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In the current shift from conventional fossil-fuel-based materials to renewable energy, ecofriendly mate-
rials have attracted extensive research interest due to their sustainability and biodegradable properties.
The integration of sustainable materials in electronics provides industrial benefits from wasted bio-origin
resources and preserves the environment. This review covers the use of sustainable materials as compo-
nents in organic electronics, such as substrates, insulators, semiconductors, and conductors. We hope this
review will stimulate interest in the potential and practical applications of sustainable materials for green
and sustainable industry.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A recent trend in electronic devices is to develop specially
designed organic materials that exhibit high flexibility, some-
times including mechanical stretchability, which have been con-
sidered for practical or potential applications ranging from
wearable electronics to applications in mobile health, sports,
and more [1]. Much of the interest in the use of organic material
is associated with the desire to design electronic components
that are ecofriendly and biocompatible, or even metabolizable
[2–5]. The adoption of material derived from nature is a primary
concern for both society and industry. This aim conflicts with
the ever-increasing volume of electronic waste, which was esti-
mated to be 5.0 � 107 Mt in 2018 [6]. In particular, plastic
expenditure and waste have been presenting enormous problems
in recent times. For example, polyethylene is presently at the
peak of universal consumption, at about 275 Mt in 2015, and
is widely used in everyday substances including plastic bags,
toys, and packing materials [7]. Due to the greater demands of
emerging industries and the current coronavirus disease 2019
(COVID-19) in 2020, more plastics are being consumed, and their
full degradation will take over 500 years [8,9].
Therefore, inspiration from nature has led to explorations in
biocompatible electronics, prompting the development of organic
electronics that naturally break down when their use is over
[10]. A broad area of sustainable organic materials originating from
animals, plants, and bacteria, such as chitin, cellulose, starch, and
various kinds of proteins, have been studied [11–24], and are gen-
erally adopted in various applications such as coating materials,
biomedical applications, and so on. With increasing demands for
sustainable devices, the question of how to integrate non-
petroleum and plastics-related exotic materials with the present
standards of living is coming under scrutiny. Sustainable materials
with superior biodegradability have attracted a great deal of atten-
tion in terms of being integrated with devices in order to benefit
from bio-origin materials while preserving the environment. How-
ever, integrating sustainable materials in electronic devices with a
high-efficiency output is a continued obstacle. Nevertheless, per-
sistent environmental concerns have rationalized the use of
organic electronics in substrates, the dielectric layer, and semicon-
ducting materials [25].

Hence, this review aims to provide a brief overview of sus-
tainable materials for use in degradable circuit boards and
organic electronics, covering the latest developments in this
field. In this review, organic soft materials are classified based
on function, such as ① substrates and insulators, ② semiconduc-
tors, and ③ conductors. We predict that life will be as comfort-
able and safe with highly deformable and biodegradable
electronics integrated everywhere—in clothes and with our
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bodies in the near future—just as we are currently familiar with
tablet computers and smartphones.

2. Passive and active components

2.1. Substrates and dielectric layers

2.1.1. Paper and silk
Various materials originating from nature have been considered

to be appropriate substrates for organic electronics due to their
numerous advantages, including economic benefits, biocompatibil-
ity, and nontoxicity. One of the most familiar and classical organic
substrates is paper, which is made from plants or wood-derived
cellulose. The outstanding physical characteristics of cellulose
make it possible to cover large areas and enable the mass produc-
tion of paper. Paper is superior to other deformable passive mate-
rials due to its economical price, at approximately 0.2 USD�m�2,
excellent flexibility, and roll-to-roll (R2R) fabrication capability at
a fast process speed of about 25 m�s�1 [26]. In addition to its use
in typical packaging and storage applications, paper has been
developed for use as a substrate for various unconventional forms.
Organic thin-film transistor (OTFT)-based circuits have been fabri-
cated on paper and have demonstrated flexibility and specific
results comparable to those of conventional polymer substrates
(Fig. 1(a)) [27–29]. Low-voltage-driven OTFTs have been achieved
Fig. 1. Paper-substrate-based electronic devices. (a) OTFT arrays fabricated on a paper
processed OPV on paper with the device configuration (bottom right corner); (d) ima
Vin: input-voltage; Vout: output-voltage; VDD: voltage drain to drain; VSS: voltage sou
polyanionic poly(styrene sulfonate); P3HT:PCBM: poly(3-hexylthiophene):(6,6)-phenyl-
Publishing, �2004; (b) reproduced from Ref. [29] with permission of Wiley-VCH, �2011;
from Ref. [38] with permission of Wiley-VCH, �2011.
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on banknotes for applications in anti-counterfeiting. OTFTs could
be fabricated on paper operating under less than 2 V with mobili-
ties of about 0.3 cm2�V�1�s�1, regardless of banknote paper’s sur-
face roughness. Yun et al. [30], Shao et al. [31], Ha et al. [32],
Casula et al. [33], and Martins et al. [34] utilized low power-
driven complementary metal–oxide semiconductor (CMOS) invert-
ers based on a paper substrate. Fig. 1(b) [29] shows a photograph of
a CMOS inverter operating in accordance with input-voltage (Vin).
In addition, paper substrates have been applied to other opto-
electrical devices, including organic photovoltaics (OPVs) and ther-
mochromic displays [35–37]. In particular, the advanced perfor-
mance of OPVs has been demonstrated via full R2R printing by
means of a solution process using flexographic and gravure meth-
ods. The device has an inverted configuration, such as a printed
ZnO/Zn bottom and a conducting polymer top electrode based on
economical materials with a low-temperature solution process
(Fig. 1(c) [37]). Another example is the use of low-temperature
chemical vapor deposition (CVD) onto paper for photovoltaics;
the device consists of conducting polymer electrodes, an active
organic layer, and reflective back electrodes, as shown in Fig.
1(d) [38]. This work demonstrated arrays of OPV devices that could
be folded without degradation of the electrical characteristics,
demonstrated through repeated folding tests.

Silk is another natural material with a long history that has
been applied in the dielectric layer and as an electronic device
substrate; (b) a CMOS inverter circuit on a paper substrate; (c) a flexible, solution-
ge of CVD-based solar cells on semitransparent paper. TFT: thin-film-transistor;
rce to source; PEDOT:PSS: poly(3,4-ethylenedioxythiophene) system doped with
C61-butyric acid methyl ester. (a) Reproduced from Ref. [27] with permission of AIP
(c) reproduced from Ref. [37] with permission of Wiley-VCH, �2011; (d) reproduced



Fig. 2. Dielectric layer and substrates based on silk. (a) Chemical structure of silk fibroin; (b) bio-memory resistor based on silk fibroin protein showing reversible and
nonvolatile properties; (c) solution-processed silk fibroin films as the dielectric layer in flexible OTFTs; (d) bioresorbable silk substrates for the transfer of a sensor array onto
brain tissue. ITO: indium-tin-oxide; PDMS: poly(dimethylsiloxane); PET: polyethylene terephthalate. (b) Reproduced from Ref. [40] with permission of Wiley-VCH, �2012;
(c) reproduced from Ref. [41] with permission of Wiley-VCH, �2011; (d) reproduced from Ref. [44] with permission of Springer Nature, �2010.
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substrate. Fundamentally, silk is a polypeptide polymer consisting
of fibroin and sericin. Fibroin has repeated glycine, serine, and ala-
nine units, which enhance the mechanical robustness due to inter-
chain hydrogen bonding (Fig. 2(a)) [39]. Hota et al. [40]
manipulated bio-origin silk fibroin to make a transparent bio-
memory resistor and analyzed the device’s endurance and reten-
tion characteristics. As shown in Fig. 2(b) [40], metal–insulator–
metal capacitors based on silk fibroin exhibited memory resistor
functionality with simultaneous rectifying properties. In addition,
silk was applied as an efficient gate insulator layer on a polyethy-
lene terephthalate (PET) substrate (Fig. 2(c)), exhibiting a mobility
of about 23 cm2�V�1�s�1 with low-voltage operation [41]. Another
example of silk being applied as a dielectric layer was demon-
strated by Capelli et al. [42], whose organic light-emitting transis-
tors based on silk yielded a light emission of 100 nW. Chang et al.
[43] made use of spider silk as a polyelectrolyte dielectric layer in
OTFTs based on a pentacene semiconductor and investigated the
hydration of the silk dielectric with respect to reproducibility
under different levels of humidity. In addition, various research
groups have investigated the characteristics of silk, which include
deformability and outstanding mechanical properties. Kim et al.
[44] demonstrated metal electrodes with the bioresorbable proper-
ties of silk (Fig. 2(d)), and showed the transfer printing process. In
the fabrication sequence, metal–oxide field effect transistors (FETs)
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were fabricated on a poly(methyl methacrylate) temporary
substrate. Next, the devices were fished on a poly(dimethylsilox-
ane) substrate. As a result, the electrodes were transferred to the
silk film above a silicon substrate, resulting in resorbable elements
that could be safely implanted into the body, and in which the
degree of crystallinity was tuned to modulate transient times. In
subsequent research, Hwang et al. [45] demonstrated biomedical
applications based on electronics interacting with living tissue,
with controlled transient times and resolution.

2.1.2. Cellulose and cellulose derivatives
Cellulose is a famous example of the abundant biopolymers

available in nature. It is superior to non-carbohydrate lignin, and
is one of the most significant biomass materials. Cellulose is a
well-ordered material that can form stable nanostructures, in
which van der Waals interactions and hydrogen bonding between
the oxygen atoms and hydroxyl groups of neighboring molecules
result in lateral packing. This packing results in the formation of
aggregates or nanofibrils into larger microfibrils, whose crystalline
structure and amorphous domains have been explored in detail.
Furthermore, cellulose nanocrystals (CNCs) can be extracted from
the crystalline regions of cellulose, and possess the unique proper-
ties of a high aspect ratio, high mechanical strength, and liquid
crystallinity [46–51]. By taking advantage of the template ability



Fig. 3. LC and dielectric properties of cellulose moieties. (a) Orientation control of a semiconducting polymer assisted by a cellulose-based LC template; (b) schematic
illustration of OTFTs based on a cellulose-derivative dielectric layer with the chemical structure of TMSC; (c) bending tests of a cellulose ion gel-based TFT configuration with
electrical properties; (d) OTFT memory device with a maltoheptaose (MH) dielectric layer and proposed memory mechanisms; (e) chemical structure of MH-b-PS diblock
copolymer with OTFT memory device properties depending on molecular configuration. NR: nanorod. (a) Reproduced from Ref. [52] with permission of the American
Chemical Society, �2017; (b) reproduced from Ref. [54] with permission of Wiley-VCH, �2015; (c) reproduced from Ref. [55] with permission of Wiley-VCH, �2013;
(d) reproduced from Ref. [56] with permission of Wiley-VCH, �2015; (e) reproduced from Ref. [57] with permission of Wiley-VCH, �2014.
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of CNCs based on their liquid crystal (LC) characteristics, it was
possible to generate a long-range ordered semiconducting
polymer, poly[3-(potassium-4-butanoate) thiophene-2,5-diyl]
(PPBT) (Fig. 3(a)) [52]. In a mixed solution state, PPBT molecules
were combined with an LC template of CNCs, resulting in an
ordered state with oriented domains. Thus, the existence and pack-
ing of CNCs exhibiting an LC phase resulted in enhanced p–p stack-
ing of the PPBT molecules. The PPBT polymer chains incorporated
with the CNC host and followed its organization within the con-
finement of the CNC aggregates [53]. To minimize the excluded
volume in this confined geometry, the PPBT chains aggregated
and became oriented, which maximized the translational entropy
by sacrificing the orientational entropy. Moreover, a chirality
within the PPBT/CNC complex was analyzed by means of circular
dichroism measurement, suggesting that the polymer chains mim-
icked the chirality of the helicoidal twisted nematic LC host, the
CNCs.

Furthermore, the functionalization of cellulose grants it dielec-
tric properties in bioelectronics. Attaching functional groups to
impart solution processability to the cellulose derivative
trimethylsilyl cellulose (TMSC) allowed it to act as an ultrathin
dielectric film for thin-film transistors (TFTs) (Fig. 3(b)) [54]. A
hybrid organic/inorganic dielectric layer based on aluminum oxide,
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Al2O3, and TMSC was used as a capping layer for device fabrication.
Using the dielectric layer, TFTs based on p- and n-type semicon-
ductors could operate at about 15 V, exhibiting charge-carrier
mobilities of about 0.1 and 0.6 cm2�V�1�s�1, respectively. The
TMSC-based device showed negligible electrical hysteresis due to
the low degree of shallow traps. Another study utilized cellulose-
based ion gel as a suitable gate dielectric layer to design
electrolyte-gated OTFTs, as demonstrated in Fig. 3(c) [55]. The elec-
trolyte thin film was ionically conductive with high electronic
insulation and flexibility, resulting in superior dielectric character-
istics and a high capacitance ranging from about 4.5 to 15.5
lF�cm�2. The schematic illustration in Fig. 3(c) shows an ion gel
electrolyte-gated TFT based on a ZnO nanorods semiconductor,
turning on at 0.8 V and exhibiting an on/off ratio of about 100, as
extracted from transfer curves.

In addition, the cellulose-based layer showed good dielectric
performance in a memory device due to the existence of induced
charge carriers at the interface between the dielectric and the
semiconductor. Chiu et al. [56] made use of the functional groups
of biomaterials to trap or accumulate the charge carriers generated
at the interfaces in order to advance the device’s properties. More-
over, a multiple charge-storage property was exhibited by numer-
ous hydroxyl groups-based polysaccharides with a-glucan
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derivatives, showing the close interface or the polysaccharide tex-
ture. As shown in Fig. 3(d) [56], some polysaccharides, such as
maltoheptaose (MH), dextran, and polysucrose, were applied to
transistors under the semiconductor. Under a positive gate voltage,
there was a considerable threshold voltage change in the transfer
characteristic, which was maintained. This implies that charge car-
riers generated by an electric field might have accumulated in the
polysaccharide surface under the gate voltage. Therefore, the
results showed a high drain current with nonvolatile and stable-
retention properties derived from the strong charge trapping. The
hydroxyl groups deprotonate when electrons are transported from
the semiconductor, inducing oxygen ions. The subsequent hydrox-
ylate anions may strengthen the hydrogen bonding to enhance the
storage of the polysaccharides’ electron charges. Furthermore, a
polysaccharide with an organic semiconductor interacted with a
block copolymer electret, maltoheptaose-block-polystyrene (MH-
b-PS), in a memory device (Fig. 3(e)) [57]. The electron-trapping
property of horizontally aligned cylindrical MHs was superior than
that of random-sphere conditions (as-coated), vertically oriented
cylinder structures (thermal annealed at 8 h), or horizontally ori-
ented cylinder structures (thermal annealed at 12 h) because the
hydroxyl groups were within an active contact range. Electrical
properties were further increased using the hydrogen bonding
between 1-aminopyrene and the hydroxyl groups within the MH
derivatives. In general, this configuration afforded an outstanding
flash memory, exhibiting a wide memory window (�50 V), reten-
tion times of about 1 � 104 s, an on-current/off-current (Ion/Ioff)
of about 1 � 105, and stable reversibility of about 250 cycles.
Therefore, the results showed that polysaccharide functional
groups can modulate the electrical properties of sustainable tran-
sistor memory devices with high performance.

2.1.3. Resins, gelatin, albumen, and Aloe vera
A resin is a bio-origin material derived from plants and animals.

For example, plant resins include sap or viscous exudates. Resins
are hydrophobic volatile and nonvolatile terpenoid compounds
with or without phenolic secondary complexes existing within or
above the plant surface. These compounds have attracted research
attention due to their medicinal applications, their application in
the industrial production of varnishes and lacquers, and their use
in incense and perfume. For example, amber and copal, which origi-
nate from plants, are known to have a high insulation capacity.
There are also animal-derived resins. For example, shellac is an
animal-derived resin extracted from the insect Tachardia lacca. It
was used as a folder for stereo records with approximately 80
revolutions per minute (rpm), but is now more commonly used
as a barrier to prohibit the decrease of moisture within citrus fruits,
and is also applied to therapeutic capsules for floating the above
unaffected regions of the gastrointestinal portion and searching
the province [58]. Goswami [59] investigated the natural resin
shellac and Irimia-Vladu et al. [60] used shellac as the dielectric
layer in OTFTs. Alcoholic solvents were used to dissolve the shellac
flakes, and the solution process, such as drop and spin coating, gene-
rated different thicknesses of the thin films. Post-crosslinking was
performed using a heating process that did not exceed about
100 �C, inducing remarkable surface smoothness. Furthermore,
shellac dielectric-based OTFTs were fabricated and exhibited out-
standing smoothness of the film without the relaxation of dipolar
molecules or ions. Fig. 4(a) [60] shows the schematic configuration
of C60- and pentacene-based OTFTs with a shellac dielectric layer.
The electrical properties demonstrated negligible hysteresis, sug-
gesting that the density of the trapped electrons or holes is trivial.
Many kinds of resins derived from plants remain to be investigated
for use in electronic devices.

Gelatin has a long history as a commonly adopted material. For
example, the ancient Egyptians heated bone and animal leather to
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use native collagen as an adhesive. For the first time in 2010, gela-
tin was applied in a completely biodegradable and biocompatible
organic field effect transistor (OFET) based on a gelatin substrate
[61]. A smooth surface of stiff gelatin exhibits a root-mean-
square (RMS) roughness of about 30 nm. For application in organic
electronics, minimized roughness of the substrate is essential, as
the roughness influences the fabrication processes of the films
above, affecting the function of each dielectric and semiconductor,
and of the electrode layers’ interface. Fig. 4(b) [61] shows a typical
gelatin-based electronic device, in which a tetratetracontane layer
placed by thermal evaporation onto the gelatin film exhibits passi-
vation and minimizes hysteresis, with low leakage currents.
Another interesting application of gelatin is its use in polymer
complexes.

Recently, there has been a need for elements that can tune the
degradation and solubility in biomedical electronics and degrad-
able bio-devices. Acar et al. [62] demonstrated that a gelatin filler
with poly(vinyl alcohol) (PVA) as a polymer complex could
improve the mechanical characteristics of an dielectric layer in
OFETs. In addition, the biodegradability and nontoxicity of gelatin
are well known, making it an ideal candidate for bioresorbable
electronics [63]. It was reported that changing the amount of gela-
tin in the PVA–gelatin composite modulates the soluble properties
of the films, resulting in optimized resolution of the layer during
the fabrication of devices.

Significant insight into electronic materials can be gained from
the items we recognize or handle daily. For example, Chang et al.
[64] used pure albumen extracted from chicken egg white as a
dielectric within OFETs. The surface smoothness, as measured by
atomic force microscopy (AFM), had an RMS roughness of about
2 nmwith outstanding dielectric properties, showing that albumen
is applicable for OTFT applications. The image on the left in Fig. 4(c)
[64] illustrates the configuration of the albumen-based device; it
has a capacitance of about 10 nF�cm�2 and a dielectric constant,
e, of about 6, which are coherent with the dielectric constant of
the denatured egg white, which is about 5.5 [65]. The output cur-
rents of these OTFTs were about 3 � 10–6 A, with negligible hys-
teresis and gate leakage currents of about 10–10 A. Furthermore,
when this albumen-based dielectric layer was applied to a flexible
OFET device, the inverter circuits showed modest electrical
properties.

Aloe barbadensisMiller, commonly known as Aloe vera, is a juicy
plant that grows in barren lands. Aloe vera gel is commonly and
historically applied as an anti-inflammatory drug for the allevia-
tion of insect bites and sunburn. The leaves contain a gel that is
mostly water, with a small amount of glucomannans, amino acids,
lipids, sterols, and vitamins [66]. The gel is economical, easy to
handle, and applicable for biocompatible and biodegradable elec-
tronics. For these reasons, Aloe vera was considered for electronics
development by Khor and Cheong [67], who studied the dielectric
characteristics of common Aloe vera gel. A printed Aloe vera layer
has an e of about 4. Fig. 4(d) [68] shows a scheme of an n-type OTFT
whose dielectric layer is based on a complex of Aloe vera paste
derived from fresh leaves with SiO2 nanoparticles, which enhanced
the compatible properties of C60 with the Aloe vera gel. An analysis
of the output properties was done directly after the fabrication of
device and then again after 15 days, revealing decreased electrical
properties, due to the hydration of the dielectrics with the oxida-
tion of the semiconductor and electrodes [69]. Furthermore, a sim-
ple memory cell structure based on a dried Aloe vera film has been
demonstrated, as shown in Fig. 4(d) [68]. The drying temperature
of the films affected the physicochemical properties, causing vari-
ation of the device properties affecting the set and reset voltages.
The switching property was highly reproducible, showing an Ion/Ioff
of about 1 � 104, a retention time of 12 h, and an endurance of 100
switching cycles.



Fig. 4. Dielectric characteristics of resin, gelatin, albumen, and Aloe vera. (a) The fundamental chemical elements of shellac resin and schematic configuration of OTFT based
on them; (b) a schematic illustration of an inverter device with gelatin as a gate dielectric layer, exhibiting flexibility; (c) a cross-linked albumen dielectric layer-based OTFT
device; (d) a schematic configuration based on an Aloe vera memory device with electrical properties during resistance switching tests. TTC: tetratetracontane; PTCDI-C8:
N,N0-Dioctyl-3,4,9,10-perylenedicarboximide. (a) Reproduced from Ref. [60] with permission of Royal Society of Chemistry, �2013; (b) reproduced from Ref. [61] with
permission of Elsevier, �2010; (c) reproduced from Ref. [64] with permission of Wiley-VCH, �2011; (d) reproduced from Ref. [68] with permission of Elsevier, �2017.
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2.2. DNA and nucleobases

DNA has attracted attention in academia and industry since its
double-helix structure was first observed [70]. Beyond common
biological applications of DNA material, its self-organizing mecha-
nism has been of interest for nontraditional applications over the
past couple of decades, including biological computing and infor-
mation storage [71–74]. Engineers and scientists in the nanotech-
nology field have used DNA as a template to create sophisticated
nanoscale or microscale structures [75–78]. Furthermore, long
polymeric chains with a backbone exhibiting negative charges,
which are similar to the initiation of molecular wire growth, have
been used by researchers in the material and electrical sciences to
explore charge transport characteristics at the atomic scale. More
recent studies have investigated DNA’s capabilities beyond the cell
for feasible applications such as nanotechnology, information stor-
age, electronic devices, biosensing, and so on. Enhanced conver-
569
gence studies of diverse DNA-based research areas have led to
the development of impressive and unique electronics that modu-
late signals with nanoscale accuracy. A typical intrinsic DNA mate-
rial consists of two binding nucleotide chains with a width of only
2–3 nm but a length of several of base pairs. The double-helix con-
figuration is based on the hydrogen bonding between pairs of
nucleobases. A nucleotide comprises a pentose, a phosphate group,
and a nitrogenous base (i.e., a nucleobase). Common DNA nucle-
obases include adenine (A), guanine (G), thymine (T), and cytosine
(C). The energy levels of DNA-based material cover a wide range
from the highest occupied molecular orbital (HOMO) to the lowest
unoccupied molecular orbital (LUMO), which enables the selection
of appropriate electrons and hole transport in electronics. As
shown in Fig. 5(a) [79], electrodes such as indium–tin–oxide
(ITO), Au, and poly(3,4-ethylenedioxythiophene) (PEDOT) with
work functions of 4.7–5.1 eV are commonly applied to anodes to
inject holes in opto-electronics. Al electrodes have a work function



Fig. 5. DNA structure and its applications in organic light-emitting diodes (OLEDs).
(a) The energy levels of DNA and nucleobases compared with electrodes; (b)
fluorescent and phosphorescent OLEDs with a DNA-based electron-blocking and
hole transport layer. NPB: N,N0-diphenyl-N,N0-bis(1-naphthyl)-1,10-biphenyl-
4,400-diamine; Alq3: tris(8-hydroxyquinolinato)aluminum; BCP: bathocuproine;
CBP: 4,40-bis(N-carbazolyl)-1,10-biphenyl; Ir: iridium. (a) Reproduced from Ref.
[79] with permission of Wiley-VCH, �2015; (b) reproduced from Ref. [83] with
permission of Optical Society of America, �2011.
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of 4.1–3.1 eV with a LiF layer, and are mostly applied as cathodes to
inject electrons. Nucleobases have also been investigated for use in
organic light-emitting diodes (OLEDs), due to their flexible control
of charge transport. Steckl [80], Hagen et al. [81], and Lee et al. [82]
demonstrated the application of DNA in OLEDs and highlighted the
potential of DNA as a sustainable material that could be applied to
optical waveguides and lasing components (Fig. 5(b) [83]). The use
of DNA thin films incorporated with fluorescence-emitting compo-
nents for OLEDs could also improve the brightness performance of
the devices in comparison with conventional OLEDs, in which a
thin DNA layer is applied as a high-efficiency electron-blocking
layer (EBL) without interfering with the hole transport process.
Accordingly, the DNA layer can generate excitons with fluorescent
OLEDs decorated with specific fluorophores such as standard
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tris(8-hydroxyquinolinato)aluminum for green emission and N,
N0-diphenyl-N,N0-bis(1-naphthyl)-1,10-biphenyl-4,400-diamine for
blue emission, as shown in Fig. 5(b). When thin films of the
DNA-surfactant complex are used in phosphorescent OLEDs, as
demonstrated in Fig. 5(b), their brightness and efficiency are supe-
rior to those of their phosphorescent counterparts. In addition,
Gomez et al. [84] demonstrated the use of T and A as the EBLs,
which resulted in enhanced photoemission efficiency.

In subsequent studies, G, C, and uracil (U) were investigated as
potential EBLs and hole-blocking layers (HBLs), including film fab-
rication and electronic characterization [84]. In that work, the
nucleobases exhibited HOMO and LUMO energy levels comparable
to those of DNA (i.e., ranging from 3.5 to 4.0 eV); furthermore, the
electron affinity values, which ranged from 1.8 to 3.0 eV, were cap-
able of increasing the number of combinations for the structure of
the electronic device. Table 1 [79] outlines the optical characteris-
tics of various nucleobases acting as EBLs and HBLs.

As shown in Fig. 5(a), the HOMO–LUMO energy level gaps of the
nucleobases uniformly increase from 3.6 to 4.0 eV, corresponding
to gray and black lines, respectively. The increase in the ionization
potential HOMO follows this order: G < A < C < T < U. Therefore, G
exhibits the minimum ionization potential, with a HOMO of about
6 eV and an electron affinity, LUMO, of about 2 eV; thus, it is an
efficient hole acceptor that hinders electron transport. In contrast,
U shows the greatest ionization potential of about 7 eV and an
electron affinity of about 3 eV. Thus, it is an efficient electron
acceptor that hinders hole transportation [85,86]. The results of
previous studies [87–91] showed several variations because the
researchers used individual measuring methods with discrete
experimental situations; however, the common tendencies shown
by the results were almost the same. With the addition of nucle-
obases, nucleic acids can be used for both hole and electron trans-
port with blocking, and thus have potential for a wide range of
applications. An early theoretical model suggested that DNA can
be an effective conducting wire with sufficient delocalization of
the charge transport along several nucleobase pairs [92]; in this
case, the conduction is generally attributed to positive charges
being moved along the chain by short-range processes [93,94].
The G nucleobase, which exhibits the highest HOMO energy level,
is widely recognized as the dominant hole [95,96]. A simulation
study of a G-dominant chain with Au electrodes (Fig. 6(a) [96])
demonstrated the high hole-hopping rate along the localized
orbitals.

Although it is commonly suggested that the mechanism of
charge transport follows the G bases, long-range charge transport
is difficult to achieve, which results in saturation with conflicting
or unreproducible results. The unique system of DNA also enables
a variety of modifications to the material characteristics, including
diameter, sequence, and rigidity, which can modulate the electrical
characteristics. While examining the possibility of using DNA as
electrical wires, G was determined to be the fundamental nucleo-
base due to its lowest oxidation potential compared with the
other nucleobases (Figs. 6(b) [97] and (c) [98]). It can easily lose
electrons under oxidative stress, which generates positive charges
that go beyond the formed base and continue to move, following
G-dominant sequences. Since G-dominant sequences decrease in
oxidation potential, positive charges can transport from one G base
to different G sequencing, attracting charge carriers [99]. Com-
monly, n- and p-type semiconductors employ electrons and holes
to generate current, respectively. By considering this concept, the
current can be modulated following the specific direction, which
is a fundamental characteristic of semiconductor-based devices.
(G + C)- and (A + T)-dominant sequences in the nucleobases exhibit
p- and n-type characteristics, respectively [97,98]. Thus, it is theo-
retically possible to create base pairs of DNA with a short sequence
for a logic element stronger than any silicon-based device, using



M.J. Han and D.K. Yoon Engineering 7 (2021) 564–580
DNA’s characteristics. Single-electron transistors based on DNA
molecules have already been suggested [100].

As demonstrated by Zhang et al. [101], the use of DNA as cap-
ping layers enhanced charge injection in OTFTs, with an interlayer
between the semiconductors and electrodes. As shown in Fig. 7(a)
[101], the DNA layer aids the introduction of both holes and elec-
trons. Here, the OTFTs were based on n-type semiconducting mate-
rials, (6,6)-phenyl-C70-butyric acid methyl ester and 4,7-bis{2-[2,5-
bis(2-ethylhexyl)-3-(5-hexyl-2,2ʹ:5ʹ,2ʹʹ-terthiophene-5ʹʹ-yl)-pyrrolo
[3,4-c]pyr-rolo-1,4-dione-6-yl]-thiophene-5-yl}-2,1,3-benzothiadia
zole, or diketopyrrolopyrrole (DPP)-containing small molecules.
The charge-carrier mobility of the fabricated OTFTs with a DNA
injection layer exhibited an improved charge of up to one order
compared with devices without an interlayer (Fig. 7(b) [101]). As
the interlayer role of n-type and ambipolar semiconductors, top-
contact OTFTs incorporate the DNA layer by spray coating, which
acts as a hole injection layer [102]. By introducing a DNA layer to
OTFTs, the drain current at the saturation region increased from
about 0.6 to 1.5 lA, which corresponds to an increase in charge
carrier from about 0.01 to 0.1 cm2�V�1�s�1. This improvement in
device performance was derived overall from the decrease in con-
tact resistance induced by dipole formation between the electrodes
and the semiconductor interface, by which the hole injection bar-
rier decreased.

Furthermore, since the 1940s, the LC phases in hydration have
been demonstrated, making an important contribution to the mea-
surement of X-ray structural factors free from complications of
DNA chain sequences and interchain correlation [103,104]. Subse-
quently, a structure analysis of duplex B-form DNA exhibiting LC
phases in the solution state was performed using optical [105–
108], X-ray [109], and magnetic resonance [110,111] measurement
techniques with respect to chain length from mega-base pairs (bp)
to roughly 100 bp, corresponding to semiflexible polymers and
rigid rod-like elements, respectively. This is a similar size to the
B-form of DNA, which shows a bend persistence length, Lp, of about
45 nm [112]. The analysis confirmed the isotropic phase (Iso), chi-
ral nematic (N*), uniaxial columnar (CU), and higher-ordered
columnar (C2) LC phases, as well as the crystal (Cr) phases, depend-
ing on DNA concentration. By allowing the LC properties of DNA to
align the host materials, as CNCs have done [113–115], we demon-
strated OTFTs based on highly ordered and oriented complexes of
the p-conjugated polymer, poly[3-(potassium-7-hexanoate)-thio-
phene-2,5-diyl] (P3PHT), with a self-assembled DNA template
(Fig. 7(c)) [116]. The addition of DNA induced highly ordered
P3PHT aggregates, whose nucleation generated the growth of
Table 1
Summarized results for DNA-based EBLs and HBLs [79].

Type Turn-on
(V)

Maximum luminance
(cd�m�2)

Maximum curre
(cd�A–1)

EBL type
Baseline 3.25 95.179 38.5
G 4.75 17.191 44.3
A 5.00 82.289 51.8
C 5.00 5.646 36.1
T 7.75 3.844 22.6
U 7.00 21.000 3.3
DNA-CTMA 3.75 60.061 43.3

HBL type
G 6.00 16.000 1.3
A 5.50 215.000 10.0
C 5.50 217.000 5.2
T 5.50 362.000 15.1
U 4.25 4.045 16.3

CTMA: cetyltrimethylammonium.
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P3PHT aggregate, while residual P3PHT underwent spontaneous
nucleation. AFM with polarized optical microscopy analysis con-
firmed that the DNA template induced the molecular orientation
of the P3PHT guest. The anisotropic complexes based on host
materials exhibited anisotropic electrical and optical properties
depending on the interchain (p–p stacking) and intrachain trans-
port (p-conjugation). The films of the P3PHT/DNA complex exhib-
ited somewhat vertical separation, in which the interface between
the source/drain electrodes and the semiconducting layer was
mainly present with DNA, ensuring the lower barrier of hole injec-
tion, similar to previous studies [101]. Furthermore, the distinct
chemical and physical cooperation with the electrostatic binding
attraction between DNA and Cu2+ allowed p-doping, giving the
device a mobility of about 0.2 cm2�V�1�s�1.

As mentioned above, the length of a DNA chain inspired early
studies of charge transport along a DNA chain, considering DNA
as a nanowire [117]. Studies have also examined the improvement
of luminophore optical emission based on intercalation in the
double-helix DNA host [118], which enabled research into organic
electronic applications using DNA. Although there have been
attempts to facilitate natural DNA salts for thin-film electronics,
it is difficult to fabricate uniform films from an aqueous solution
[119]. For this reason, cationic surfactants (e.g., cetyltrimethylam-
monium chloride) were incorporated with the negatively charged
DNA backbones, generating the DNA-surfactant salt DNA-
cetyltrimethylammonium (CTMA) (Fig. 8(a)) [119]. The interca-
lated chains could then be dissolved in alcohol solvents, which
can be used in the spin-coating process [120] in which the optical,
electrical, and magnetic measurements of the thin films of DNA-
CTMA have been done [121]. The DNA-CTMA complex is well
known for its energy levels, and makes an excellent EBL with a hole
transport layer for organic electronics (Fig. 8(b) [122]). In capacitor
and gate dielectric applications, it has a high dielectric constant, K,
of about 8 under low frequencies; in complex cases involving
ceramics, the dielectric constant can be as high as 15, and disrup-
tion of the dielectric property of 4 MV�cm�1 has been reported in
the case of a sol–gel mixture [123,124]. Therefore, DNA films are
commonly used as gate dielectric layers, in which OTFTs based
on DNA-CTMA and Al2O3 gate dielectric complexes have demon-
strated reduced hysteresis compared with pristine DNA-CTMA-
based OTFTs (Fig. 8(c)) [122]. In addition, modified DNA with pho-
toreactive side-chains has demonstrated cross-linking properties
via ultraviolet (UV) irradiation, resulting in different solubility
and dielectric characteristics with improved hysteresis properties
[122,125,126]. A DNA-based complex with high dielectric-
nt efficacy Maximum luminous efficacy
(lm�W�1)

Quantum
efficiency (%)

External Internal

22.3 10.7 59.4
21.9 12.3 68.3
21.2 14.3 79.4
14.5 10.0 55.6
6.9 6.3 35.0
1.2 0.9 5.0

25.6 12.0 66.7

0.6 0.4 2.2
0.4 0.3 1.6
2.1 1.5 8.3
5.0 4.2 23.3
7.4 4.6 25.6



Fig. 6. Charge-carrier hopping along DNA. (a) Hole hopping following the G bases in DNA cooperated between Au electrodes; (b) electrical properties of a double-stranded
poly(G)–poly(C) DNA molecule trapped between electrodes; (c) current–voltage curves of poly(dG)–poly(dC) and poly(dA)–poly(dT) DNA films under air and oxygen
conditions. kL,k1, kR, and k are the hole transfer rate constants from the left electrode to the first G of the DNA, from the first G back to the left electrode, from the last G of the
DNA to the right electrode, and between adjacent hopping sites, respectively. eVbias: electron voltage of bias. (a) Reproduced from Ref. [96] with permission of Springer
Nature, �2015; (b) reproduced from Ref. [97] with permission of Springer Nature, �2000; (c) reproduced from Ref. [98] with permission of AIP Publishing, �2002.
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constant ceramics, such as BaTiO3 and TiO2, has been reported,
which would further improve the electrical properties of organic
electronic devices [123].

2.3. Semiconductors

A number of p-conjugated molecules, which have intrinsic
semiconducting properties and can be applied in the active compo-
nents of optics and electronics, are present in nature. For example,
the molecules related to photosynthesis, such as porphyrins and
polyenes, are chromophores with delocalized conjugation whose
chemical structures are very similar to those of synthetic conju-
gated polymers. Furthermore, organic dyes with p-conjugation
have been shown to be harmless and can be used in textiles, inks,
and more. In 1975, Tang and Albrecht [127] produced a sand-
wiched photovoltaic diode based on a chlorophyll a thin film. This
is a typical example of utilizing naturally available semiconductors
for organic electronics. However, there have been critical problems
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in the practical application of such materials, including low power-
conversion efficiency and low charge transport with unstable
operation.

Research by Wang et al. [128] on the natural carotenoids,
including lycopene, b-carotene, and fucoxanthin, demonstrated
their electron-donor property when integrated with an electron-
acceptor, (6,6)-phenyl-C61-butyric acid methyl ester (PCBM), in
OPVs (Fig. 9(a)). Compared with amorphous films such as fucoxan-
thin and b-carotene, lycopene films can easily be made using a
spin-coating process, which generates high-performance OPVs.
The electrical characteristics and external quantum efficiency
graphs showed the following performance ranking: lycopene, b-
carotene, and fucoxanthin. However, an operational problem
remains: rapid oxidation under an oxygen-based environment,
such as ambient conditions, although the metabolism in the bio-
logical system continually regenerates the molecules [129].

Most organic dyes and pigments have intramolecular and inter-
molecular hydrogen bonding, which are correlated with the



Fig. 7. Interlayer characteristic of DNA between organic semiconductors and electrodes. (a) Schematic illustration of the n-type and ambipolar OTFT configuration based on
charge injection through DNA; (b) topography measurement and electrical characterization of OFETs depending on DNA interlayers; (c) with its versatile properties, DNA can
function as a template for a semiconducting polymer and interlayer in OTFT. PC70BM: (6,6)-phenyl-C70-butyric acid methyl ester; BTDPP2: 4,7-bis{2-[2,5-bis(2-ethylhexyl)-
3-(5-hexyl-2,2ʹ:5ʹ,2ʹʹ-terthiophene-5ʹʹ-yl)-pyrrolo[3,4-c]pyr-rolo-1,4-dione-6-yl]-thiophene-5-yl}-2,1,3-benzothiadiazole; P3PHT: poly[3-(potassium-7-hexanoate)-thio-
phene-2,5-diyl]; SD: shearing direction; P: polarizer; A: analyzer; VD: drain voltage; VG: gate voltage; ID: drain current. (a), (b) Reproduced from Ref. [101] with permission
of Wiley-VCH, �2012; (c) reproduced from Ref. [116] with permission of the American Chemical Society, �2020.
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stability of the desirable color properties. For example, organic
dyes and pigments that become colorless in a dissolved solution
contain a fused-ring configuration based on carbonyls or amines
[130–132]. The hydrogen bonding induces aggregation and crystal-
lization, resulting in bathochromic shifts in the wavelength of light
absorption. Therefore, intrinsically stable small molecules can
aggregate into crystal forms, exhibiting high UV–visible absorption
and stability resulting from the high energy of the crystal lattice.
Among such molecules, indigo derivatives derived from plants
and animals are the most well-known natural dyes in history
(Fig. 9(b)) [133]. It is notable that a chemical reduction process is
necessary to obtain water-soluble leucoindigo forms, as indigo is
insoluble in a neutral state due to its high crystal lattice energy.
In what is known as the vat dyeing process, leucoindigo permeates
into the fiber being dyed; next, oxygen oxidizes the leucoindigo
and pulls it back into the air, resulting in permanent coloring of
the fabric. This is a nontoxic process based on the versatile and
reversible redox states of the molecules, and is used extensively
in the industrial dyeing of 20 000 t of blue denim fabric per year.
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Thin indigo films for organic electronics can be fabricated via
vacuum sublimation at temperatures below 300 �C, since the
indigo can be finely cleaned using a sublimation technique,
although the inherent ionic content of the coated films is not desir-
able. Irimia-Vladu et al. [134] studied ambipolar semiconducting
properties with comparable electron and hole mobilities of about
0.01 cm2�V�1�s�1 and excellent stability.

The natural pigment Tyrian purple, 6,6ʹ-dibromoindigo, which
was historically derived from sea snails (Fig. 10), exhibits ambipo-
lar semiconducting properties and has potential for application in
heterojunction diodes at the near-infrared wavelength region
[135,136]. The van der Waals forces between the bromine atoms
enhance their molecular packing, with balanced charge-carrier
mobilities of approximately 0.5 cm2�V�1�s�1 (Fig. 10(a)) [137].
Due to the crystal structure, the intermolecular hydrogen bonds
can be oriented into hydrogen-bonded chains, in which the molec-
ular stacking direction is vertical to the hydrogen-bonding direc-
tion. Various studies have shown that the orientation of crystal
growth has a strong effect on the holes and electron transport



Fig. 8. The DNA-CTMA complex for OTFT. (a) The chemical configuration of CTMA: hexadecyl trimethylammonium chloride, with an illustration of how surfactants interact
with DNA; (b) energy levels of DNA-CTMA compared with those of a Au electrode, pentacene, and (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) with Al2O3;
(c) schematic of DNA-CTMA OTFTs and their transfer and output curves. (a), (b) Reproduced from Ref. [119] with permission of the Royal Society of Chemistry, �2014;
(c) reproduced from Ref. [124] with permission of Elsevier, �2007.
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[138,139]. Some chemically modified indigo derivatives have also
been applied to organic electronics [140,141]; the derivatives
showed different molecular packing and crystallization depending
on the substrates and deposition conditions. The introduction of
hydrogen-bonding groups increases stability and aggregation con-
trol, making it possible to guarantee the desired color for the
industrial organic industry [142]. Some pigments, which have been
investigated for toxicity and environmental effects, can be utilized
in a large range of customer commodities, including paints, inks,
diverse cosmetics, and tattoos [143]. An example of a well-
known synthesized hydrogen-bonding dye is quinacridone [144],
which has been studied for use as an active layer in OPV and
OTFTs; it exhibits hole mobilities of 0.1 cm2�V�1�s�1 with an elec-
tron mobility approximately one order of magnitude lower [145].
Moreover, quinacridone exhibits stable device properties under
ambient conditions without an encapsulation layer. Epindolidione
is another structural isomer of indigo based on hydrogen bonding.
Unlike quinacridone, epindolidione can be prepared by solid phase
rearrangement at high temperatures with vacuum conditions
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[146]. In addition, epindolidione exhibits ambipolar electrical
properties like its isomer indigo, and has a higher hole mobility
of about 0.8 cm2�V�1�s�1 [147]. Quinacridone and epindolidione
show luminescence in a solution and in a solid condition; however,
indigo does not exhibit luminescence because fast proton transfer
occurs in light, resulting in efficient nonradiative deactivation at
the excited state (Fig. 10(b) [148]). Epindolidione and quinacridone
demonstrate many excimer-based luminescence behaviors in the
solid state, derived from intermolecular hydrogen-bonding inter-
action with efficient delocalization of excited states between adja-
cent molecules [148]. Table 2 [33,51,56,58,60] summarizes the
OFETs electrical characterization of different examples of indigo
derivatives presented in previous studies.

2.4. Conductors

Biocompatible and biomaterial-originating conductive materi-
als, including ionic conductors, have been studied recently in dif-
ferent medical devices. The first organic electronic device related



Fig. 9. Examples of bio-origin semiconductors. (a) Molecular structure of carotenoids derivatives with representative output curves of bixin; (b) image of Indigofera tinctorial,
a typical origin of indigo, and diverse snails from the Thaisidae and Muricidae families, the origin of Tyrian purple dyes made via vat dyeing chemistry. EQE: external quantum
efficiency. (a) Reproduced from Ref. [128] with permission of the American Chemical Society, �2013; (b) reproduced from Ref. [133] with permission of Wiley-VCH, �2013.
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to such materials was based on eumelanin [149], a brown and
black pigmentation material derived from animals, including
humans, the electrical conductivity of which depends strongly on
hydration. Based on the earliest report on the conductivity of mela-
nin, eumelanin was applied to diverse diodes in a sandwich config-
uration [150,151]. Recently, it has been suggested that a thin-film
conductor for biomedical applications can be fabricated with bio-
logical tissue and bio-absorbability [152]. For charge transport
mechanisms along eumelanin, proton conductivity is more appro-
priate than the amorphous semiconductor model (Fig. 11(a)) [153].
Eumelanin demonstrated hysteresis properties within an Au/
eumelanin/ITO/glass configuration at a specific voltage at different
voltage sweep speeds, such as 1, 9, and 12 mV�s�1, which was per-
formed under ambient conditions (Fig. 11(a-I)). Hysteresis was
exhibited in a vacuum environment with dark and light irradiation,
with a sweep rate of 9 mV�s�1 (Fig. 11(a-II)). Here, negligible hys-
teresis is present in the current graphs, even under white light illu-
mination. Comparable hysteresis properties have appeared in
various conjugated polymer systems [154].

Therefore, proton conductors have been widely studied in fuel
cell applications, and their great potential for biocompatible elec-
tronics has recently been recognized. There are two focuses for this
research interest. First, naturally derived proton conductors can be
applied to sustainable devices. Second, many biological pathways
contain protons, so the proton–electron interface is interesting in
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terms of biomedical devices. As many conductive polymers can
transport both ions and electrons, they are uniquely suitable for
bioelectronics interface materials. This is not feasible for conven-
tional metal-based conductors. In a recent study [155], conductive
polysaccharide-based transistors were tuned by the electric field
effect of the gate, in a practical demonstration of the electron–pro-
ton interface. An outline of the device is shown in Fig. 11(b) [155].
The apparatus utilizes a chitosan polymer extracted from chitin by
deacetylation, which comprises the exoskeleton. Chitosan is com-
monly derived from shrimp. Practical applications of bio-origin
conductors are still limited, but the branch of synthetic conductive
polymers is comparatively saturated. For example, polyaniline,
poly(pyrrole), and poly(thiophene) exhibit outstanding bio-
compatible properties for biomedical applications [156–160].

Most importantly, a PEDOT system doped with polyanionic poly
(styrene sulfonate) (PEDOT:PSS) has been used in various sensor
applications with in vivo demonstrations. A report on cell prolifera-
tion in PEDOT:PSS films suggested that there was no toxicity.
PEDOT:PSS is also applicable as polymer electrodes in biological
brain tissue for bioelectric corticography, and exhibits an excellent
signal-to-noise ratio compared with typical measurements [161].
An interface conductive PEDOT nanotube also succeeded in neural
recording [162]. PEDOT can also be electropolymerized in living
brain sites, achieving therapeutic effects (Fig. 11(c)) [163,164]. By
polymerizing PEDOT directly in brain tissue, a conductive network



Fig. 10. Tyrian purple-based OTFT devices and the luminescence properties of indigo derivatives. (a) Ambipolar semiconducting properties of Tyrian purple with transfer
curves; (b) varying luminescence quantum yields of powder and solution state depending on the molecular structures of indigo derivatives. le: electron mobility; lh: hole
mobility; Vth-e: threshold voltage for electron; Vth-h: threshold voltage for hole. (a) Reproduced from Ref. [137] with permission of Elsevier, �2012; (b) reproduced from Ref.
[144] with permission of Wiley-VCH, �2015.

Table 2
Electrical characteristics of indigo and its derivatives.

Name HOMO (eV) LUMO (eV) Eg (eV) le (cm2�V�1�s�1) lh (cm2�V�1�s�1) References

Indigo –5.5 –3.8 1.7 1.0 � 10–2 1.0 � 10–2 [51]
Tyrian purple –5.8 –4.0 1.8 0.4 0.4 [56,58]
Cibalackrot –5.6 –3.5 2.1 9.0 � 10–3 5.0 � 10–3 [33]
Thioindigo — — 1.9 1.0 � 10–4 6.0 � 10–4 [51]
Epindolidion –5.6 –2.9 2.7 — 1.5 [60]

Eg: bandgap energy.
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is formed that controls the tissue and enables unique intimate and
sensitive contact between the electrodes and the plasma film of the
nerve cell. The large surface area of the PEDOT networks facilitates
signal transmission between ion conductive tissue and electron
conductive devices, and transmits electronic charges outside the
tissue.

In addition, PEDOT has been used for efficient anion conductors,
and PSS functions as a conductive path for cations including Ca2+,
Na+, and K+ [165,166], and even for the neurotransmitter acetyl-
choline [167,168]. In addition, the electro-polymerization of
PEDOT thin films was achieved based on aqueous microemulsion
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(Fig. 11(c)), which affords different functionalization, such as
ethylenedioxythiophene (EDOT)–OH, C2–EDOT-COOH, C4–EDOT–
COOH, C2–EDOT–NHS, and EDOT–N3, resulting in tunable bio-
interfaces. The diverse surface configuration was demonstrated
successfully by surface templates with little inherent cytotoxicity
and low inflammatory reaction during implantation, which can
be applied to biosensing and bioengineering applications.
Fig. 11(d) [167] provides a demonstration of a voltage pump based
on PEDOT-derived acetylcholine. PEDOT:PSS preparations function
as ion electronic interface materials for converting ion currents to
and from electronics [156,169]. The feasibility of the side



Fig. 11. Sustainable conductor applications. (a) Hysteresis test of the Au/eumelanin/ITO/glass configuration with a diverse voltage sweep rate and light exposure; (b) a
bioprotonic transistor based on chitosan modulating the protonic charge; (c) therapeutic effects of PEDOT polymerized in living cells on an electrode substrate; (d) a PEDOT-
based organic electronic ion pump made using microfabrication techniques for substance delivery. R: resistance; FG: functionalized group; ACh: acetylcholine.
(a) Reproduced from Ref. [153] with permission of Elsevier, �2010; (b) reproduced from Ref. [155] with permission of Springer Nature, �2011; (c) reproduced from Ref. [164]
with permission of the American Chemical Society, �2008; (d) reproduced from Ref. [167] with permission of Wiley-VCH, �2009.
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transportation of about 150 Da of biomolecules with positive
charges has been demonstrated; prepared circuits based on
10 lm channels allowed accurate material delivery, such as exact
concentrations within the millimole scale. An organic electronic
ion pump device exhibited direct connection of electronic proper-
ties, such as current and voltage, with the related delivery rate.
Furthermore, numerous other conductive polymers, including
polyaniline and polypyrrole, have been confirmed to be nontoxic
[170]. Both polymers are biocompatible and do not trigger a
response in the immune system, while maintaining good mechani-
cal properties, such as flexibility, in biological systems. Although
these common conductive polymers have been shown to be harm-
less and highly biologically compatible, further research into their
biodegradation within an active biosystem is needed.
3. Conclusions and perspectives

In this study, we reviewed the use of ecofriendly materials in
opto-electronics and discussed their promising—and practical—
electronic performance as a replacement for conventional inor-
ganic or fossil-fuel-based materials. Materials originating from
nature can be used as passive or active components in electronic
devices, in applications such as substrates, templates, insulators,
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semiconductors, and conductors. However, issues remain with
their direct application as active electronic components in sustain-
able electronics, limiting their effective integration with opto-
electronic devices. First, solubility is of concern because eco-
friendly materials will only dissolve in water-based solvents,
which can be harmful to device fabrication. Second, thermal stabili-
ty should be considered due to the numerous hydroxyl groups in
natural materials, which would suffer under the high temperatures
required for device fabrication, deteriorating the stability of both
the device elements and device performance. The third issue to
consider is tuning the degeneration rate of sustainable materials
integrated with common inorganic or fossil-fuel-based materials,
as some materials can be vulnerable to device preservation issues.
Despite these issues, sustainable materials continue to draw global
attention for the vast number of options they open up and for their
ecofriendly properties. In addition, there is room for improvement
in the electrical properties and stability of such materials by means
of physical and chemical modifications and composite technolo-
gies. There are abundant opportunities for further investigation,
ranging from the verification of sufficient balanced bio-origin
materials that are applicable for device configuration and advance-
ment through optimization, to commercialized prototypes. Ulti-
mately, from natural materials to electronic devices, this area of
investigation provides insight into the merging of a wide range
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of multidisciplinary sciences, such as chemical engineering, mate-
rial science, biotechnology, and electronic engineering, in order to
advance the next generation of sustainable devices.
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