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A person’s eye gaze can effectively express that person’s intentions. Thus, gaze estimation is an important
approach in intelligent manufacturing to analyze a person’s intentions. Many gaze estimation methods
regress the direction of the gaze by analyzing images of the eyes, also known as eye patches. However,
it is very difficult to construct a person-independent model that can estimate an accurate gaze direction
for every person due to individual differences. In this paper, we hypothesize that the difference in the
appearance of each of a person’s eyes is related to the difference in the corresponding gaze directions.
Based on this hypothesis, a differential eyes’ appearances network (DEANet) is trained on public datasets
to predict the gaze differences of pairwise eye patches belonging to the same individual. Our proposed
DEANet is based on a Siamese neural network (SNNet) framework which has two identical branches. A
multi-stream architecture is fed into each branch of the SNNet. Both branches of the DEANet that share
the same weights extract the features of the patches; then the features are concatenated to obtain the
difference of the gaze directions. Once the differential gaze model is trained, a new person’s gaze direc-
tion can be estimated when a few calibrated eye patches for that person are provided. Because person-
specific calibrated eye patches are involved in the testing stage, the estimation accuracy is improved.
Furthermore, the problem of requiring a large amount of data when training a person-specific model is
effectively avoided. A reference grid strategy is also proposed in order to select a few references as some
of the DEANet’s inputs directly based on the estimation values, further thereby improving the estimation
accuracy. Experiments on public datasets show that our proposed approach outperforms the state-of-the-
art methods.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The eye gaze is informative in human communication. When
working in a noisy shared space, people prefer to express their
intentions through non-verbal behaviors such as eye gaze and ges-
ture. The eye gaze carries a considerable amount of information
that allows for task completion. A person’s intention can be effec-
tively perceived by estimating her or his gaze direction. Many
researchers have investigated the ‘‘intention reading” ability based
on gaze cues [1,2]. For example, in Ref. [1], a robot held a block in
each of its hands, while a human controlled the robot successfully
to make it give the human one of the blocks when the human
gazed at the robot’s hand. This experiment demonstrates that the
rich information carried by eye gaze has a significant impact on
collaboration. Gaze estimation has been applied in many domains,
such as human–robot collaboration (HRC) [1,2], virtual reality [3],
and mobile-device controllers [4]. In HRC in particular, gaze esti-
mation systems will be adopted as an additional modality to con-
trol robots through multimodal fusion in addition to gestures,
speech command, and body motion [5,6]. The addition of eye gaze
will extend the scale of application in HRC and help improve the
reliability of multimodal robot control.

In intelligent manufacturing, humans are part of the process
loop in intelligent and flexible automation [7,8] and play important
roles in collaboration with robots. The range of tasks that robots
can deal with is increasing [9], and humans generally prefer to
communicate with robots through natural methods. For example,
it would be preferable to give orders to robots through a gesture
or gaze rather than by using a remote controller. Furthermore,
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people are often unwilling to use invasive solutions, such as wear-
ing special glasses [10] that can estimate their gaze direction.
Instead, a camera can be installed in a nearby location to observe
the operator, and the operator’s gaze direction can be estimated
by analyzing the digital image captured by the camera. This is a
common noninvasive solution based on computer vision technol-
ogy. The operator does not perceive the existence of the system
when his or her gaze direction is estimated.

Noninvasive vision-based solutions can generally be divided
into two types: model-based methods and appearance-based
methods [11]. In model-based methods, geometric models of parts
of the eye, such as the radius and the center of the pupil, are
evaluated by analyzing the image, and the gaze direction is
estimated based on the geometric models [12,13]. In appearance-
based methods, the gaze direction is directly regressed by analyz-
ing images of the eyes, known as eye patches. On the one hand,
compared with appearance-based methods, the accuracy of the
estimated direction in model-based methods depends on the
quality of the captured image, such as the image resolution and illu-
mination, because certain edges or feature pointsmust be extracted
accurately. In contrast, appearance-based methods do not require
feature points. Ref. [14] evaluates popular gaze estimation
methods to demonstrate that appearance-based methods achieve
better performance than model-based ones. On the other hand, it
is a challenging task with model-based methods to obtain a good
model based on prior knowledge in order to estimate the gaze direc-
tion accurately [15]. However, deep neural networks can effectively
identify the intrinsic features of the data. The successful application
of deep neural networks in appearance-based methods increases
the estimation accuracy dramatically. Thus, appearance-based
methods have attracted a great deal of attention in recent years
[16–18]. Refs. [19,20] propose video-basedgaze estimation systems,
which are model-based methods. It is possible to enhance the per-
formance of the system by means of a deep neural network, such
as a recurrent neural network or a long short-term memory net-
work. However, such usage is beyond the scope of this paper.

With appearance-based methods, the key step is to determine
the relationship between the input images and the gaze directions.
Many researchers have constructed varying models to fit the rela-
tionship. Thesemodels are trained and tested on data from different
persons, in what are referred to as cross-person evaluations. The
corresponding model is denoted as a person-independent model.
Because a person-independent model does not contain information
about the tested person, individual differences in appearance will
affect the estimation accuracy. If certain conditions from the testing
process, such as the tested person’s appearance, the level of illumi-
nation that will be present at the testing site, and so on, are involved
when models are constructed in the training process, the system’s
performance will be improved. A common method is to collect
labeled data belonging to the tested person for model training. This
is referred to as a person-specific model. However, learning a
person-specific model requires a large amount of labeled data. Col-
lecting person-specific training data is a time-consuming task,
which limits the applicability of such methods. Although some
technologies, such as those discussed in Refs. [21,22], have been
proposed to decrease the complexity of the collecting phase, these
methods still require a great deal of training data. Inspired by Refs.
[23–25], we propose that the input images and output directions be
replaced with differential ones. Once the relationship between the
difference of both the input images and the difference of both the
gaze directions is constructed, only a few labeled images of the
new person are required, and these can be treated as one of the
inputs in the testing stage. Using this method, the gaze direction
will also be estimated accurately.

In this paper, we propose a differential eyes’ appearances net-
work (DEANet) to estimate gaze direction based on a deep neural
778
network learning framework. The proposed network is based on a
Siamese neural network (SNNet) [26], which has two identical
branches. A pair of sample-sets are fed into both of the network’s
branches simultaneously. Each sample-set includes both the left
eye patch and the right eye patch in an image. Both patches are
fed into one of the branches as a part of the multi-stream architec-
ture [27]. The features are extracted from all the patches by each
branch of the network, which contains two VGG16 networks [28]
with different parameters. The outputs of both branches, in combi-
nation with the head pose information, are concatenated. The out-
put of the network is the differential gaze of the pairwise sample-
sets, followed by some full link layers. In the testing stage, a labeled
sample-set belonging to the tested person, which is taken as the ref-
erence sample-set, is fed into one of the network’s branches. The
tested sample-set is fed into another network branch, and the out-
put of the network is the gaze difference between the reference
sample-set and the tested one. Because the gaze direction of the ref-
erence sample-set is labeled, the estimated gaze direction is equal
to the network’s output plus the labeled gaze direction correspond-
ing to the reference sample-set. Moreover, a reference selection
strategy can be adopted to enhance the system’s performance if a
few reference sample-sets are labeled. Our proposed approach
assumes that the difference in the appearance of each of a person’s
eyes is related to the difference in the corresponding gaze direc-
tions. Because the information of the tested person is embedded
into the trainedmodels in the testing stage, the estimation accuracy
is improved. Furthermore, only a few labeled images of the tested
person are needed when estimating the gaze direction of that per-
son. The proposed network does not need a large amount of data for
training a person-specific model. Evaluations on many popular
datasets show that our proposed algorithm performs favorably
against other state-of-the-art methods.

Our contributions can be summarized as follows:
(1) This work provides a new formulation for differential gaze

estimation that is integrated with both eye images and the normali-
zed head pose information. A multi-stream architecture is fed into
each of the branches in an SNNet. The SNNet-based framework not
only incorporates information about the tested person in the test-
ing stage, but also does not require the collection of a large amount
of data for training a person-specific model.

(2) A reference selection strategy is provided. In this paper, a
novel approach for a reference sample-set selection strategy is pro-
posed to improve the estimation accuracy. A reference grid is con-
structed in the gaze space, and valid reference sample-sets are
directly selected by the estimation values, which simplifies the
computation of the system.

The rest of this paper is organized as follows. Related works are
introduced in Section 2. Our proposed approach is then demon-
strated in detail in Section 3. Experimental results and discussions
are presented in Section 4. Finally, a conclusion and a future
research plan are highlighted in Section 5.
2. Related work

This section provides a brief overview of recent works in
appearance-based gaze estimation, person-specific estimation,
and SSNets.
2.1. Appearance-based gaze estimation

Most appearance-based algorithms for gaze estimation are
regarded as regressive solutions. The estimated gaze direction is
a function of the input image. Intuitively, eye patches carry the
greatest amount of information on the gaze direction (of the left
and right eye) and should be sufficient to estimate the gaze
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direction. Zhang et al. [29] proposed a method for in-the-wild
appearance-based gaze estimation based on a multimodal convo-
lutional neural network (CNN). Lian et al. [30] presented a shared
CNN to estimate the gaze direction in multi-view eye patches cap-
tured from different cameras. Liu et al. [23,25] demonstrated the
direct training of a differential CNN to predict the gaze difference
between a pair of eye patches. Park et al. [31] proposed a novel pic-
torial representation in a fully convolutional framework to esti-
mate the gaze direction. However, aside from eye patches, many
other elements also affect the estimation accuracy, such as the
head position, the scale of the eyes in the image, the head pose,
and so forth. Some information should be embedded in the system.
Liu et al. [32] used both the eye patches and an eye grid to
construct a two-step training network to improve the estimation
accuracy on mobile devices. Krafka et al. [4] took the eye patches,
full-face patch, and the face grid as their system’s input, and
obtained a promising performance. Wong et al. [33] proposed a
residual network model that incorporated the head pose and face
grid features to estimate the gaze direction on mobile devices. In
Ref. [34], the gaze was divided into three regions based on the
localization of the pupil centers, and an Ize-Net network was con-
structed to estimate the gaze direction using an unsupervised
learning technique. Yu et al. [17] introduced a constrained
landmark-gaze model to achieve gaze estimation by integrating
the eye landmark locations. Funes-Mora and Odobez [35] proposed
a head pose invariance algorithm for gaze estimation based on
RGB-D cameras and evaluated the performance on a low-
resolution dataset [36]. Zhang et al. [16] analyzed the effects of
all of the above information based on their own models. In Ref.
[37], full-face images were used as the system’s input, and an Alex-
Net [38] network with spatial weights was shown to significantly
outperform many eye-images-input algorithms. These experi-
ments suggest that the full-face appearance is more robust against
head pose and illumination than eye-only methods. However, the
full-face approach dramatically increases the computation com-
plexity because the size of the input data is much larger than in
the eye-only approach. Compression methods, such as those in
Ref. [39], have been proposed in order to compress the image effi-
ciently while preserving the estimation accuracy. It is still an open
question whether the full-face approach or the eye-only approach
will obtain a better performance.

Feeding raw images into the systemwithout any pre-processing
will increase the complexity of the regressive network. Some infor-
mation can be normalized in the pre-processing stage in order to
decrease the network’s complexity. Sugano et al. [40] proposed a
novel normalization method in the pre-processing stage to align
the images before they were fed into the network. All kinds of data,
including the images and gaze directions, were transformed into
the normalized space as well. The object’s scale did not need to
be considered when learning or testing the network. In Ref. [40],
a virtual camera was constructed by transforming or rotating the
camera to a fixed position from the person’s eye. The input images
and gaze directions were derived in the virtual camera coordinates.
Zhang et al. [41] analyzed the normalization method in detail, and
extended the original normalization method to full-face images in
Ref. [37].

2.2. Person-specific estimation

The goal of most gaze estimation algorithms is to train a person-
independent model and to achieve a good cross-person evaluation
performance. A person-independent model is constructed to
describe the correlation between the input image and the gaze
direction. However, according to the analysis proposed in Ref.
[25], the difference between the visual axis and the optical axis
varies for each person. A person-independent model cannot
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describe the correlation between the visual axis and the optical
axis accurately, but a person-specific model can accurately esti-
mate the gaze direction. A good performance of a person-specific
model was demonstrated in Ref. [16], provided that there were suf-
ficient training samples.

The collection of samples is a time-consuming task. Many
methods for simplifying sample collection have been proposed in
recent papers. Sugano et al. [42] proposed an incremental learning
method to update the estimation parameters continuously. In Ref.
[43], many kinds of data collected from different devices were fed
into a single CNN composed of shared feature extraction layers and
device-specific encoders/decoders. Huang et al. [22] built a super-
vised self-learning algorithm to train the gaze model incremen-
tally. Moreover, the robust data validation mechanism could
distinguish good training data from noise data. Lu et al. [21] also
proposed an adaptive linear regression to adaptively select an opti-
mal set of samples for training. The number of required training
samples was significantly reduced, while a promising estimation
accuracy remained. Although the above methods simplify the pro-
cess of data collection, many labeled samples are still required to
train a person-specific model. Yu et al. [44] designed a gaze redi-
rection framework to generate large amounts of labeled data based
on a few samples. Liu et al. [23] proposed a new idea for person-
specific estimation based on only one eye patch. The difference
in gaze direction was estimated by an SNNet according to the cor-
responding images as input. A few labeled samples were required
in the testing stage after the SNNet was trained.

2.3. Siamese neural network

An SNNet was first introduced in Ref. [26] to verify the signa-
tures written on a pen-input tablet. One of the characteristics of
an SNNet is its two identical branches. Instead of a single input, a
pair of inputs with the same type and different parameters are
fed into the SNNet. Consequently, the output of the network is
the difference of the corresponding inputs. This method has many
applications in numerous fields. Venturelli et al. [24] proposed an
SNNet framework to estimate the head pose in the training stage.
A differential item was added to the loss function in order to
improve the learning of the regressive network. Veges et al. [45]
introduced a Siamese architecture to reduce the need for data aug-
mentation in three-dimensional (3D) human pose estimation. The
closest works to ours are Refs. [23,25]. However, the SNNet pro-
posed in Refs. [23,25] does not consider the influences of both
the eyes and the head pose. Moreover, it was demonstrated in both
algorithms that the reference samples affected the estimation
accuracy. However, the reference selection strategy was not dis-
cussed systematically in Refs. [23,25]. It should be noted that pair-
wise input will dramatically increase the number of pairwise
training samples. The selection of a subset in training samples is
analyzed in Refs. [46–48].
3. Differential eyes’ appearances network

Although our proposed model is a person-independent model,
person-specific information will be involved in the testing stage.
The system’s framework is illustrated in Fig. 1. Generally speaking,
the whole framework is based on an SNNet. Instead of a single
input, a Siamese pair of inputs is fed to both branches in the net-
work, respectively. Moreover, both branches share the same
weights. A tested face image and a reference face image are
adopted as the system’s raw inputs. Each image is normalized into
a left eye patch and a right eye patch by the original head pose
information, ~H. All normalized patches are included in the Siamese
pair of inputs, which are referred to as a reference sample-set Pf



Fig. 1. The structure of our proposed framework. Both the tested face image and the reference face image are normalized by their original head pose information,
respectively, constructing the Siamese pairs Pt and Pf . Each Siamese pair includes a left eye patch Il , a right eye patch Ir , and the normalized head pose information H, where
Pt ¼ fIlt; Irt ;Htg and Pf ¼ fIlf ; Irf ;Hfg. Gt is the normalized testing gaze. The original reference gaze G

�
f is labeled and then normalized, and the normalized reference gaze is

denoted as Gf . Both Siamese pairs are fed into the DEANet to regress the differential gaze between Pt and Pf . This is denoted as Gd. N H
�
t

� �
and N H

�
f

� �
are the same normalizing

operation with different parameters. N�1 ~Ht

� �
, which is referred to as denormalization, is the inverse operation of the normalization with the same parameters as N H

�
t

� �
.
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and a tested sample-set Pt, respectively. Each sample-set includes a

left eye patch Il, a right eye patch Ir, and the normalized head pose
information H. The gaze direction corresponding to the reference

data is labeled, and is referred to as reference gaze G
�
f . The system’s

output, referred to as testing gaze G
�
t, is the gaze direction that cor-

responds to the tested data. All images and G
�
f are normalized by

their original head pose information. Because different original
head pose information will be used for the tested face image and
the reference face image during normalization, it is denoted as

N H
�
t

� �
and N H

�
f

� �
, respectively, in Fig. 1. All patches that are

aligned by normalization are fed into the DEANet. The normalized
testing gaze is the sum of the differential gaze and the normalized

reference gaze, followed by a denormalization stage, N�1 H
�
t

� �
,

which is the inverse operation of the normalization with the same

parameters as N H
�
t

� �
.

3.1. Definitions

The representation of the estimated direction can be categorized
into two groups: two-dimensional (2D) and 3D representations.
The 2D gaze position is always represented by the coordinates of
the on-screen gaze location, and is used in the controller of mobile
devices. The 3D gaze is a direction from the reference point to the
target point in 3D space. It is composed of three angles in the cam-
era coordinate system: the yaw, pitch, and roll. In practice, the 3D
gaze is defined as a unit vector from the reference point to the tar-
get. It can then be simplified by a spherical coordinate system
including / and h; that is, G ¼ /g; hg½ �0 in this paper. Moreover, the
reference point is defined as the center of the eyes. Specifically, only
the 3D gaze is evaluated, and the 3D gaze direction is defined in this
paper as a vector from the center of the left eye to the target. It is
noted that the 2D gaze position can be derived from the 3D gaze
direction when the screen plane is obtained in the 3D space. Simi-
larly, the head pose information has the same definition as the 3D

gaze direction; that is, H ¼ /h; hh
h i0

in this paper.

3.2. Pre-processing and normalization

As proposed in Refs. [37,40], the raw images should be normal-
ized for gaze estimation in order to alleviate the influences caused
by different cameras and the original head pose information,
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thereby decreasing the network’s complexity. The normalization
process is a series of perspective transformations so that the nor-
malized patch is the same as the picture captured from a virtual
camera looking at the same reference point. The normalization
procedure and the performance have been demonstrated in detail
in Refs. [40,41]. Some key steps are introduced in this section.

Initially, a single face image like the tested face image in Fig. 1 is
provided. Facial landmarks, such as the corner points of the eyes
and mouth, are detected by popular algorithms [49]. A left eye cen-
ter point, a right eye center point, and a mouth center point, which
are computed by the corner points, are used to construct a plane.
The line from the right eye center to the left eye center is the x-
axis, and the y-axis is perpendicular to the x-axis inside the plane,
pointing from the eyes to the mouth. The z-axis is the norm of the
plane conforming to the right hand rule. Integrating with the left
eye center or right eye center as the original points, the three axes
construct the normalized space of both eyes. According to the
detected landmarks and the generic mean facial shape model
[16], the normalized head pose information can then be computed
by the efficient perspective-n-point (EPnP) algorithm [50]. It should
be noted that both the original head pose information and the cam-
era’s intrinsic parameters are provided by popular datasets, whose
performances are evaluated in Section 4. All patches that are fed
into the DEANet are normalized in the normalized space. After nor-
malization, a histogram equalization is used for all normalized
patches in order to alleviate the influences caused by illumination.

The DEANet has two advantages for normalization.
(1) Normalization, as an image aligning operation, decreases the

network’s complexity, alleviating the influences on the eye patches
caused by different camera distances, different camera intrinsic
parameters, and different original head pose information. Normali-
zed images can be simultaneously fed into the Siamese network
whose branches share the same weights.

(2) Normalization simplifies the computation of the differential
gaze. All parameters are in the normalized space, and the compu-
tation of gaze difference is equivalent to the operation of both gaze
vectors, regardless of coordinate transformation. The proposed ref-
erence selection strategy is demonstrated for simplification in
Section 3.4.

3.3. Training phase of the DEANet

After normalization, all patches are aligned in the normalized
space regardless of the camera’s intrinsic parameters and the size
of the images. The normalized patches are fed into the network
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to improve the system’s performance because they make the net-
work learning more efficient than un-normalized ones. Our
hypothesis is that the difference in the appearance of each of a per-
son’s eyes is related to the difference in the corresponding gaze
directions. Moreover, this correlation is independent of the person.
To this end, a DEANet is proposed based on an SNNet for
appearance-based gaze estimation. The architecture and configura-
tions of the network are illustrated in Fig. 2.

During training, the inputs of our DEANet are a pair of sample-
sets, Pt and Pf . Each of them includes a left eye patch, a right eye
patch, and the normalized head pose information. The compo-
nents of the sample-set, acting as three streams, pass through a
branch of the SNNet whose parameters are shared for both
branches. In one of the Siamese branches, all patches fed into
the network are a fixed-size 36� 60 RGB or gray image. When
the input patch is gray, it will be treated as an RGB image with
the same intensity value in three channels. The normalized head
pose information is a vector with a length of 2. The left eye patch
and the right one are fed separately into VGG16 networks that
extract the features of both patches, resulting in a vector with a
length of 512. Each VGG16 network is followed by sequential
operations, such as a fully connected (FC) layer with a size of
1024, a batch normalization (BN), and a rectified linear unit
(ReLU) activation. The feature maps computed by each Siamese
pair are concatenated (CAT), followed by another FC layer with
a size of 512. After appending the normalized head pose informa-
tion, other sequential operations follow, including a BN, a ReLU
activation, an FC layer with a size of 256, and another ReLU acti-
vation. Lastly, the feature maps computed from both Siamese
branches are concatenated, and two more FC layers with sizes
of 256 and 2 follow. To avoid overfitting, a dropout layer is added
before the last FC layer.
Fig. 2. DEANet configurations (from top to bottom). Ilt , I
r
t , I

l
f , and Irf are RGB images

with a size of 36� 60. Ht and Hf are normalized head pose information
corresponding to the Siamese pairs. Gd is the predicted differential gaze. All are
vectors with a length of 2. VGG16 is a 16-layer Visual Geometry Group network. FC
is the fully connected layer, BN is the batch normalization layer, Dropout is the
Dropout layer. The layers’ names are followed by their parameters. CAT is the
operation that concatenates both vectors into one vector. The layers that share the
same weights are highlighted by the same colors.
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3.3.1. Siamese pair for the training phase
According to the hypothesis in this paper, a pair of labeled train-

ing samples belonging to the same person are fed into the network.
Considering a dataset of N training samples, there are N2 possible
pairs that can be used for network training. Compared with
single-input algorithms [4,16,37], our proposed approach has a
large number of samples for training because of the different
framework. Since it is a huge value, a subset of training samples
is adopted in the training phase. Strategies about the subset have
been proposed in Refs. [47,48]. These are used for a classification
framework where there are positive and negative pairs for both
inputs. However, our proposed approach is a regressive solution
that does not use explicitly positive and negative pairs. In our solu-
tion, K < N2 pairs of training samples selected randomly are
adopted in the training process.

3.3.2. Loss function
According to Fig. 1, when Gf is given, the predicted Gt will be

close to Ggt
t if the gaze difference predicted by DEANet is close to

the ground truth differential gaze. Assume that K pairs of labeled

training samples fPt;k;G
gt
t;kg

K

1
and fPf ;k;G

gt
f ;kg

K

1
are given, where

Ggt
t;k 2 R2�1 and Ggt

f ;k 2 R2�1 are the gaze ground truth corresponding
to Pt;k and Pf ;k, respectively. The loss function is formulated as
follows:

L ¼ 1
K

XK

k¼0

jjGd;k � Ggt
d;kjj22 ð1Þ

where the ground truth differential gaze Ggt
d;k ¼ Ggt

t;k � Ggt
f ;k, and Gd;k is

the differential gaze predicted by the network based on Pt;k and Pf ;k,
where ||�||2 is the l2-norm operation.

3.4. Reference grid for the inference phase

As illustrated in Fig. 1, a gaze direction will be estimated by a
labeled reference sample-set in the inference phase. The selection
of the reference sample-sets will affect the estimation accuracy.
Intuitively, in a good reference selection strategy, the difference
between the adopted reference patches and the tested ones should
not be large. A large differencewill result in large errors during esti-
mation. Moreover, a few reference sample-sets adopted in the
inference phase are better than a single reference sample-set in
terms of the estimation accuracy. A demonstration of the above will
be discussed in Section 4.3. According to the above rules, a refer-
ence grid is then constructed in the whole gaze space, which is sup-
ported by both dimensions of the gaze directions, as shown in Fig. 3.
When the difference between the input patches is small, the output
of the DEANet is small as well, and vice versa. As a result, the output
of the DEANet, the differential gaze, can be a metric of the distance
between the reference patches and the tested ones. The evenly dis-
tributed references, as shown in Fig. 3, make the differences
between some of the adopted reference patches and the tested ones
so small that a promising accuracywill be achieved if the step of the
grid is small enough. For example, 12 red points are the candidates
for the reference gazes denoted as Gf ;j; j ¼ 0;1; :::;11. A testing gaze
is marked by a blue point, which is denoted as Gt. Obviously, Gt is
computed by Gf ;3, Gf ;4, Gf ;6, and Gf ;7, rather than by other reference
gazes, because the distance between Gt and one of the above four
reference gazes is smaller than the distance between Gt and the
other reference gazes. Meanwhile, because the distance between
the testing gaze and the reference gaze in the gaze space can be pre-
dicted by the differential gaze in our proposed DEANet, reference
gazes whose corresponding differential gazes are smaller than a
certain threshold are adopted to estimate the testing gaze. To avoid
empirical parameters, four reference gazes whose corresponding



Fig. 3. An example of a reference grid in gaze space. Twelve reference gazes
(marked with red points) are distributed in the gaze space. The blue point
represents a testing gaze. The distance between Gf;i and Gt in the gaze space is
predicted by the corresponding differential gaze, Gd;i .
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differential gazes are smaller than the other differential gazes are
adopted in this paper. After that, the testing gaze is predicted by
adding each reference gaze to the corresponding differential gaze.
The average value is then the final estimation. In experiments, this
strategy was shown to be a good choice for all test sets.

In Ref. [25], the averaging weights are determined by compar-
ing both feature maps extracted from the input patches. According
to the construction of DEANet, the output of the network is related
to the difference of both patches. Using the differential gaze as the
criteria for reference selection simplifies the computation, rather
than using the feature maps proposed in Ref. [25].
Fig. 4. Average angular error for each reference in the MPIIGaze dataset for
different reference selection strategies: a random selection strategy, where 500
reference sample-sets were adopted randomly; and a reference grid strategy, where
12 reference sample-sets were adopted by a reference grid.
4. Experiments

4.1. Implementation details

Our proposed DEANet was implemented in a pytorch frame-
work. It was trained by randomly selecting 10 000 pairs of training
samples for each person. Transfer learning was utilized, and the
weights of the VGG16 models were initialized by the pre-trained
model [28]. An stochastic gradient descent (SGD) optimizer was
adopted with a momentum of 0.9 and a weight decay of 0.0001.
The batch size was 512. The initial learning rate was 0.1, and
decayed by 0.1 every 5 epochs. A single GTX 1080 ti GPU was used
for the network, with 20 epochs for each person.

Three experiments are reported in this section. The first experi-
ment (Section 4.3) evaluated the DEANet based on the MPIIGaze
dataset to demonstrate the reference selection strategy. The sec-
ond experiment (Section 4.4) assessed the DEANet’s performance
in a cross-person and cross-dataset evaluation. The third experi-
ment (Section 4.5) evaluated the DEANet against variation.

4.2. Datasets and protocol

The performance of the DEANet was evaluated on two public
datasets, MPIIGaze and UT-Multiview. MPIIGaze was first intro-
duced in Ref. [16]. It comprises 213659 images from 15 partici-
pants of different ages and genders. The images were collected
over different periods. To evaluate our proposed DEANet in RGB
images, the eye patches and annotated gaze direction in the MPII-
Gaze dataset were normalized by ourselves, although some labeled
gray patches and gaze directions were provided in the MPIIGaze
dataset. It should be noted that the original head pose information
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and the target position provided by the dataset were used directly
in our normalization process. UT-Multiview was initially intro-
duced in Ref. [40]. It comprises 64000 raw images from 50 differ-
ent people. This dataset allows large amounts of synthesized eye
images to be constructed by means of 3D eye shape models. UT-
Multiview has a greater distribution of gaze angle than MPIIGaze.
Because our introduced normalization was based on Ref. [40], the
normalized patches were the same size as those in UT-
Multiview. All gray patches in UT-Multiview were adopted as DEA-
Net’s training samples to evaluate the network’s performance.

In experiments, a leave-one-person-out protocol was applied
for the MPIIGaze dataset, while a three-fold cross-person valida-
tion protocol was used for the UT-Multiview dataset. The protocols
adopted in this section are the same as other state-of-the-art algo-
rithms [4,16,18,25,37,40].

4.3. Selection of reference sample-sets

In our proposed approach, the performance of the reference
sample-sets will affect the estimation accuracy of the system, mak-
ing the sample-sets a critical element in DEANet. In this experi-
ment, 500 references were adopted randomly for each person in
the MPIIGaze dataset. Each reference sample-set and every sample
belonging to the same person made up the Siamese pairs for test-
ing. To demonstrate the influence of the reference sample-sets on
estimation accuracy, Fig. 4 illustrates the average angular error
for each person in terms of references. All the Siamese pairs of each
person were fed into the DEANet for gaze estimation, and the aver-
age angular error At for each reference was formulated as follows:

At ¼ 1
M

XM
m¼0

x Gt;m;G
gt
t;m

� �
ð2Þ

where M is the number of samples for each person in the dataset
andx �; �ð Þ is the function computing the angular difference between
both vectors. It should be noted that the x function is another met-
ric of estimation error that is equivalent to the l2-norm function in
Eq. (1). Thex function is intuitively adopted as the metric in experi-
ments rather than the l2-norm function for fair comparison with
other algorithms adopting the same metric. As the blue bars show
in Fig. 4, every person had a different estimation accuracy. Some
people, such as persons No. 0, No. 1, and No. 2, had smaller angular
errors than others. However, the average angular errors for other
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persons, such as No. 3, No. 7, No. 8, and No. 9, were much worse
than those of the above persons. For example, some of the eye
patches of person No. 7 included glasses, while other patches did
not. If the adopted reference sample-sets did not include glasses,
and the test sample-sets included glasses, their different appear-
ances would result in large errors in the estimation accuracy,
because the glasses would induce a significant amount of noise in
the appearance computations. Although it is demonstrated in Ref.
[16] that a generic mean facial shape model used in the normaliza-
tion stage is sufficiently accurate to estimate the gaze direction, an
inaccurately normalized eye patch will obviously lead to large
errors in the inference stage if it is treated as a reference sample-
set. Some examples are illustrated in Fig. 5.

A good reference selection strategy contributes to the improve-
ment of the system. A key element for a reference selection strat-
egy is to determine which patches are candidates for reference
sample-sets, and which are not. This is related to the distribution
of the tested samples. Fig. 6 illustrates the distribution of the 500
randomly selected reference sample-sets for persons No. 0, No. 5,
and No. 7 in the gaze space. Each reference gaze can be represented
by a point in the gaze space. When the average angular error of ref-
erence i, At,i, is smaller than the mean of all the references, the cor-
responding reference is identified as a ‘‘good” reference (marked in
red in Fig. 6). Conversely, when At,i is greater than the mean of all
the references, the corresponding reference is identified as a ‘‘bad”
reference (marked in blue in Fig. 6). The gray points are all the
samples that are used to represent the whole distribution for each
person. In Fig. 6, bad references are almost all located at the
periphery of the whole distribution, especially in person No. 7,
while good references are evenly distributed in the whole space.
Some sample-sets that include large gaze directions cannot be
Fig. 5. Examples of normalized patches that result in large errors. (a, b) Inaccurately
normalized eye patches (p03-day54-0097-left and p08-day31-0301-left). (c) Noise
induced by glasses (p09-day12-0158-left). (d, e) An image without glasses as the
reference sample-set (p07-day24-0046-left) and an image with glasses as the test
one (p07-day25-0255-right). The name of each patch comes from the MPIIGaze
dataset.

Fig. 6. Distributions of gaze angle for persons No. 0, No. 5, and No. 7 in MPIIGaze. Any refe
of its labeled gaze direction. The red points are good reference sample-sets whose value,
sample-sets whose value is greater than the mean value of all the references. Gray po
according to the reference grid in our experiments.
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selected as reference sample-sets. Moreover, a single reference
strategy is not sufficient for accurate estimation.

Fig. 6 suggests that the distribution of the reference sample-sets
affects the system’s performance. Furthermore, the difference
between the reference and tested sample-sets also has an influence
on the system’s performance. It should be noted that the ground
truth difference between both sample-sets can be represented by
the ground truth angular error between Ggt

t and Ggt
f according to

our proposed network. Moreover, the system’s estimation error
can be formulated as x Gt;G

gt
f

� �
. This is also the predicted value of

the ground truth difference between both sample-sets. The rela-
tionship between the difference of both sample-sets and the esti-
mation accuracy is illustrated in Fig. 7. In order to simplify the
figure, x Ggt

t ;G
gt
f

� �
was quantified into 100 bins, and x Gt;G

gt
f

� �
was

accordingly the mean value. These are denoted as x Ggt
t ;G

gt
f

� �
and

x Gt;G
gt
f

� �
in Fig. 7, respectively. The estimation error will increase

when the difference between the testing gaze and the reference
gaze increases. A good reference gaze direction close to the testing
gaze direction will obtain a good estimation accuracy. Because the
testing gaze directions are not provided, more reference sample-
sets will be involved. This is a trade-off between the number of
references and the estimation accuracy. Moreover, although the
testing gaze directions are not provided, the scales of the testing
gaze should be known in advance. The reference grid can be
constructed according to the scale of the gaze directions. In our pro-
posed approach, a three-row and four-column grid was constructed
in order to obtain a good performance in all experiments. Examples
are illustrated in Fig. 6 with green points. Accordingly, the DEANet
with the reference grid was evaluated using the MPIIGaze dataset
for each person; the average angular errors are illustrated in
Fig. 4 (red bars). The results suggest that almost all the average
angular errors with a reference grid strategy are better than the
errors with a random selection strategy. The mean angular error
for all the persons decreases from 5.09 for the random selection
strategy to 4.38 for the reference grid strategy, so a 14% improve-
ment in performance is achieved using the reference grid strategy.

4.4. Cross-person and cross-dataset evaluations

The proposed DEANet is a person-independent model that can
estimate the gaze direction for a new person. Information for the
new person is incorporated into the network as reference
sample-sets in the testing stage. Thus, the problem of a person-
independent model being irrelevant to a new person is effectively
avoided. In order to evaluate how well the DEANet addresses the
challenge, a cross-person evaluation was performed in both public
datasets. Table 1 illustrates the mean angular errors of the
proposed algorithm and of other approaches based on the
rence sample-set can be represented by a point in the gaze angle dimension in terms
At, is smaller than the mean value of all the references; blue points are bad reference
ints are all the samples for each person. Green points are the adopted references
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MPIIGaze and UT-Multiview datasets. Our proposed algorithm
achieves favorable results in both datasets. Although the same
SNNet framework was adopted by both Ref. [25] and our proposed
approach, the performance of our proposed approach is better than
that in Ref. [25] because our approach involves more information,
including the information for both eyes and the head pose. Com-
pared with MPIIGaze, the UT-Multiview dataset includes more
people, so the performance of all algorithms evaluated on UT500
Multiview are better than those evaluated on MPIIGaze. As data-
driven models, diversity of the training data increases the perfor-
mance of the pre-trained models, and our proposed DEANet out-
performs the other algorithms in both datasets.

To demonstrate the robustness of our proposed approach, a
cross-dataset evaluation was performed as well. The model was
trained on the UT-Multiview dataset and then tested on the
MPIIGaze dataset. Fig. 8 illustrates the mean angular errors of all
the evaluated algorithms for the cross-dataset evaluation
[16,29,40,51,52]. Because the gaze distribution of the training sam-
ples is different from the distribution of the testing ones, all algo-
rithms performed worse in the cross-dataset evaluations than in
the cross-person evaluations. However, our proposed DEANet is a
differential network, and the input and output of the network are
replaced with differential inputs and outputs. Our proposed
approach is more robust against gaze distributions than other tra-
ditional methods. The mean angular error of our proposed
approach is 7.77 degrees, with a standard deviation of 3.5 degrees.

4.5. Performance against variation

In the previous evaluations, our proposed DEANet achieved a
good performance in gaze estimation. In this section, the
Table 1
Gaze directional results on two popular datasets with mean angular error (in
degrees).

Method MPIIGaze UT-Multiview

GazeNet [16] 5.5 4.4
Diff-NN [25] 4.64 4.13
RT-GENE Net [18] 4.8 —
iTracker [4] 5.6 —
Full face [37] 4.8 —
MnistNet [29] 6.1 —
LbS [40] 6.7 6.5
Ours 4.38 3.56

A leave-one-person-out protocol was used in the MPIIGaze dataset, and a three-fold

Fig. 7. The relationship between the estimation error (y-axis) and the difference
between both sample-sets (x-axis) for persons No. 0, No. 5, and No. 7.
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performance against variation, such as the influence of the head
pose information and the image resolution, is further investigated.
To deal with arbitrary head pose information in our proposed
DEANet, a normalized head pose information was adopted. To
demonstrate the performance of the DEANet against variation, a
cross-person evaluation in the MPIIGaze dataset without the head
pose information was performed. In this experiment, a new net-
work without the head pose information was retrained based on
the MPIIGaze dataset. The mean angular error evaluated for all per-
sons was 4.46, which is a little higher than that for the network
with the head pose information (4.38), as reported in Table 1.
The network’s performance will be slightly degraded without the
head pose information. The head pose information is marginal
for a deep network such as DEANet. However, it is still important
for a shallower network, such as MnistNet [53], which is evaluated
in Ref. [16]. Shallower networks are usually adopted in order to
save computation resources, especially in remote devices.

Moreover, the influence of the image resolution on gaze estima-
tion was investigated in this experiment. The same network
parameters were adopted as those proposed in Section 4.4, and
the cross-person evaluation was performed. The protocols were
the same as those described in Section 4.4. In the evaluation, all
the input patches were resized to 18� 30, 9� 15, and 5� 8. It
should be noted that the resized patches needed to be restored
to the original size (36� 60) by interpolation in order to be suc-
cessfully fed into the DEANet. The DEANet’s performance for a dif-
ferent image resolution was compared with that of GazeNet [16]
based on both the MPIIGaze and UT-Multiview datasets, as shown
in Table 2. Our proposed DEANet outperforms GazeNet in this
experiment.
5. Conclusions

This paper presented a novel DEANet for appearance-based
gaze estimation. Three streams—including both eye patches and
Fig. 8. Mean angular error for a cross-dataset evaluation with training on the UT-
Multiview dataset and testing on the MPIIGaze dataset.

Table 2
The influence of image resolution. Mean angular errors were evaluated on the
MPIIGaze and UT-Multiview datasets with different image resolutions.

Image resolution MPIIGaze UT-Multiview

Ours GazeNet [16] Ours GazeNet [16]

18� 30 5.41 — 3.75 9.9
9� 15 8.57 — 5.42 11.4
5� 8 12.10 — 13.07 15.7
Average 8.69 11.7 7.41 12.3
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the head pose information—are fed into the network, and a person-
independent model is trained based on an SNNet framework.
Because the differential gaze is adopted, person-specific informa-
tion can be used in the testing stage. A reference grid is constructed
for reference candidates, and the proposed strategy selects good
references to improve the estimation accuracy. Our approach was
evaluated on two public datasets: MPIIGaze and UT-Multiview.
The extensive experimental evaluations showed that our approach
achieves a more promising performance than other popular
methods.

All experiments were analyzed theoretically on the public data-
sets. Our proposed approach will be encompassed as a modality for
HRC robot control with multimodal fusion, which will be investi-
gated carefully in our future work.
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