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The normal operation of aircraft and flights can be affected by various unpredictable factors, such as sev-
ere weather, airport closure, and corrective maintenance, leading to disruption of the planned schedule.
When a disruption occurs, the airline operation control center performs various operations to reassign
resources (e.g., flights, aircraft, and crews) and redistribute passengers to restore the schedule while mini-
mizing costs. We introduce different sources of disruption and corresponding operations. Then, basic
models and recently proposed extensions for aircraft recovery, crew recovery, and integrated recovery
are reviewed, with the aim of providing models and methods for different disruption scenarios in the
practical implementation of airlines. In addition, we provide suggestions for future research directions
in these topics.
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1. Introduction

The aviation industry has become a major player in the global
economy. As people become increasingly dependent on air travel,
the number of scheduled flights worldwide grows every year.
According to the International Air Transport Association (IATA)
[1], civil aviation passenger demand increased by 4.2% while
capacity increased by 3.4% worldwide in 2019. Hence, demand
appears to grow faster than capacity, suggesting great develop-
ment potential for the aviation market. With the development of
the aviation industry, airline planning and scheduling problems
have attracted much attention, and most airlines benefit from
advanced optimization methods. Sophisticated models and effec-
tive solutions have been developed for each stage of planning, as
reported in detailed overviews by Eltoukhy et al. [2] and Zhou
et al. [3].

Under various circumstances, such as aircraft mechanical prob-
lems or severe weather conditions, flights cannot be operated as
planned. Data provided by the Bureau of Transportation Statistics
(BTS) show that approximately 21% of flights in the United States
during 2019 experienced more than 15 min of arrival delay. Simi-
larly, the average flight on-time rate in China was 81.43% according
to the Civil Aviation Administration of China (CAAC)’s Statistical
bulletin of civil aviation industry development in 2019 [4]. Likewise,
the Punctuality League report by the OAG [5] shows that only three
airlines achieve a greater than 90% on-time rate worldwide. Flight
delays and cancellations have become important factors that affect
passengers’ airline preferences. Consequently, if irregular opera-
tion cannot be properly recovered, the economic and social bene-
fits for airlines may be undermined. Therefore, disruption
management has become a major problem in airline operation
management.

There are many differences between airline planning and airline
recovery. Planning focuses on optimization, whereas recovery tar-
gets a feasible yet possibly suboptimal solution that can be
obtained in real time. Furthermore, recovery may be more uncer-
tain than planning, depending on the degree and type of disrup-
tion. Unlike flight planning, which can be obtained several
months before operation, recovery solutions should be obtained
and implemented as quickly as possible after a disruption. In this
paper, we focus on the characteristics of recovery and review
common models and methods. Details of the models provide the
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characteristics and applications of recovery options that help airli-
nes to choose appropriate methods to meet their specific
requirements.

The remainder of the paper is organized as follows. Section 2
presents an introduction of disruption management, including
sources of disruption and possible recovery operations. Basic mod-
els and solution methods for aircraft recovery are provided in Sec-
tion 3. Section 4 presents the general model and some extensions
of crew recovery. Section 5 presents integrated recovery consider-
ing multiple resources, including passengers. Section 6 summa-
rizes our work and provides directions for future work.
2. Disruption management

Many studies have explored comprehensive recovery methods
to handle disruptions efficiently and effectively. Clarke [6] reviews
the practices in airline operations control centers during irregular
operations. Filar et al. [7] examine disturbance handling in airports.
Kohl et al. [8] provide a detailed overview of many aspects of air-
line disruption management and report on large-scale research
on airline disruption management. Clausen et al. [9] review tech-
niques of aviation recovery and introduce models of schedule plan-
ning. In Chapter 9 of their book, Belobaba et al. [10] present
schedule recovery and robust planning to mitigate the impact of
irregular operation. Barnhart and Smith [11] describe basic models
of different resource recoveries and airline disruption management
tools (Chapter 6.3). Changes to the mathematical models for avia-
tion recovery problems and other related methods are also men-
tioned by Floudas and Pardalos [12].

Below, we briefly explain sources of disruption and disruption
propagation to the airline flight network. We then describe com-
mon airline recovery operations.

2.1. Sources of disruption

We classify the sources of flight disruption into two categories:
(1) Airline resource disruption (e.g., aircraft, crew). This type of

disruption is caused by factors such as additional maintenance due
to aircraft mechanical failures and fuel shortage, or when crew
members are absent due to illness or personal emergency.

(2) External environmental disruption (e.g., weather, air traffic
control). Air travel is weather-sensitive. Even minor weather con-
ditions may reduce the airport departure and arrival rates, causing
flight delays. Under severe weather conditions, coercive measures
such as airport closures and air traffic control are adopted to
ensure the safety of passengers and airline assets.

As various consecutive flights are arranged for each aircraft and
crew, and certain connection rules should be satisfied between
Fig. 1. An illustration of a down-line impact on a network of four flights scheduled
with two aircraft and two crews. Crew 1 is assigned to flights 1 and 4, while crew 2
is assigned to flights 2 and 3.
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flights, disruptions are likely to affect subsequent flights,
producing a down-line impact. Fig. 1 illustrates an example with
two aircraft and four flights. It takes at least 30 min for aircraft
to transit, and 45 min for crew members to do so.

Suppose that airport A is closed from 07:00 to 08:30 due to a
thunderstorm. Therefore, flight 1 cannot depart until 8:30, render-
ing aircraft 2 and crew 1 unable to complete the required transfer-
ence (Fig. 2). Flights 2 and 4 are both affected.

In addition, the capacity of airports and airspaces should be
considered during disruptions, because airports and airspaces
accept aircraft of various airlines, but the allocated resources
(e.g., boarding gates, runways) are limited at a given time. Overall,
even a very minor disruption can cause significant losses due to
disagreements in resource allocation among airlines. Therefore, it
is important to adopt recovery methods to prevent or mitigate
the down-line impact.

2.2. Recovery operations

Flight recovery mainly comprises the following operations,
which we explain considering the example in Section 2.1.

(1) Delaying flights. The departure time of affected flights and
related flights may be delayed. In Fig. 3, the departure of flights 2
and 4 is delayed by at least 15 min to satisfy the minimum transit
times of the aircraft and crew members.

(2) Cancelling flights. During recovery, if the allocated resources
to carry out a flight are not feasible, or if the flight can take place
but the delays would exceed a limit, the flight is cancelled. As flight
cancellation incurs high costs, this operation is usually the last
recovery option for airlines.

(3) Swapping resources (rerouting). When aircraft or crew
members are not prepared for the next flight, other aircraft or crew
available in the same airport can substitute for the original ones to
carry out the flight. The recovered aircraft or crew is then reallo-
cated to other flights when available. For example, when a disrup-
tion occurs, aircraft 1 and 2 can be swapped in airport B for flight 2
to be operated using aircraft 1 without delay, as illustrated in Fig. 4.

(4) Using reserved resources (aircraft and crew). Reserved
resources are available in airports and do not perform any flight
tasks.

(5) Deadheading and ferrying. Deadheading means that the
crew is transported to another airport as passengers, whereas fer-
rying means that an aircraft is assigned to an unscheduled flight
without passengers. Given the high costs incurred by these opera-
tions, they are rarely adopted.

(6) Speed controlling. Various studies have recently addressed
speed controlling as a recovery operation that modifies the flight
time to reduce the impact of a disruption and its corresponding
delay.
Fig. 2. An illustration of a down-line impact on a network when flight 1 cannot
depart on time. The delayed flight 1 is represented by flight 1'. Flights 4 and 2 are
affected due to the lateness of crew 1 and aircraft 2 which are assigned to flight 1.



Fig. 3. Example of delaying flight 4 and flight 2 to mitigate the total delay.

Fig. 4. Example of swapping aircrafts 1 and 2 to mitigate the total delay.
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(7) Passenger reallocation. If itineraries are disrupted, passen-
gers can be reallocated to itineraries with the same origin and
destination.

Multiple recovery operations can be adopted simultaneously,
according to airline preferences and capabilities. Given the com-
plexity of adopting operations, the recovery problem is commonly
separated into a sequence of subproblems that are solved in order.
Usually, aircraft recovery is solved first, followed by crew recovery
and passenger recovery. In the next three sections, we detail speci-
fic models and solutions for aircraft recovery, crew recovery, and
integrated recovery considering passengers.
3. Aircraft recovery

As both crew rescheduling and passenger resettlement depend
on the aircraft arrangement, effective reassignment of aircraft is
essential for disruption recovery. Compared with that of planning,
the time horizon of recovery is relatively short, varying from hours
to days. Aircraft recovery aims to reschedule aircraft routes
affected by disruptions at minimum cost while ensuring that
flights after the recovery period will not be affected by disruptions.
In addition, aircraft should be located at specific stations at the end
of the recovery period to carry out the subsequent planned flights.

Aircraft recovery is typically modeled as a network problem.
Like many network routing problems, the adopted models are usu-
ally arc-based or path-based, as detailed along with various exten-
sions in the following subsections.
Fig. 5. Example of slot capacity for aircraft recovery.
3.1. Arc-based model for aircraft recovery

Arc-based models allow handling of disruptions such as airport
closure and air traffic control caused by severe weather, security
issues, military operations, and other factors. The model is usually
built in a time–space network, as proposed by Hane et al. [13], and
is widely used for fleet assignment problems. The network has
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three types of nodes and three types of arcs, as detailed below.
An example of the time–space network is shown in Fig. 5.

3.1.1. Nodes
The supply node is the first node that indicates the beginning of

the recovery period at each station when a disruption occurs. The
demand node is the last node that indicates the end of the recovery
period at each station. It indicates, for example, aircraft positioned
in the designated airports to proceed with the flight schedule. An
intermediate node is a node with time–station information repre-
senting the departure or arrival of a specific flight.

3.1.2. Arcs
A flight arc is an arc representing a flight with its scheduled

departure/arrival times and stations. A ground arc is an arc repre-
senting an aircraft staying on the ground. A copied flight arc is an
arc representing the delay options (e.g., 10, 30, or 60 min) for origi-
nal flights. Every delay option refers to a flight arc, in which the
departure (arrival) time is the scheduled departure (arrival) time
plus the delay for the same departure (arrival) station.

A general arc-based model can be summarized from Refs.
[14–21]. The aircraft recovery problem can be formulated on a
time–space network, like the one illustrated in Fig. 5; this method
was first introduced by Thengvall et al. [18].

Assuming a single-fleet problem, the general mathematical
model is described below.

Model 1: Basic arc-based model for aircraft recovery

min
X
f2F

X
t2Iðf Þ

ctf x
t
f þ

X
f2F

cf zf ð1Þ

s:t:
X

ðf ;tÞ2Fn�
xtf þ yn� �

X
ðf ;tÞ2Fnþ

xtf � ynþ ¼ 0; 8n 2 N ð2Þ

X
ðf ;tÞ2Fbþ

xtf þ ybþ ¼ Numb; 8b 2 B ð3Þ



Fig. 6. Example of a time–space network for a multi-fleet model.
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X
ðf ;tÞ2Fe�

xtf þ ye� ¼ Nume; 8e 2 E ð4Þ

X
t2Iðf Þ

xtf þ zf ¼ 1; 8f 2 F ð5Þ

X
ðf ;tÞ2Fs

xtf � As; s 2 S ð6Þ

xtf 2 0;1f g; 8f 2 F; 8t 2 Iðf Þ ð7Þ

zf 2 0;1f g; 8f 2 F ð8Þ

ynþ ; yn� > 0; 8n 2 N [ B [ E ð9Þ
where F is the set of flight, among which Fnþ and Fn� denotes the set
of flight inbound to and outbound from node n, respectively; N is
the set of intermediate nodes; Fbþ is the set of flight inbound to
node b; B is the set of supply nodes comprising the first node at each
station and representing the starting point of the recovery period;
Fe� is the set of flight outbound from node e; E is the set of demand
nodes comprising the last nodes at each station and representing
the end point of the recovery period; Fs is the set of flights involved
in slot s (Fs contains the departure flights if slot s is a departure slot
and all the flights if slot s restricts both departure and arrival); S is
the set of disrupted slots, which may be caused by weather condi-
tions, security issues, military operations, and other factors; I(f) is
the set including the original flight arc f and corresponding copied
flight arcs, and IðFÞ ¼ Sf Iðf Þ denotes the set of all the possible flight
arcs; ctf is the assignment cost of the tth copy of flight f (the delay
cost is included if the tth copy is not an original flight, i.e., t > 0);
cf is the cancellation cost of flight f; As is the restricted number of
aircraft allowed in slot s; Numb is the supplied aircraft at supply
node b; Nume is the required aircraft for demand node e; xtf is the
decision variable with a value of 1 if the tth copy of flight f is chosen
and a value of 0 otherwise; ynþ is the number of aircraft on the
ground after node n; yn� is the number of aircraft on the ground
before node n; ybþ is the number of aircraft on the ground after node
b; ye� is the number of aircraft on the ground before node e; and zf is
the decision variable with a value of 1 if flight f is cancelled and a
value of 0 otherwise.

The objective function in Eq. (1) aims to minimize the total
assignment cost, delay cost, and cancellation cost. In addition, air-
craft flow balance is maintained by the constraints in Eqs. (2)–(4).
Specifically, the constraints in Eqs. (3) and (4) indicate that the air-
craft are supplied to operate a sequence of flights and reach the
demand nodes at the end of the recovery period. The flight cover-
age constraints in Eq. (5) ensure that each flight is either cancelled
or operated according to its scheduled/delay option. The con-
straints in Eq. (6) require the number of departure and arrival
flights involved in a slot to remain below the slot capacity.

Fig. 5 illustrates the reduction of slot capacity, where air traffic
control takes place at airport B from 08:30 to 10:30, in which the
departure slot capacity decreases from three to two, and flight arcs
1–4 are involved. Copied flight arcs 5 and 6 are set after the slot to
represent the delayed flights due to the disruption.

Under severe weather conditions, such as hurricanes or
typhoons, aircraft should be moved into hangars or be fixed by a
ground lock. Otherwise, the aircraft should be relocated to other
airports to ensure their safety. Therefore, the number of aircraft
on the ground with respect to the hangar capacity or ground locks
should be guaranteed by the corresponding constraints. The con-
straints in Eq. (10) limit the number of ground arcs involved in
the corresponding slots.

ynþ � Ag ; n 2 Ng ; g 2 G ð10Þ

438
where G is the set of ground arcs along with capacity; Ag is the
restricted number of ground arcs; Ng denotes the set of some special
intermediate nodes; and the number of aircraft on the ground after
these nodes is limited.

Air traffic control can be used for a specific airport and for any
set of flights of interest. Therefore, the set of flights involved in
Eq. (10) can be extended to any candidate set designated by a
controller.

Thengvall et al. [19] extend the single-fleet model for handling
multiple fleets. Themain differences between fleets are the configu-
ration, which is mainly reflected in the number of seats and maxi-
mum fly distance, and the crew requirements. Swapping between
fleets requires more stringent conditions than swapping within
one fleet, as a deviation in the preassigned capacity may lead to
substantial profit loss.

The multi-fleet model adopts a set of time–space networks, one
for per sub-fleet [19]. As in the single-fleet model, a flight can be
operated by all aircraft in the scheduled sub-fleet. Furthermore,
some flights can be operated by multiple sub-fleets during recov-
ery. As shown in Fig. 6, sub-fleet 2 can operate the flights originally
scheduled to sub-fleet 1; hence, flights 2 and 3 belong to the net-
work of sub-fleet 2. This model is solved using the IBM CPLEX Opti-
mizer. For the instance with 12 fleets containing 1–6 sub-fleets,
1434 flights during the 24 h recovery period, and 10 h of airport
closure, the model provides a near-optimal solution after
1838.4 s of computation. In this near-optimal solution, 81 flights
are operated by sub-fleets different from the original assignments.
This indicates that swapping between fleets providesmore flexibili-
ty and improves the solution quality.

Aircraft routes cannot be directly obtained from the basic arc-
based model, because the flow in the time–space network does
not distinguish a specific aircraft. Therefore, the arc-based model
cannot handle disruptions such as the unexpected maintenance
of a specific aircraft. To solve this problem, Vink et al. [21] extend
the arc-based model to incorporate specific aircraft. A set of paral-
lel networks is established, where each network represents a speci-
fic aircraft. This set of networks is bundled by the flight coverage
constraints. The model is extended by including extra aircraft
index for each variable in Model 1.

Constructing the network for each aircraft and solving the cor-
responding integer linear program can be very time-consuming. To
achieve real-time performance, Vink et al. [21] develop a selection
algorithm from the proposal by Vos et al. [20] that comprises three
stages. The number of selected aircraft involved in each stage is
limited in order to speed up the solving process. If no solution is
found by the selected aircraft, the set of candidate aircraft is



Table 1
Characteristics of the arc- and path-based models.

Decision variable Arc-based model (Leg) Path-based model (Path)

Number of
variables

O(|A||I(F)|) A lot

Number of
constraints

O(|A||F|) O(|F|)
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expanded and moved to the next stage. It takes 22 s on average to
solve an instance with 100 aircraft, 600 daily flights, and a 16 h
recovery period by the selection algorithm, while it takes 10 min
for the integer linear program considering the entire set. The selec-
tion algorithm finds the global optimal solution in seven of ten sce-
narios. On average, the gap between the selection algorithm
solution and the global optimal solution is 6%.
Formulation of
delay

Decision variables of
copied flight arcs

Embedded in route during
route generation

Formulation of
cancellation

Decision variable Decision variable

|A|: number of elements in the set of aircraft; |F|: number of elements in the set of
flights; |I(F)|: number of elements in the set of all the possible flights; O(): space
complexity, a measure of the amount of working storage an algorithm needs.
3.2. General path-based model for aircraft recovery

The disruption concerning individual aircraft can also be han-
dled using a path-based model. Compared with the arc-based
model, the path-based model assigns aircraft to a route that
includes detailed information such as flight delay and aircraft
swap. Argüello et al. [22], Rosenberger et al. [23], Eggenberg
et al. [24], Wu et al. [25], and Liang et al. [26] have developed mod-
els based on paths (routes). The path-based model for aircraft
recovery can also handle disruptions such as airport closure and
air traffic control by adding side constraints to the model. In addi-
tion, situations such as unplanned maintenance of an aircraft can
be handled by this model.

The path-based model enables a feasibility check (i.e., guaran-
teed minimum turnaround times) when generating routes. Con-
straints and regulations can be implicitly included during route
generation and eliminated from the model. The path-based model
is described below.

Model 2: Basic path-based model for aircraft recovery

min
X
a2A

X
r2Ra

car x
a
r þ

X
f2F

cf zf ð11Þ
s:t:
X
r2Ra

xar ¼ 1; 8a 2 A ð12Þ
X
a2A

X
r2Ra

drf x
a
r þ zf ¼ 1; 8f 2 F ð13Þ
xar 2 0;1f g; 8a 2 A; 8r 2 Ra ð14Þ
Fig. 7. Illustration of a relationship of swapping flights. I. Original schedule, in
which flight N(f) follows flight f. II. Schedule considering delay and cruise time
reduction of flight f. III. Schedule considering delay, cruise time reduction, and
swapping, in which flight f is swapped with flight j. df: scheduled departure
time of flight f; rf: scheduled arrival time of flight f; TAf: turnaround time of flight
f; lf: departure delay time for flight f; lj: departure delay time for flight j; t0f : original
cruise time of aircraft operating flight f; tf: cruise time of aircraft operating flight
f; tj: cruise time of aircraft operating flight j; N(f): next flight after operating flight f
in the original schedule; dN(f): the scheduled departure time of flight N(f); lN(f): the
departure delay time for flight N(f).
zf 2 0;1f g; 8f 2 F ð15Þ

where A is the set of aircraft; Ra is the set of routes that can be
assigned to aircraft a; car is the cost of assigning aircraft a to route
r; drf is the parameter with a value of 1 if route r contains flight f
and a value of 0 otherwise; and xar is the decision variable with a
value of 1 if aircraft a is assigned to route r and a value of 0
otherwise.

The objective function in Eq. (11) aims to minimize the assign-
ment cost and cancellation cost. The resource utilization con-
straints in Eq. (12) imply that each aircraft can operate one
route. The origin and destination of routes r correspond to the sta-
tions where recovery starts and ends. The flight coverage con-
straints in Eq. (13) indicate that each flight is covered by only
one aircraft, and the flight should be cancelled if no aircraft is
available.

Table 1 summarizes the characteristics of the arc- and path-
based models. Compared with the arc-based model, the path-
based model has fewer constraints but a greater number of possi-
ble routes. As cancellation and delay are the most common recov-
ery operations, we should analyze their formulations. Cancellation
is represented by cancellation variables in both the arc- and path-
based models. However, delay has a variety of representations, as
detailed in Section 3.3.
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3.3. Recovery with delay

Flight delay is an important recovery operation. A short delay
for recovery can sometimes be absorbed by the buffer time
between flights, allowing flight connections to be maintained.
Thus, selecting a delay for a minor disruption is effective.

Using copied flights to represent delay, as described by Model 1,
is widely adopted in aircraft recovery. The delay options are given
by a discrete set of predetermined delay times. Thengvall et al.
[18,19], Eggenberg et al. [24], Vos et al. [20], and Vink et al. [21]
adopt copied flights as delay options in their formulations. How-
ever, discrete delay presents some disadvantages. ① Delay may
be overestimated. For example, the actual delay of a flight may
be 12 min, but the only available option is 20 min, so an unneces-
sary delay cost is incurred. ② To prevent overestimation, a smaller
time interval can be set, but doing so increases the problem size.

The departure and arrival times of flights can also be decision
variables in models. Aktürk et al. [27] propose aircraft rescheduling
considering swapping, delaying, and adjusting cruise speed, in
which the departure delay and cruise time are decision variables,
as detailed below.

Fig. 7 illustrates this model. Case I shows the original schedule
of flight f and subsequent flight Nðf Þ. Then, a delay combining
cruise time decision is added to the original schedule in case II.
The relationship of flight f and flight Nðf Þ is easily obtained, as
follows:

rf þ lf þ tf � t0f þ TAf � dNðf Þ þ lNðf Þ ð16Þ

where N(f) is the next flight after operating flight f in the original
schedule; rf is the scheduled arrival time of flight f; t0f is the original
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cruise time of aircraft operating flight f; TAf is the turnaround time
of flight f; lf is the departure delay time for flight f; tf is the cruise
time of aircraft operating flight f; dN(f) is the scheduled departure
time of flight N(f); and lN(f) is the departure delay time for flight N(f).

Eq. (16) indicates that if flights f and j are not swapped, the
actual departure time of Nðf Þ depends on the actual arrival time
of flight f. Otherwise, flight Nðf Þ follows flight j after swapping, as
shown in case III of Fig. 7. The actual departure time of flight
Nðf Þ is given by rj þ lj þ tj � t0j þ TAj. Therefore, Eq. (17) indicates
that flight Nðf Þ follows either flight f or flight j. The model proposed
by Aktürk et al. [27] establishes a conic quadratic mixed-integer
programming and can be solved using CPLEX. It takes 196 s on
average to solve an instance with 207 flights and 60 aircraft with
a one day recovery period.

ðrf þ lf þ tf � t0f þ TAf Þ1
 
�
X
j2Sðf Þ

xf; j

!
þ

rj þ lj þ tj � t0j þ TAj

� � X
j2Sðf Þ

xf; j � dNðf Þ þ lNðf Þ

ð17Þ

where S(f) is the set of flights that can be swapped with flight f and
xf,j is the decision variable with a value of 1 if flights f and j are
swapped and a value of 0 otherwise.

Liang et al. [26] propose an adaptive delay method for airport
traffic control, in which the number of departures or arrivals of
specific airports are limited in some slots. This can be achieved
by introducing the constraints in Eq. (18) to the path-based model.X
a2A

X
r2Ra

/r
sx

a
r � As; 8s 2 S ð18Þ

where /r
s is the number of time slots s used by route r.

This problem is solved using column generation with a multi-
label shortest-path algorithm for the corresponding pricing sub-
problem. Two labels, referring to cost and delay, are considered
in the shortest-path problem, and the dominated paths are
removed during searching. To ensure subproblem optimality, the
affected flights are duplicated at the beginning and end of each
slot. The largest evaluated instance under disruptions of air traffic
control over 2 h and unexpected maintenance over 8 h with 638
flights and 44 aircraft is optimized within 356 s.

3.4. Recovery with maintenance

Maintenance is commonly treated as a fixed activity during air-
craft recovery. Eggenberg et al. [24] treat maintenance as a
resource-consuming and renewal process. Column generation with
Table 2
Features and solving methods of aircraft recovery approaches.

Authors Year Model Delay

Jarrah et al. [28] 1993 Arc-based Decided by ready time
Yan et al. [14,15] 1996, 1997 Arc-based —
Argüello et al. [22] 1997 Path-based Constructed in paths
Thengvall et al. [18] 2000 Arc-based Copied flights
Bard et al. [17] 2001 Arc-based Decided by ready time
Thengvall et al. [19,29] 2001, 2003 Arc-based Copied flights
Rosenberger et al. [23] 2003 Path-based Constructed in paths
Andersson and Värbrand [16] 2004 Arc-based Decided by ready time
Andersson [30] 2006 — Constructed in paths
Liu et al. [31] 2008 — Decided by ready time
Eggenberg et al. [24] 2010 Path-based Copied flights
Aktürk et al. [27] 2014 — Decision variables
Vos et al. [20] 2015 Arc-based Copied flights
Wu et al. [25] 2017 Path-based Constructed in paths
Liang et al. [26] 2018 Path-based Adaptive delay
Vink et al. [21] 2020 Arc-based Copied flights

GRASP: greedy randomized adaptive search procedure.
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the resource-constrained elementary shortest path is used to find
the routes with maintenance feasibility in each subproblem. A
real-life instance of 16 aircraft and 242 flights over 7 d with a
flight-to-aircraft ratio of 18.4 is solved within 3603 s.

Liang et al. [26] determine maintenance requirements using a
path-based model on a connection network. Besides the consum-
ing resource concept used by Eggenberg et al. [24], scheduled
maintenance operations can be swapped. Swapping can only take
place if aircraft are of the same fleet type and the resource limita-
tion is satisfied. Maintenance swapping improves the flexibility of
recovery, increasing the probability of finding better recovery solu-
tions. Again, column generation with the resource-constrained
shortest path is used. Three additional labels—namely, total fly
time, number of takeoffs and landings, and elapsed time—are con-
sidered in the multilabel shortest-path algorithm. Compared with
fixed maintenance, the cost of recovery with flexible maintenance
decreases by 61.47%.

An arc-based model considering maintenance is proposed by
Vink et al. [21]. Two types of maintenance operations are consid-
ered. One is planned maintenance, which is difficult to change to
another time or station (e.g., when the maximum elapsed time
between two maintenance operations is nearly reached). This
maintenance must be performed as scheduled on aircraft. The
other type of maintenance provides various time and space
options, and at least one option is selected to meet the mainte-
nance requirements in a route.

Table 2 [14–31] summarizes the features and solving methods
of different studies on aircraft recovery approaches.

4. Crew recovery

Before presenting crew recovery, we briefly introduce crew
scheduling to provide a background on some necessary concepts.
Crew scheduling consists of arranging a set of flight tasks within
a given period (e.g., 15 or 30 d) for the pilot, so that each flight
in the schedule can be operated by one or more crews. A crew
can only operate the fleet if properly qualified. Therefore, flights
are grouped by fleet, and crew scheduling is solved separately for
each fleet. In addition, the crew schedule should obey regulations
from governing agencies and labor unions to ensure security and
operability.

Compared with crew scheduling, crew recovery involves fewer
airports and shorter schedule times, notably reducing the scale of
the problem. To fully leverage the small scale of the problem, the
flights not involved in the recovery period are usually treated as
fixed activities. Hence, crew recovery aims to find a solution with
Multi-fleet Maintenance Solving method

No No Network flow algorithm
No No Lagrangian relaxation + sub-gradient
Yes No GRASP
No No Solver
No No Solver
Yes No Lagrangian relaxation + sub-gradient
No Yes Aircraft selection + solver
No No Dantzig–Wolfe decomposition
Yes No Tabu search and simulated annealing
Yes No Multi-objective genetic algorithm
No Yes Column generation + multilabel shortest path
Yes No Solver
No Yes Aircraft selection + solver
No No Distributed fixed-point computation
No Yes Column generation + multilabel shortest path
Yes Yes Aircraft selection + solver
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a minimum cost for reassigning the available crews to affected
flights, while crews start and end at given fixed activities [32].

Similar to crew scheduling, a crew recovery problem is usually
constructed on a single-fleet network. Labor regulations applicable
to planning should be complied during recovery. Moreover, preas-
signed activities, such as vacation and training, should be reflected
in the roster of the crew after recovery.

Teodorović and Stojković [33] are the first to develop a mecha-
nism to solve the crew recovery problem during daily operation.
They adopt two methods to construct a crew duty—namely, a
first-in-first-out scheme and dynamic programming—to minimize
the ground time of a crew. However, the optimality of the problem
is neglected. Subsequent studies have applied optimization to
solve the crew recovery problem. Below, we present a general
model for crew recovery as well as an extension and the corre-
sponding method.

4.1. General model for crew recovery

Wei et al. [32], Stojković et al. [34], Lettovský et al. [35], Yu et al.
[36], and Guo et al. [37] use a set partitioning model to solve the
crew recovery problem. Below, we detail the formulation proposed
by Lettovský et al. [35].

Model 3: Basic model for crew recovery

min
X
k2K

X
p2P

ckpx
k
p þ

X
f2F

cf zf þ
X
f2F

cDf sf þ
X
k2K

qkvk ð19Þ

s:t:
X
k2K

X
p2P

bp
f x

k
p þ zf � sf ¼ 1; 8f 2 F ð20Þ

X
p2P

xkp þ vk ¼ 1; 8k 2 K ð21Þ

xkp 2 0;1f g; k 2 K; p 2 P ð22Þ

sf 2 Integer; zf 2 f0;1g; f 2 F ð23Þ

vk 2 0;1f g; k 2 K ð24Þ
where K is the set of crews; P is the set of pairings; ckp is the cost of

assigning crew k to pairing p; cDf is the deadhead cost of flight f; qk is

the cost of idle crew k; bp
f is the parameter with a value of 1 if pair-

ing p contains flight f and a value of 0 otherwise; xkp is the decision
variable with a value of 1 if crew k is assigned to pairing p and a
value of 0 otherwise; vk is the decision variable with a value of 1
if crew k has no assignment and a value of 0 otherwise; and sf is
the number of crews with deadhead for flight f.

This model considers coverage constraints and assignment con-
straints. The objective function in Eq. (19) aims to minimize the
pairing cost, cancellation cost, deadhead cost, and cost of idle
crews. Eq. (20) indicates that a flight can be covered more than
once, and the surplus coverage identifies the number of flight f
used for deadheading. If flight f cannot be covered, the cancellation
variable zf has a value of 1 and incurs the corresponding cancella-
tion cost. Eq. (21) indicates that one crew can operate at most one
pairing.

Wei et al. [32] solve the above formulation using a heuristic
algorithm, in which a set of pairings is generated using a
shortest-path algorithm on a time–space network. This model aims
to find a feasible schedule with minimum deviation from the origi-
nal plan by setting different costs for flight arcs. An instance of 6
airports, 51 flights, and 18 pairings over two days is evaluated.
The computation time varies from 1 to 6 s.

In addition, the structure of crews should be considered for
operational solutions. Crew members are usually divided into
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three ranks: captain, first officer, and second officer. To obtain a
realistic solution, Medard and Sawhney [38] consider a multi-
rank extension by modifying Eq. (20) into Eq. (25).X
k2K

X
p2P

bp
f x

k
p;q � nf ;q; 8f 2 F; 8q 2 Qf ð25Þ

where Q is the set of ranks, with Qf denoting the ranks required for
flight f; nf,q is the minimum number of crew members required for
rank q of flight f; and xkp;q is the decision variable with a value of 1 if
crew k for rank q is assigned to pairing p and a value of 0 otherwise.

In Eq. (25), xkp;q now reflects the information of rank q. This set of
constraints ensures that the minimum number of members with
different ranks is satisfied.

4.2. Extensions of crew recovery

Crew recovery can also affect flight delay. Stojković and Soumis
[39] consider flight delays when constructing feasible pairings.
Moreover, a set of constraints to protect the passenger connection
is added to the master problem.X
k2K

X
p2P

ðbk
j;p � bk

w;pÞxkp � dw;j 8ðw; jÞ 2 W ð26Þ

where bk
j;p is the departure time of flight j operated by crew k in

pairing p; bk
w;p is the departure time of flight w operated by crew

k in pairing p; and W is the set of ordered flight pairs (w, j) which
are contained in aircraft routes or passenger connections.

If arc (w, j) is in the aircraft route, then dw;j ¼ blw þ gw, indicat-
ing the block time (blw) plus the turnaround time (gw). If there is an
important passenger connection on arc (w, j), then dw;j ¼ blw þ cw;j,
indicating the block time plus the passenger connection time (cw,j).
The flight precedence constraints in Eq. (26) protect the aircraft
connections and passenger connections by limiting the period
between consecutive flights in a pairing.

Stojković and Soumis [40] develop a multi-rank model by add-
ing synchronization constraints. A set of copies from original
flights, defined as tasks, represent the different rank requirements.
As these tasks belong to the same flight, Eq. (27) is added to the
model of Stojković and Soumis [39].X
k2K

Tk
u ¼ af þ Tf ; 8f 2 F; 8u 2 Nf ð27Þ

where af is the earliest departure time of flight f; Tf is the delay of

flight f; Tk
u is the departure time of task u operated by crew k; and

Nf represents the set of tasks associated with flight f.
Eq. (27) ensures that every task associated with flight f has the

same departure time. Column generation is used to solve this
multi-rank crew pairing problem and add the synchronization con-
straints to the master problem. Eq. (27) is rewritten as follows:X
k2K

X
p2P

bk
u;px

k
p ¼ af þ Tf ; 8f 2 F; 8u 2 Nf ð28Þ

The model is applied to data from domestic flights in the United
States. An instance of 190 flights, consisting of 46 and 20 flights
with flexible and fixed departure times, respectively, is evaluated.
Each flight requires five crew members, and the number of
involved crews is 97. This instance is solved in 1237 s.

Abdelghany et al. [41] use a greedy heuristic to iteratively solve
the crew recovery problem. The disrupted flights are grouped into
different stages, in which the flights are resource independent, as
shown in Fig. 8. Resource independence is defined as those flights
not sharing the same crew resources in a stage. Hence, in each
iteration, the resource-independent flights are assigned to the
available crews using the following formulation.



Fig. 8. A rolling framework for crew recovery.
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X
k2K

xk; f;q ¼ 1; 8f 2 F; q 2 Qf ð29Þ

X
f2F

X
q2Qf

xk; f;q � 1; 8k 2 K ð30Þ

dtf � akxk; f;q � 0; 8f 2 F; q 2 Qf ; k 2 K ð31Þ

dtf � df � 0; 8f 2 F ð32Þ

atf � vkxk; f;q; 8f 2 F; q 2 Qf ; k 2 K ð33Þ

atf ¼ dtf þ blf; 8f 2 F ð34Þ
where df is the scheduled departure time of flight f; blf is the
scheduled block time of flight f; ak is the ready time for crew k; vk is
the specific time in which maximum on-duty time is met for crew
k; xk,f,q is the decision variable with a value of 1 if crew k assigned
to flight f for position q; dtf is the actual departure time of flight
f; and atf is the actual arrival time of flight f.

Eqs. (29) and (30) ensure the coverage of flights and that each
crew has at most one rank. The constraints in Eqs. (31) and (32)
indicate that the actual departure time should not be earlier than
the scheduled departure time and the crew-ready time. The con-
straints in Eq. (33) ensure that the arrival time does not exceed
the duty limit. The constraints in Eq. (34) indicate the relationship
between departure and arrival times. Data from major airlines in
the United States with an 8 h recovery period and 121 crews is
solved in 1 min and 51 s. Although this rolling framework cannot
retrieve a globally optimal solution, the solution is practical and
can be obtained in real time.

To limit the model size and speed up recovery, Lettovský et al.
[35] divide the partial pairings in the recovery period into seg-
ments. A partial pairing is illustrated in Fig. 9. The flights in duty
2 are split into segments that consist of one or more flight legs.
Segments are covered instead of flights, thus reducing the number
Fig. 9. Illustration of segments. Segment 1 contains one flight (i.e., flight
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of rows in the model. Using segments may reduce both the number
of generated pairings and the computation time.

4.3. Solving methods for the crew recovery problem

The general model for crew recovery includes few constraints
but a huge number of variables; hence, most recovery approaches
are solved using column generation. Column generation is an effi-
cient method to avoid explicitly enumerating all the variables
while maintaining the optimality of linear programming relaxa-
tion. Under column generation, a path for crew k is generated in
the subproblem, and the optimal set of paths for recovery is
obtained in the master problem. Although the problems in Refs.
[34,35,38,40–42] are solved using column generation, the con-
struction of the networks differs by adopting methods based on
elements such as flights, segments, and duties. Table 3 [32–44]
summarizes the features and solving methods of different studies
on crew recovery.

5. Integrated recovery

In this section, we present characteristics and considerations for
the integration of different resources to perform recovery.

5.1. Integrated aircraft and crew recovery

Both aircraft and crews play important roles during recovery,
with the former being the scarcest resource for airlines. Complex
restrictions and the large scale of the problem hinder the inte-
grated modeling of these two resources.

5.1.1. Basic link
The basic link between aircraft and crew recovery problems is

provided by flight cancellation and delay decisions [45–51]. As
detailed in Sections 3 and 4, the basic models of aircraft and crew
2), while segment 2 consists of two flights (i.e., flight 3 and flight 4).



Table 3
Features and solving methods of crew recovery approaches.

Authors Year Basic element for construction Solving method

Teodorović and Stojković [33] 1995 Flight First-in-first-out and dynamic programming
Wei et al. [32] 1997 Flight Depth-first search + B&B
Stojković et al. [34] 1998 Duty Column generation + resource-constrained shortest path + B&B
Lettovský et al. [35] 2000 Segment Column generation + primal–dual simplex + B&B
Stojković and Soumis [39] 2001 Flight Column generation + resource-constrained shortest path + B&B
Yu et al. [36] 2003 Flight Depth-first search + B&B
Abdelghany et al. [41] 2004 Flight Rolling horizon optimization
Guo et al. [37] 2005 Flight Genetic algorithm + local search
Stojković and Soumis [40] 2005 Flight Column generation + resource-constrained shortest path + B&B
Nissen and Haase [43] 2006 Duty Column generation + resource-constrained shortest path + B&B
Medard and Sawhney [38] 2007 Flight Column generation/depth-first search + solver
Chang [44] 2012 Duty Genetic algorithm

B&B: branch and bound.
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recovery have the common variable zf , which represents the can-
cellation of a flight.

Maher [50] uses the connection network for recovery by focus-
ing on aircraft and crews. The network uses flight copies to repre-
sent different delays. He integrates a path-based model for aircraft
recovery and a general model for crew recovery by adding delay
consistency constraints.X
k2K

X
p2Dk

bk;v
f;p x

k
p � svf �

X
a2A

X
r2Ra

ba;v
f;r x

a
r ¼ 0; 8f 2 F; 8v 2 Uf ð35Þ

where Uf is the set of discrete copies of flight f indexed by copy v; Dk

is the set of duties that can be assigned to crew k; ba;v
f;r is the param-

eter with a value of 1 if flight f on route r contains copy v of flight f

for aircraft a and a value of 0 otherwise; bk;v
f;p is the parameter with a

value of 1 if flight f on duty p contains copy v of flight f for crew k
and a value of 0 otherwise; and svf is the number of crew deadhead-
ing operations on copy v of flight f.

The constraints in Eq. (35) ensure that the delay on each flight is
consistent for the crews and aircraft. Moreover, the number of
delay consistency constraints changes depending on the input
paths and duties.

5.1.2. Aircraft and crew compatibility
A crew member cannot operate all types of fleets. As a pilot

requires the ability to fly a specific aircraft when carrying out a
flight, it is important to ensure resource compatibility. Abdelghany
et al. [46] and Arıkan et al. [51] build arc-based models considering
these compatibility constraints, which are described as follows in
Ref [46]:

ðxkf þ xaf Þð1� fk;aÞ � 1; 8f 2 F; 8a 2 A; 8k 2 K ð36Þ

where fk;a is the parameter with a value of 1 if crew k is eligible to
operate aircraft a and a value of 0 otherwise and xof is the decision
variable with a value of 1 if resource o (aircraft a or crew k) is
assigned to flight f and a value of 0 otherwise.

The constraints in Eq. (36) ensure that only compatible aircraft
and crew can be assigned to a flight. In addition to these con-
straints, the model by Abdelghany et al. [46] includes coverage
constraints for aircraft and crews, and other constraints to ensure
delay time feasibility. A greedy iterative heuristic is used to solve
the integrated recovery problem. It takes about 36 s to obtain a
recovery plan for an instance with 522 aircraft, 1360 pilots, 2040
flight attendants, and 1100 daily flights after ten disrupted flights.

Arıkan et al. [51] adopt a special flight network that contains
four types of nodes—namely, scheduled flight nodes, source nodes,
sink nodes, and must-visit nodes—which represent maintenance
requirements or scheduled crew rest periods. Then, an arc-based
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model is established on this network and the resource compatibili-
ty constraints are formulated as Eq. (37).

xkf ;g �
X
a2Ak

xaf ;g ; 8ðf ; gÞ 2 Conn; 8k 2 K ð37Þ

where Conn is the set of arcs between nodes f and g indexed by
(f, g); Ak is the set of aircraft that can be operated by crew k; and
xof ;g is the decision variable with a value of 1 if resource o covers
arc (f, g) and a value of 0 otherwise. When the resource is an aircraft,
the variable is denoted by xaf ;g . When the resource is a crew, the

variable is denoted by xkf ;g .
If a crew is assigned to a flight, the crew should be qualified to

operate the corresponding aircraft. By using the problem size con-
trol algorithm and passenger aggregation, the total running time
for a network containing 1254 flights with 402 aircraft is reduced
to less than 12 min when the cruise speed-controlling method is
considered.

It is notable that, as the arc-based model is adopted, it is very
difficult—or even impossible—to formulate the complex legality
constraints for pairings or duties of crews.

5.1.3. Connection feasibility
Different resources, such as aircraft, crews, and passengers,

have different transit time requirements. Therefore, the control
of the flight interval by delay decisions partly determines whether
reasonable and high-quality routings and duties can be generated.
Various integrated recovery studies [47,48,50] have incorporated
connection considerations into the construction of routings and
duties to omit additional constraints that guarantee the feasibility
in their models.

The connection feasibility constraints are included in the model
proposed by Arıkan et al. [51]. These constraints can be formulated
as Eq. (38). If a resource is assigned to an arc, the period between
the arrival of the previous flight and the departure of the next flight
should comply with the minimum transit time required for the
resources.

dtg � atf þ CTo
f ;gx

o
f ;g � ATf ð1� xof ;gÞ; 8o 2 Res; 8ðf ; gÞ 2 CCo ð38Þ

where CCo is the set of connection-critical arcs between nodes. The
minimum possible connection time of the arc is below the mini-
mum connection time required for resource o. Res is the set of
resources including aircraft and crews indexed by o; CTo

f;g is the min-

imum connection time required for resource o of arc (f, g); and ATf

is the latest arrival time of flight f.
As solving an integrated model is computationally intractable,

Zhang et al. [49] use a two-stage heuristic algorithm for the
integrated recovery problem. The model mainly decomposes the
integrated recovery problem into two models to solve the aircraft
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and crew recovery problems separately. The two stages are linked
by the connection feasibility between consecutive flights for air-
craft and crews.

When crew members fly the same aircraft consecutively, there
is no need to obey the crew transit time requirements. This can be
considered as a short connection, and considering this situation
increases the solution flexibility. Maher [48,50] takes this into
account. The corresponding variables are described in Section 5.1.1,
and the situation can be formulated as Eq. (39). When an aircraft is
assigned to a route containing a short connection, the pairing that
contains the same short connection is covered by a crew.X
k2K

X
p2P

ck;pf;g x
k
p �

X
a2A

X
r2Ra

ca;rf;g x
a
r � 0; 8ðf ; gÞ 2 SC ð39Þ

where SC is the set of short connections (connection time below
minimum transit time for crew but possibly satisfying aircraft tran-

sit) indexed by (f, g); ck;pf;g is the parameter with a value of 1 if con-
nection (f, g) is contained in pairing p for crew k and a value of 0
otherwise; and ca;rf;g is the parameter with a value of 1 if connection
(f, g) is contained in route r for aircraft a and a value of 0 otherwise.

Nevertheless, it remains difficult to obtain a complete recovery
schedule for aircraft and crews.

5.2. Integrated aircraft recovery considering passengers

Passenger recovery is important for airlines, as irregular sched-
ules can adversely affect the itineraries of passengers. In serious
cases, passengers may fail to reach their destination, and airlines
may have to refund the tickets or arrange flights with other airlines
for them. Hidden costs include the airline’s loss of credibility,
which cannot be easily estimated and which invisibly affects pas-
sengers’ future travel choices. Therefore, recovering the itineraries
of affected passengers quickly and reasonably improves the market
competitiveness of airlines.

5.2.1. Integration of itinerary-based passenger recovery
Most studies on integrated recovery considering aircraft and

passengers are based on itineraries [45,47,48,52–55]. In these
studies, a binary variable is usually adopted to determine whether
an itinerary is affected. An itinerary may be disrupted by either
flight cancellation or violation of passenger transit times. This vari-
able and some related constraints in Eqs. (40) and (41) are detailed
below.

ai � zf ; 8i 2 IT; 8f 2 ItinðiÞ ð40Þ
X
a2A

X
r2Ra

tdD
Itinði;lþ1Þ;rd

r
Itinði;lþ1Þx

a
r �

X
a2A

X
r2Ra

tdA
Itinði;lÞ;rd

r
Itinði;lÞx

a
r

þ tðItinði;lÞ;Itinði;lþ1ÞÞ � TminC �Mai;8i 2 IT;
8l 2 1; :::; jItinðiÞj � 1 ð41Þ

where Itin(i) is the set of flights in itinerary i; IT is the set of itiner-
aries; tðf 1 ;f 2Þ is the scheduled departure time of flight 2 minus sched-

uled arrival time of flight 1; tdD
f ;r is the delay of departure for copy of

flight f in route r; tdA
f ;r is the delay of arrival for copy of flight f in

route r; TminC is the minimum transit time for passengers; M is a
large number; Itin(i,l) is the lth flight leg in itinerary i; and ai is
the decision variable with a value of 1 if itinerary i is disrupted
and a value of 0 otherwise.

The constraints in Eq. (40) ensure that if a flight is cancelled, its
itinerary is disrupted. The constraints in Eq. (41) ensure that if the
passenger transit time is not satisfied in an itinerary, the itinerary
is disrupted. In the objective function of the model proposed by
Arıkan et al. [52], the items related to passengers include delay cost
and spill cost. In addition to the disruption of itineraries, some pas-
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sengers may ‘‘spill” (i.e., be left over) due to capacity shortage
when aircraft is swapped. The fuel cost is expressed as a nonlinear
function related to cruise time and is included in the objective
function. The problem is reformulated into a model with a linear
objective function and conic quadratic constraints. Limited by
model complexity, passenger reallocation is not part of the formu-
lation in Ref. [52].

Regarding integrated recovery considering passengers, many
studies [47,48,51,54–56] have addressed the rearrangement of
passengers. The construction of the corresponding constraints uses
a judgment variable in Eqs. (42)–(45).X
m2CðiÞ

qm
i þ hi ¼ PNi; 8i 2 IT ð42Þ

X
i2IT

X
m2CðiÞ

/m
f q

m
i �

X
a

X
r2Ra

drfCapax
a
r ; 8f 2 F ð43Þ

X
m2IT

qi
m �

X
m2IT

PNmð1� aiÞ; 8i 2 IT ð44Þ

PNið1� aiÞ ¼ qi
i; 8i 2 IT ð45Þ

where CðiÞ is the set of candidate itineraries for target itinerary i
(including itinerary i); PNi is the number of passengers originally
allocated to itinerary i; /m

f is the parameter with a value of 1 if flight
f is in itinerary m and a value of 0 otherwise; Capa is the capacity of
aircraft a; hi is the number of passengers originally allocated to itin-
erary i to be served by other airlines or refunded; and qm

i is the
number of passengers from itinerary i to be assigned to itinerary m.

The constraints in Eq. (42) guarantee that all passengers on any
itinerary are either successfully transported to their destination or
refunded. The constraints in Eq. (43) ensure that the number of
passengers cannot exceed the capacity of the aircraft assigned to
the flight. The constraints in Eq. (44) guarantee that no passenger
is allocated to a disrupted itinerary. The constraints in Eq. (45)
ensure that passengers follow the original itinerary without any
change under no disruption.

Limited by the scale of the problem and the allowable compu-
tation time, although various models have considered passenger
reallocation, approximations are usually adopted without consid-
ering reallocation constraints but by penalizing the number of dis-
rupted itineraries in the objective function. Marla et al. [53] use a
mechanism called flight planning that enables flight speed changes
in long-haul flights. Unlike the method in Ref. [52], Marla et al. [53]
discretize the dynamic selection of flying time instead of consider-
ing the cruise time as a variable. An accurate model and an approxi-
mate model have been proposed. As obtaining the solution to the
accurate model is very time-consuming, the approximate model
is used for case analysis. Similarly, Bratu and Barnhart [45] com-
bine aircraft, crew, and passenger recovery by proposing two mod-
els called the disrupted passenger metric model (DPM) and the
passenger delay metric model (PDM). The latter can more accu-
rately calculate the cost of passenger delay by allowing passenger
rescheduling. In an instance involving the reallocation of more
than 80 000 passengers, the average calculation time of the PDM
is approximately 25 times that of the DPM.

5.2.2. Integration of flight-based passenger recovery
Besides itinerary-based passenger recovery, other methods are

available for passenger recovery. The method proposed by Arıkan
et al. [51] treats all resources, including aircraft, crews, and pas-
sengers, as the same entities and maintains the connection feasibil-
ity and flow balance of each entity in a flight network. However,
this method increases the network scale, and entity aggregation
should be used to reduce the number of entities without
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compromising optimality. Hu et al. [56] construct a model based
on a time-band network and propose a flight-based passenger-
transiting mechanism, in which flights with the same departure
and arrival airports are arranged for passengers whose itinerary
is disrupted. Maher [48] builds a flight-based passenger recovery
model based on the point-to-point network, which is considered
to be non-multi-itinerary. The formulation of the model extends
the airline recovery formulation in Ref. [50] to include passenger
recovery.
5.2.3. Heuristic-based methods
Various heuristic algorithms exhibit high performance for

simultaneously reassigning aircraft and passengers in case of
disruptions.

Bisaillon et al. [57] propose a large neighborhood search heuris-
tic algorithm that is divided into construction, repair, and improve-
ment phases. The first two phases generate a feasible solution. The
third phase implements large changes to improve the solution
based on the solution from the previous phases, while preserving
feasibility. The construction phases are then executed again itera-
tively. This algorithm provides high-quality solutions and can han-
dle large-scale problems in real time. Sinclair et al. [58] include
additional steps for each phase of the algorithm in Ref. [13] to
improve performance. Experimental results show that the
destroy-and-create step, which is added to the third phase, has
the greatest improvement on the quality of the solution.

Sinclair et al. [59] also propose a column generation post-
optimization heuristic algorithm. An integrated linear program-
ming model based on a time–space network is established. The
algorithm in Ref. [58] is used to obtain the initial solution and to
construct constraints of the restricted master problem (RMP).
Then, in order to obtain suitable passenger rearrangement options,
the corresponding column generation subproblem is solved.

Jozefowiez et al. [60] propose the new connection flights heuris-
tic method, which is a three-stage heuristic algorithm based on
shortest-path calculation. The first stage integrates various types
of disruptions into existing schedules. In the second stage, passen-
gers with a disrupted itinerary are assigned to candidate feasible
itineraries by solving the corresponding shortest-path problem.
In the third stage, a new sub-rotation is inserted into the existing
aircraft rotation to allocate additional passengers.

Hu et al. [61] use a greedy randomized adaptive search proce-
dure (GRASP) algorithm for the integrated recovery of aircraft
and passengers after airline operation disruption. Suitable passen-
ger reassignment can be obtained based on new aircraft routing in
Table 4
Characteristics of integrated recovery approaches.

Authors Year Type Model for ai

Bratu and Barnhart [45] 2006 ACP AB
Abdelghany et al. [46] 2008 AC AB
Jafari and Zegordi [54] 2010 AP AB
Jafari and Zegordi [55] 2011 AP PB
Bisaillon et al. [57] 2011 AP —
Petersen et al. [47] 2012 ACP PB
Jozefowiez et al. [60] 2013 AP —
Sinclair et al. [58] 2014 AP —
Hu et al. [56] 2015 AP AB
Maher [48] 2015 ACP PB
Zhang et al. [49] 2015 AC AB
Arıkan et al. [52] 2016 AP AB
Hu et al. [61] 2016 AP —
Maher [50] 2016 AC PB
Sinclair et al. [59] 2016 AP —
Arıkan et al. [51] 2017 ACP AB
Marla et al. [53] 2017 AP AB

ACP: aircraft, crew, and passengers; AP: aircraft and passengers; AC: aircraft and crew;
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each iteration by applying the GRASP algorithm. The iterations pro-
ceed until one of the stopping criteria is met.

5.3. Integrated airline recovery problem

Thus far, few studies have fully addressed integrated recovery
[45,47,48,51], as detailed throughout this section. The model pro-
posed by Bratu and Barnhart [45] is one of the first attempts to
solve fully integrated problems, but only considers reserved crews.
To obtain real-time solutions for integrated recovery, Arıkan et al.
[51] use two preprocessing methods to considerably reduce the
number of constraints and variables, and an algorithm to limit
the scope of recovery.

Petersen et al. [47] integrate five subproblems for recovery of
the schedule, aircraft, crew, itinerary, and passengers. They pro-
pose a Benders decomposition framework to solve the integration
problem. An example with 800 daily flights and two fleets is solved
by means of the integrated method and sequential solution,
respectively. Although the integrated method shows higher perfor-
mance, it requires further improvements to solve larger-scale
problems within 30 min.

Maher [48] uses the column-and-row generation method. For
integrated recovery, the column generation subproblems are
solved for the duty and aircraft routing variables using a
shortest-path algorithm. A passenger rearrangement scheme is for-
mulated as a knapsack problem in column generation. The rows,
which are added to the model iteratively, represent passenger real-
location constraints and delay consistency on each flight between
aircraft and crew. A point-to-point schedule with 262 flights and
a hub-and-spoke schedule comprising 441 flights are solved in
427 and 400 s, respectively.

Some characteristics of existing integrated recovery approaches
are summarized in Table 4 [45–61].

6. Conclusions and future work

In this review, we presented basic models and extensions to dis-
ruption management for aircraft and crew recovery, as well as
integrated recovery considering passengers. For aircraft recovery,
we reviewed the basic arc-based and path-based models and dis-
cussed the situations that these models adapt to. We also summa-
rized the formulations related to delay and maintenance. In terms
of crew recovery, we reviewed the basic model and the extensions
related to crew ranks and delay. For integrated recovery, the key
constraints linking different resources and related algorithms were
rcraft recovery Solving method

—
Rolling horizon framework
Rolling horizon framework
—
Large neighborhood search heuristic
Benders decomposition and column generation
Heuristic approach based on shortest-path problems
Large neighborhood search heuristic
—
Column–row generation
Two-stage heuristic algorithm
Conic quadratic reformulation
GRASP
Column–row generation
Column generation post-optimization heuristic
Conic quadratic reformulation
—

AB: arc-based; PB: path-based.
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introduced. After reviewing the development of disruption
management, we provided the following suggestions for future
research. In recovery using one stage, more realistic factors should
be considered in order for the solution to be more practical and
useful. For example, aircraft swapping between different fleets,
as a flexible yet more complicated recovery method, can be mod-
eled. In addition, solving the fully integrated problem still remains
challenging due to its complexity. Future research should focus on
integrating several stages and devising optimization methods to
solve the integrated models. In integrated recovery, preprocessing
to reduce the size of input data can be adopted in order to reduce
the complexity. Decomposition may be used as a preprocessing
approach. The loss due to disruption mainly comes from passen-
gers. Therefore, passenger-centered recovery is a promising
research topic. For example, passenger preferences should be
included for recovery in order to improve service. Likewise,
evaluating passenger information through data mining may lead
to more accurate optimization.
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