-
family, induces the differentiation of human iPSCs, even though
BMP4 maintains the pluripotency of mouse iPSCs [43,44]. BMP4
can be secreted from cells and detected in serum replacement-
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based culture medium. The antagonist noggin co-works with bFGF
to suppress the differentiation induction of BMP4 and maintain
pluripotency [35].

Finally, researchers have reported that various factors, includ-
ing culture medium, substrate, and dissociation methods [45],
affect cell characteristics not only in single-passage culture, but
also in multiple-passage culture [46]. These fluctuations of quality
that prevent stable production remain as problems to be solved, as
mentioned in Section 5.
3. Expansion process

The currently developed iPSC mass production systems are
based on one of the two main types of culture system: adhesion-
based culture system and suspension-based culture system. An
exception is the scaffold-based culture system, which involves
both an adhesion-based culture system and a suspension-based
culture system.
3.1. Adhesion-based culture system

Adhesion-based culture is a conventional method for culturing
mammalian cells in laboratories. In traditional adhesion-based cul-
ture, cells are seeded onto a substrate containing feeder cells such
as mouse embryonic fibroblasts, which causes the cross-
contamination of cells. Recently, various extracellular matrix
(ECM) coatings have been developed for feeder-free iPSC culture.
The ECM should contain an Arg–Gly–Asp (RGD) motif such as that
in Matrigel, laminin, or vitronectin because the cell-substrate
adhesion of iPSCs is mainly controlled by integrin [47]. Initially,
animal-derived ECM such as Matrigel was used; however, to
ensure biosafety, animal-free ECM comprising fragments of ECM
molecules, such as the laminin-511 fragment [48,49] and vit-
ronectin fragment [50], have been developed recently.

For mass production by means of adhesion-based culture, a
large culture surface is required. Therefore, the use of methods to
increase the culture surface in a vessel, such as stacking plates, is
an important approach to increase productivity [51,52]. However,
it is difficult to handle vessels with a large culture surface, so they
are considered to be a secondary option when a microcarrier can-
not be used.

Automating the culture operation is another approach to
increase productivity and ensure stable quality [53–58]. Many
companies around the world have developed mechanization cul-
ture systems that contain conduits for feeding medium and remov-
ing waste medium, as well as robotic arms to handle the
experimental apparatus such as culture vessels, pipettes, and
tubes. Stable operation and the possibility of parallel production
are the main advantages of such mechanization systems. In fact,
the possibility of parallel operation via a flexible culture platform
has been reported [58]. However, despite advances in hardware
development, software applications for the optimization of opera-
tions and monitoring cell quality are still being developed. Cell
culture operations are complicated and vary with cell type; there-
fore, it is important to understand the effect of operations on the
cell culture outcomes and to optimize culture operations to ensure
stable production in adhesion cultures.

One advantage of adhesion-based culture is the easy observa-
tion of cell morphology. In the case of iPSC culture, including main-
tenance and differentiation, daily determination of cell state based
on morphology is important for quality control. Hence, monitoring
the morphology of iPSC colonies is an effective approach to check
their quality and stability during mass production. These morpho-
logical determinations are conducted by experienced specialists.
Moreover, the skill and knowledge of such specialists in
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morphological determination depend on operator experience, and
it is difficult to train other personnel to attain a similar level of
expertise. At present, image-based analyses for evaluating the
quality of iPSCs are being developed [59–61]. Recently, deep-
learning studies have been applied to the image-based quality con-
trol of iPSC products in adhesion-based culture [62,63]. These
approaches attempt to evaluate the quality of iPSCs and iPSC-
derived cells without using conventional biological quality checks
such as immunostaining, which requires skill and is unstable due
to the fluctuating quality of reagents such as antibodies. Although
thousands of teaching images are required to establish a reliable
tool, these technologies should be powerful tools for monitoring
the quality and stability of iPSC production.

In summary, adhesion-based culture is a conventional cell cul-
ture method, and the knowledge and experience from laboratory
experiments can be utilized to ensure optimal production.
Although scalability is limited in such culture systems, parallel
production using mechanized production systems can overcome
this hurdle. To realize stable mass production by means of an auto-
mated system, investigations are necessary on how cell character-
istics are affected by each operation, including transportation,
pipetting, centrifugation, and seeding. To understand the effect of
such operations, biological investigations on mechanotransduction
to mechanical forces [64,65] might be helpful. In addition, research
on extraction of critical parameter from operation affecting cell
quality in terms of chemical engineering is important when
designing an automated culture operation.

3.2. Suspension-based culture system

Suspension-based cultures have been developed as scalable cul-
ture systems for bacterial [66], plant [67], and animal cells, and are
used to obtain various biological products such as fermented foods,
medicines, and cells themselves. Unlike adhesion-based cultures,
suspension-based cultures do not require an adhesion surface,
thereby enabling the use of simpler and easily scalable vessels.
Several studies have reported the use of suspension-based culture
for iPSC and ESC expansion [66–73] and differentiation [71–74].

As iPSCs require attachment, they form aggregates in
suspension-based cultures. However, there is a size limitation for
aggregate formation because of various factors, including the
limited transfer of nutrients and oxygen into the aggregates
[27,75] and ECM accumulation, depending on the cell lines.
Previous research has shown that some cell lines form ECM with
a shell-like structure, which packs the cells and prevents cellular
growth [76,77]. It was also reported that the lack of ECM caused
cell death and unstable aggregate growth [78]. Therefore, the
characteristics of the iPSC line should be considered before
designing a suspension-based culture system.

Because of these limitations, aggregation control is important
during iPSC suspension-based culture. In particular, the formation
of fewer aggregates in the early stage results in lower growth [76].
Therefore, an ideal scenario would encompass the generation of
many size-controlled aggregates with cell–cell contact sufficient
for stable growth. Some strategies have been suggested to control
aggregation in the early stages of the suspension-based culture.
One popular strategy is to use a microwell for the preparation of
uniform aggregates [79]. Other possible suggestions involve modi-
fications in the culture medium [80] or culture vessel [31] to limit
cell aggregation. Furthermore, it has been reported that breaking
up large aggregates into smaller ones by adding molecules that
degrade cell–cell contact in the later stage of culture is an efficient
approach to improve iPSC growth [30,81,82].

Since iPSCs do not require a high oxygen supply, bioreactors for
iPSC expansion do not require strong agitation, unlike conventional
bioreactors for microorganisms. However, this does not mean that
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bioreactors for iPSCs do not require any agitation. As mentioned
above, iPSCs form aggregates in suspension-based culture, which
can easily sediment and accumulate on the bottom of the bioreac-
tor; therefore, agitation is required to prevent these problems. On
the other hand, during suspension-based culture, cells are exposed
to shear stress resulting from medium flow due to agitation. This
shear stress affects iPSC viability [71] and differentiation [88].
Therefore, an optimal level of agitation that prevents sedimenta-
tion while being gentle enough to avoid causing cell damage is
important for successful suspension-based culture in bioreactors.
An estimation of the shear stress experienced by the cells is neces-
sary when designing a bioreactor for iPSC suspension-based
culture. As it is difficult to measure shear stress on cells directly,
the use of computational fluid dynamics to estimate the shear
stress has been suggested [89–91]. These computational science-
based approaches are helpful for understanding the effect of shear
stress on iPSCs and for developing optimal bioreactors for iPSC
suspension-based cultures.

Various bioreactors have been developed for iPSC suspension-
based culture. The most popular suspension-based culture system
for iPSCs is the spinner flask system, which has been widely
researched [68,70,71,73,74]. In a conventional spinner flask sys-
tem, agitation is operated by an impeller to realize a high level of
oxygen transfer; therefore, the agitation rate is high (i.e., approxi-
mately greater than 100 revolutions per minute (rpm)) [66]. In
contrast, agitation should be minimized when culturing iPSCs
(i.e., kept at approximately below 60 rpm) to keep the cells floating
with minimum shear force, because iPSCs do not require a high
level of oxygen transfer. In spinner flasks, the culture medium is
agitated directly, resulting in good mixing. However, the shear
force from the impeller causes cell damage. A research group
investigated the shaking culture system [31,72,83]. In a shaking
culture, the culture medium is agitated indirectly by shaking the
vessels. Due to the absence of an impeller, the shear stress on cells
is lower in a shaking system than in a spinner flask. In addition, the
culture vessel for a shaking system can be simplified, making it
possible to scale up for mass production and easily create a closed
system to maintain aseptic conditions. In a shaking culture, iPSC
aggregates tend to sediment to the bottom of the vessel due to
the weak agitation; thus, further design is required to prevent such
sedimentation. As a system that is similar to shaking vessels,
rotating-wall vessels can realize culturing with microgravity [84].
Previous studies have demonstrated that the microgravity pro-
duced by rotating-wall vessels enhanced viability, proliferation,
and differentiation efficiency [85,86]. As an extreme case of a cul-
ture system with microgravity, a bi-directional rotating vessel sys-
tem was developed, which realized pseudo zero gravity [87]. As
mentioned above, there are various types of bioreactors, and it is
important to choose according to the purpose (i.e., expansion or
differentiation) and scale of the culture.
3.3. Scaffolds-based culture system

The third possible culture system involves culturing on
scaffolds such as microcarriers and microcapsules. Microcarriers
provide larger adherent surfaces than those provided by conven-
tional adhesion-based cultures, and are widely used for the mass
production of adhesion-dependent cells such as mesenchymal
stem cells. As iPSCs are also adhesion dependent, the use of
microcarrier-based culture systems for the mass production and
differentiation of iPSCs has been reported [88,92–94]. In general,
unlike the cells in static adhesion-based cultures, the cells on
microcarriers are suspended in a stirring vessel and exposed to
shear stress, which affects cell viability and differentiation
(Section 3.2). In addition, when harvesting cells after expansion,



I. Horiguchi and M. Kino-oka Engineering 7 (2021) 144–152
a separation microcarrier from the cell suspension is required. This
process potentially limits the scale of the culture.

The selection of a microcarrier is important for successful iPSC
culture on a microcarrier. According to previous investigation, size,
coating, and surface charge are important properties to consider
for iPSC expansion [92]. According to Ref. [92], use of a small
microcarrier (smaller than 100 lm) results in a low cell yield. In
addition, the iPSCs barely attached or grew on a microcarrier with
a negatively charged surface; thus, a positively charged surface
such as an amine-conjugation is required. Coating the ECM
improves cell growth on microcarriers. In Ref. [92], Matrigel and
laminin coating were found to be effective to improve cell growth.
To solve the problem of separation from the microcarrier, novel
microcarriers that are dissolvable by enzymatic treatment were
recently developed [94]. By digesting the microcarrier after expan-
sion, it is possible to skip the separation process.

Microencapsulation, another approach for the scaffold-based
culture of iPSCs, enables the protection of cells from shear stress,
aggregation control, and the preparation of preferable structures
via bioprinting [95]. Some reports indicate that encapsulation can
prevent differentiation and preserve the pluripotency of iPSCs
[96,97]. Moreover, the microcapsule can be modified to control
the stem cell niche [98]. Although these advantages indicate the
possibility of stable mass production of iPSCs, the collection of
iPSCs from capsules after culture is a barrier to the application of
such scaffold-based production processes.

Various encapsulating materials have recently been investi-
gated, such as polyethylene glycol (PEG), agarose [99], and hya-
luronic acid [100]. The most popular encapsulating material is
alginate hydrogel. Alginate immediately forms a hydrogel when
it is dropped into a divalent cation solution such as a solution of
calcium, barium, and iron ions. Thus, the encapsulation of cells
can be easily realized by dropping a cell suspension with sodium
alginate solution into a divalent cation solution. Furthermore, it
is easy to digest alginate hydrogel by soaking the capsules in a che-
late (e.g., ethylenediaminetetraacetic acid (EDTA) and citric acid)
or alginate lyase solution. As a further treatment for capsules,
because alginate hydrogel capsules have a negative charge on their
surface, the alginate hydrogel can be covered with a poly-ion com-
plex membrane by soaking the hydrogel capsule in a poly-cation
such as poly-L-lysine and chitosan. After forming a poly-ion com-
plex, hollow capsules with a liquid core can be prepared by soaking
the coated capsule in a chelate solution [96,97]. Previous investiga-
tions have reported that the simple encapsulation of pluripotent
stem cells (PSCs) into alginate resulted in cell leakage from the cap-
sule and growth outside of the capsules; therefore, forming a poly-
ion complex membrane is essential for the expansion of PSCs in
capsules [96,97,101].
4. Filling and freezing processes

In addition to the upstream parts of the iPSC production
process, the downstream processes that follow the expansion
processes must be considered during iPSC culture investigations.
These downstream processes, which include the filling and freez-
ing processes, are essential for packaging the expanded cells.
4.1. Before freezing (filling)

During the filling process, dispensing 0.5–2.0 mL of the
cryoprotectant-containing cell suspension into vials is a time-
consuming task that affects the quality and viability of iPSCs
after cryopreservation due to the toxicity of the cryopreservation
medium. Due to this issue, scaling up is limited to a level at which
the complete filling process, including the transfer from the culture
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system to the filling system, can be completed within 1 h. Given
the time limitation associated with the conventional manual filling
procedure, the estimated scale of expansion is approximately 1–5 L,
which can produce 1 � 109–1 � 1010 cells per batch. This means
that thousands to ten thousands of vials need to be filled with cell
suspension from the same batch. During the filling, cells decay in a
time-dependent manner, causing an unignorable difference in
quality within the same batch. A previous report indicated that
1 h is the optimal time to ensure the maximum viability of iPSCs
in cryopreservation medium [102]. Thus, to obtain the required
lot scale, the development of high-throughput filling processes
and parallel production systems is essential. This limitation is
mainly due to the dimethyl sulfoxide (DMSO) in the cryopreserva-
tion medium. It has been reported that DMSO causes protein
aggregation [103] and damages the mitochondrial integrity and
membrane potential [104]. In the case of cryopreservation of iPSCs
and ESCs, it has been reported that exposure to DMSO decreased
the pluripotency genes [105,106] and promoted differentiation
markers [106]. Therefore, cryopreservation methodologies with a
DMSO-free cryopreservation medium have been investigated. Pre-
vious studies have shown that ethylene glycol is a promising alter-
native to DMSO, with lower toxicity and high efficiency in
vitrification [107,108]. In addition, the use of a freezing medium
consisting of ethylene glycol, sucrose, and carboxylated poly-L-
lysine has been shown to improve cell viability after slow vitrifica-
tion by inhibiting ice crystallization [109].

4.2. Freezing (cooling down)

Freezing is one of the critical operations involved in cell produc-
tion. Conventionally, iPSCs are cryopreserved by means of vitrifica-
tion—that is, immediate freezing with liquid nitrogen in highly
thermoconductive containers such as open-pulled straws. This
technique was developed for the preservation of bovine ova and
embryos and is utilized for PSC preservation. Vitrification prevents
the formation of crystals that cause cell damage during freezing;
thus, it is a successful method and realizes a high recovery rate
(more than 75%, compared with 5%–10% after slow-cooling) on a
laboratory scale. However, the cryopreservation medium used for
vitrification generally has a high concentration of cryoprotectants
such as DMSO and ethylene glycol, giving the medium high osmo-
lality and toxicity. Therefore, rapid thawing is important for the
successful recovery of vitrified cell samples. This is accomplished
by immersing the vitrified cell samples into a pre-warmed culture
medium. Although vitrification is a successful method that is
widely used in laboratories, it has certain limitations in terms of
the stable mass production of PSCs, such as difficulty controlling
the temperature and contamination due to direct contact with liq-
uid nitrogen. A previous report suggested the novel design of a cul-
ture plate with detachable wells and screw caps for the storage of
adherent human ESCs by vitrification, which may assist in the
development of automated systems for handling bulk quantities
of cells [110].

Although slow freezing has shown poor performance in the past
[111], the development of cryopreservation medium [112,113] and
advances in methodologies for freezing with a slow-cooling system
[114] have improved the performance of these systems and the
associated cell productivity. If the speed used for slow cooling is
too fast, rapid freezing will cause intracellular ice crystal forma-
tion. These intracellular ice crystals disrupt cellular organelles
and membranes and lead to cell damage and death during thawing
and re-seeding [115,116]. On the other hand, freezing that is too
slow results in the removal of intracellular water due to osmotic
pressure [115,116], which causes cellular dehydration and shrink-
age, resulting in the disruption of organelles, the plasma mem-
brane, and the cytoskeleton, and finally causing cell death. Thus,
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in a slow-cooling system, the cooling rate should be slow enough
to prevent intercellular ice formation yet fast enough to prevent
intracellular water removal. The reported optimal cooling rate is
0.5–1.0 K�min�1 [114,116,117]. In the slow-cooling method, the
temperature is controlled and gradually decreased to a final tem-
perature (lower than –80 �C) [118]. A programmed deep freezer
is used for slow cooling, and various temperature control proce-
dures have been reported. However, when considering scaling
up, a simple cooling program is important to permit temperature
controllability during bulk cooling. This method is feasible for scal-
ing up, but the acceptable difference in temperature (i.e., the tem-
perature robustness of the process) remains unclear despite
several reports on cryopreservation. This lack of temperature
robustness will affect the scalability of the freezing process
because scaling up causes temperature variation due to heat
conduction.

At present, a deep-supercooling method is being developed as
another approach using rapid cooling [119,120]. In this method,
cells are preserved without freezing at a higher temperature com-
pared with conventional cryopreservation. The difficulty with this
method is to maintain supercooled water in an unfrozen state, as it
readily forms ice crystals from various stimuli. A recent study
showed that sealing the surface with immiscible liquid improved
stability, and enabled the researchers to store human red blood
cells for 100 d at –7 to –10 �C [120]. After further development, this
method will be a promising candidate for storing cells as a final
product.

To summarize, the downstream process remains a potential
bottleneck for scaling up iPSC production, and it is essential to
develop novel approaches for optimal downstream processing. To
do so, it is necessary to investigate the effects of various condi-
tions—such as suspension time in cryopreservation medium and
temperature difference—on cell viability and quality.
4.3. After freezing (storage, transportation, and thawing)

After freezing, the frozen cell suspension is generally stored in a
cryopreservation tank with liquid nitrogen (at approximately
–196 �C in the liquid phase and –170 �C in the gas phase), as in con-
ventional cell lines. In particular, a temperature below –130 �C is
ideal for long-term cell storage. This is because liquid free water
does not exist at temperatures below –130 �C, and the crystalline
or glassy state has a high enough viscosity to prevent the effects
of diffusion and stop biological time completely. Although many
cell lines are stored at temperatures ranging from –70 to –90 �C
for months or years, biological time is not stopped in such
instances, but rather is slowed. Thus, biological reactions affecting
cell viability and characteristics still occur and these effects will
accumulate. Indeed, a previous study showed that the viability of
liver cells decreased during storage at –80 �C but was maintained
for a year at –170 �C [121]. During cell production, the temperature
fluctuates as a result of various operations, such as during trans-
portation from the freezer to storage. In addition, the transporta-
tion methodology for frozen cell samples is still developing.
Previous research reported that a repeating temperature fluctua-
tion during storage decreased cell viability after thawing [122].
The effect on frozen cells of temperature fluctuation and accelera-
tion of container during transportation is unclear. Thus, under-
standing the robustness of the quality of frozen cells to these
fluctuations is necessary in order to develop a stable cryopreserva-
tion system.

In addition, an effective methodology to transport frozen cells
has not yet been developed. Aside from suitable thermal manage-
ment, the effects of transport vibration on frozen cells are still not
well understood and must be considered. With an understanding
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of the robustness of frozen cells to temperature change and force,
the stable transportation of cell products can be realized.

Thawing cells is another critical operation that affects cell
quality. Traditionally, it is important for successful recovery to
thaw cells quickly at 37 �C and to avoid overheating [116]. Slow
thawing has been reported to cause cell damage due to ice crystal
reformation. Although some work has been accomplished in this
field, further understanding of the decay that occurs when heating
cells and the optimization of this process is necessary in order to
obtain stable and successful results with cell products.
5. Future perspective: Unresolved barriers to stable production

Asmentioned above, it is necessary to develop a scalable process
from the expansion process to the filling and freezing processes.
Despite the investigations that have been done on PSC at the labora-
tory scale, the stable mass production of iPSCs is still developing.
One of the major barriers to mass production is that the operations
in iPSC production are complicated and are performed manually,
potentially resulting in fluctuations in cell quality due to fluctua-
tions in manual handling. In addition, as mentioned in Section 2.3,
cell characteristics aremutated in a time-dependentmanner during
culture [46,123]. Recent analyses have demonstrated that the char-
acteristics of cells, including gene expression and drug response,
have wide heterogeneity across laboratories, even within the same
cell strain [124,125]. Unlike the production of cellular products such
as antibodies, this heterogeneity cannot be ignored and should be
minimized because the cells themselves are the products in the iPSC
production process. In order to avoid such heterogeneity, it is essen-
tial to establish an appropriate quality-control method, which will
include the development of evaluation methods and setting up
appropriate evaluation parameters.

It is also necessary to develop a reproducible production pro-
cess. As mentioned in Section 3.1, automation is promising
approach to realize high reproducibility of culture operation for
stable production. Although various industries have developed
automated culture systems, the conversion of operations from
manual handling to automated handling is still developing. This
development requires an understanding of what the critical opera-
tions and parameters are in cell culture. For developing processes
such as automated cell culture systems, chemical engineering
knowledge is helpful. In terms of chemical engineering, various
parameters have been utilized to optimize the cell production pro-
cess. For example, the Reynolds number—that is, the ratio of iner-
tial forces to viscous forces—has been developed to predict flow
patterns even under different flow conditions. When developing
a stable production process for iPSCs, such parameters are helpful
for predicting the result of an operation before actually performing
it. In a recent study, a group specializing in transport phenomena
demonstrated that the Froude number, which is the ratio of the
flow inertial centrifugal force and the gravitational body force,
can be used to predict the heterogeneity of cells after shaking dur-
ing the seeding process [126]. These parameter designs and perfor-
mance indices are necessary for developing a stable production
method for iPSCs.

In terms of quality control, both biological analyses and statisti-
cal strategies—including deep learning—are expected to develop,
as mentioned in Section 3.1. Deep learning is rapidly progressing
in various fields including bioinformatics, computational biology,
andmedical applications [127,128]. These analyses can realize qual-
ity checking without destruction and permit real-time monitoring
via time-lapse capture by microscope. However, such analyses also
tend to be ‘‘black box” models, so support with biological experi-
ments is important in order to establish an effective deep-learning
system.
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The other difficulty in developing stable mass production of
iPSCs is that the effects of operations on cells are indirect. For
example, during the detachment of cells by pipetting, the pipetting
operation can be defined by flow rate; however, the effect of this
operation on cells occurs in the form of shear stress. In other
words, the parameter that can be adjusted during operation and
the parameter that actually affects the cells are different. Thus, fur-
ther investigation on how to translate the operation parameters
into the parameters that actually affect the cells is important in
order to develop a stable mass production process. Such investiga-
tions require not only biology, but also various engineering fields
such as mechanics, fluid dynamics, and computational engineering.

6. Conclusions

In this review, we discussed the development of and hurdles in
the upstream processes such as expansion and the downstream
processes such as filling and freezing involved in iPSC production.
We presented the strengths and weaknesses of the adhesion-,
suspension-, and scaffold-based culture systems and discussed
the downstream processes as a possible bottleneck for iPSC mass
production. Although iPSCs have been researched for several dec-
ades, the industrialization of iPSC production has not yet been
achieved. To ensure stable iPSC production, it is essential to inves-
tigate the manufacturing process to determine the evaluation fac-
tors for cell quality, identify the inputs that affect cell quality
during operations, and understand the mechanisms underlying
these effects. For these investigations, it is necessary to design
experiments to study iPSC production from various points of view
such as biology, mechanical engineering, physics, and computa-
tional engineering. The problems mentioned above do not only
apply to the production of iPSCs, but are also issues in the produc-
tion of other common cell products such as mesenchymal stem
cells. Thus, engineering approaches to solve these problems will
be useful for the stable production of various cell products includ-
ing regenerative tissue and artificial meat.
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