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Although new technologies have been deeply applied in manufacturing systems, manufacturing enter-
prises are still encountering difficulties in maintaining efficient and flexible production due to the ran-
dom arrivals of diverse customer requirements. Fast order delivery and low inventory cost are
fundamentally contradictory to each other. How to make a suitable production-triggering strategy is a
critical issue for an enterprise to maintain a high level of competitiveness in a dynamic environment.
In this paper, we focus on production-triggering strategies for manufacturing enterprises to satisfy ran-
domly arriving orders and reduce inventory costs. Unified theoretical models and simulation models of
different production strategies are proposed, including time-triggered strategies, event-triggered strate-
gies, and hybrid-triggered strategies. In each model, both part-production-triggering strategies and
product-assembly-triggering strategies are considered and implemented. The time-triggered models
and hybrid-triggered models also consider the impact of the period on system performance. The results
show that hybrid-triggered and time-triggered strategies yield faster order delivery and lower inventory
costs than event-triggered strategies if the period is set appropriately.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The rapid development of sensor technologies and the Internet
of Things enables manufacturing enterprises to perceive manufac-
turing resources and abilities more precisely by synchronizing
their resource statuses with the data in their enterprise informa-
tion systems [1–3]. From a global perspective, cloud-based tech-
nologies allow closer connections and easier collaborations
between different manufacturing enterprises. Some cloud manu-
facturing service platforms have already been established to inte-
grate and share the manufacturing resources from different
enterprises in the form of manufacturing services [3]. Through
these public platforms, enterprises are able to publish real-time
information of their manufacturing resources and provide services
as required by customers [4]. Meanwhile, more diverse customer
requirements are collected on these platforms, which makes it
more difficult for enterprises to create production plans to satisfy
their diverse customers.
The relationship between enterprises and customers is defined
as the relationship between service providers and service deman-
ders in a manufacturing service network consisting of a platform,
a platform manager, service providers, and service demanders
[5]. Any enterprises or individuals can be service demanders on
the platform, as long as they are seeking suitable services to realize
their manufacturing requirements. A company can become a ser-
vice provider if its resources or services are allowed to be pub-
lished on the platform and shared with other potential service
demanders. The service manager on the platform is usually a big
company that manages all the businesses on the whole platform.
The service manager usually cares more about the outcomes and
efficiency of the whole platform than about the production perfor-
mance of a single company, whereas a single company cares more
about its own production. The efficiency of the whole platform can
often be measured by statistical metrics such as average produc-
tion time, average service utilization rate, and average manufactur-
ing costs.

Some studies have focused on global optimization problems in a
collaborative manufacturing service network, including service
selection, service composition, and service scheduling problems
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in which optimization objectives, algorithms, and restrictions are
considered [6]. To organize and optimize manufacturing resources,
a resource-selection strategy based on a distributed genetic algo-
rithm has been proposed [7]. For three-dimensional (3D) printing
services, a matching and selection strategy has been presented
based on different attributes of 3D printing models in order to
achieve a shorter service time [8]. A systematic method has been
proposed to improve the energy efficiency of a multistage manu-
facturing system through production control [9]. In Ref. [10], a
mathematical model and a method for logistics service selection
were built to optimize the delivery time of products frommanufac-
turers to demanders. Furthermore, a multi-level aggregate service-
planning method has been proposed to deal with multi-granularity
services and meet providers’ requirements [11]. In terms of service
composition, Ref. [12] proposed a resource-service chain composi-
tion algorithm to cope with the temporal relationship. In Ref. [13],
an empirical knowledge-oriented genetic algorithm is proposed to
address the optimal service composition problem. The artificial bee
colony algorithm was modified to handle conflicts between differ-
ent objectives in service composition problems [14]. In terms of
service scheduling, a scheduling method for 3D printing services
was proposed in order to reduce the average task delivery time
[15]. A multi-task scheduling model was presented to consider task
workload, service efficiency, and service quantity [16]. In addition,
scholars have studied the scheduling problems of logistics services
[17] and dynamic service scheduling problems [18]. As real-time
sensors and data assimilation technologies develop rapidly, an
increasing amount of real-time data is available for discrete event
simulation to achieve on-line simulation and decision-making
[19,20]. A simulation model of a vehicle general assembly system
was developed based on the event-scheduling simulation method
[21]. The dynamic data-driven simulation method performs well
in dealing with real-time manufacturing service scheduling prob-
lems [22,23]. Few previous studies have explored different produc-
tion strategies that allow a single enterprise to conduct suitable
production planning in a collaborative manufacturing environ-
ment. However, each company always has its own goal, which is
generally related to its own production performance.

For manufacturing enterprises, it is an interesting problem to
determine how to maintain a balance between low inventory cost
and fast order delivery. It is valuable for manufacturing enterprises
to find a better balance between their production time and inven-
tory cost. On the one hand, if an enterprise wants to produce and
deliver products as soon as possible, it needs to prepare enough
parts and products in advance so that randomly arriving orders
can be satisfied in time. But these prepared parts and products
need to be stored in the inventory for days or even months, which
inevitably leads to higher inventory costs. On the other hand, if an
enterprise wants to reduce its inventory costs, a possible method is
to start production only after receiving certain orders from the cus-
tomers. However, this strategy may result in order delivery delay,
which can decrease customer satisfaction. Just-in-time (JIT) and
just-in-case (JIC) inventory management are two typical inventory
management strategies. The core philosophy of JIT is for manufac-
turers to have a suitable inventory readily available to meet the
current requirements, while reducing excess and thereby avoiding
extra inventory costs [24]. The JIT strategy requires manufacturers
to predict demand accurately in order to reduce their inventory
costs as much as possible [25]. In contrast, when using JIC strate-
gies, manufacturers make sufficient parts and products and keep
them in their inventories in order to meet as many customer
orders as possible at any time. Therefore, JIT aims to reduce inven-
tory costs while JIC aims to speed up order delivery. The problem of
determining the amount and time of product purchase has been
considered, while minimizing the sum of the logistics cost and
material inventory cost [26].
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Previous studies have mainly focused on the qualitative analysis
or data statistics of different production and inventorymanagement
systems. In this paper, we propose unified theoretical models and
simulation models of different production strategies, including
time-triggered strategies, event-triggered strategies, and hybrid-
triggered strategies. In addition, simulations of various production
strategies are conducted based on thesemultiple simulationmodels
in order to determine the impact of production-triggering strategies
on inventory costs and order delivery time. More specifically, we
provideamathematicalmodel of theproduction-triggeringproblem
and propose multiple production-triggering strategies (i.e., time-
triggered, event-triggered, and hybrid-triggered strategies). For
each type of production-triggering strategy, we build the process
models and run simulations to test its performance in terms of
production time and inventory costs.

Let X and r represent the number of order arrivals and the arri-
val rate of orders during a certain time, respectively. Assume that
X ~ Pois(r), which means that X obeys the Poisson distribution.
The simulation results show that time-triggered strategies and
hybrid-triggered strategies obtain faster order delivery time and
lower inventory costs than event-triggered strategies when a suit-
able time period (1/r) is chosen.

The rest of this paper is organized as follows. In Section 2, we
analyze the production process and provide a mathematical
description of the problem. In Section 3, we propose three types
of production-triggering strategies and build their simulation mod-
els. In Section 4, simulations are conducted to compare the perfor-
mance of various production-triggering strategies. Finally,
conclusions and further work are discussed in Section 5.
2. Problem formulation

2.1. Manufacturing service network

The relationship between service providers and service deman-
ders in a collaborative manufacturing environment can be
described through a complex network of manufacturing supply
and demand. Enterprises usually act as service providers, providing
multiple types of manufacturing services based on their manufac-
turing resources and capabilities. Manufacturing services can be
described using the service granularity model to represent the dif-
ferent levels of manufacturing services. The simplest services are
called unit services; these are always provided by single manufac-
turing machines or tools. Multiple-unit services can be combined
to form a complex service that can execute more complex manu-
facturing functions. In this paper, we consider a higher-level model
of manufacturing services in which enterprises are encapsulated as
single services whose inputs and outputs are respectively the cus-
tomers’ orders and the completed products. This paper aims to
study the impact of different production strategies inside enter-
prises on the performance of outputs for random input situations.

On the one hand, a manufacturing service can usually execute
multiple types of subtasks due to the flexibility of manufacturing
services. For example, an enterprise might provide a computer
numerical control (CNC) machining service, which is a very typical
manufacturing service. This CNC machining service might support
multiple machining tasks such as column, cone, sphere, thread,
plane, groove, gear, and bore tasks. On the other hand, a specific
subtask type can be executed by different manufacturing services,
as different companies may compete to provide the same kind of
services. Based on the above analysis, the mapping relationship
between manufacturing services and subtasks is a many-to-many
relationship.

There are also different kinds of uncertainties, such as randomly
arriving orders and random service breakdowns. Usually, the
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number of order arrivals during a unit of time basically obeys the
Poisson distribution, Pois(r), where r is the arrival rate of orders.
When an order arrives at the manufacturing platform, it is matched
to a certain type of manufacturing service in the platform accord-
ing to the type of order.

Fig. 1 shows a simple collaborative manufacturing service net-
work with two service demanders and two service providers. It
can be seen that demander D1 submits an order O1 to the manufac-
turing platform, and the platform allocates this task to provider P2.
Thus, a supply–demand relationship between provider P2 and
demander D1 is built based on this match. Provider P2 delivers
the product of order O1 to demander D1 after finishing the produc-
tion process of order O1. Also, demander D2 submits its order O2 to
the platform, and the platform distributes O2 to provider P1. Hence,
a supply–demand relationship between provider P1 and demander
D2 is also built through the manufacturing platform. Provider PP1
delivers the product of order O2 to demander D2 after finishing
the production process of O2.
2.2. Production processes

A production process can be briefly divided into several main
steps including material input, part production, part storage,
product assembly, and product storage. For an enterprise, orders
from customers can be considered as the information input of the
manufacturing system, while materials can be considered as the
physical input. Materials come from upstream suppliers in the
supply chain, while orders come from downstream customers in
the supply chain. Products are the output of amanufacturing system
Fig. 1. A manufacturing service network with two service demanders and two
service providers.

Fig. 2. The basic production process
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for an enterprise. After the production process is completed, includ-
ingpart productionandproduct assembly, theproducts are stored in
the product warehouse; finally, they are delivered to customers.

Fig. 2 briefly presents the production process of an electronic
assembly manufacturing enterprise from the materials (left side)
to the products (right side). There are different material pools in
the material warehouse for different types of material. In the elec-
tronic assembly manufacturing industry, materials mainly include
printed circuit boards and electronic components. Materials are
automatically delivered to part production lines when the manu-
facturing system starts the production process. On the part produc-
tion lines, the materials are processed into different kinds of parts.
Particularly for the electronic assembly industry, electronic com-
ponents are mounted on printed circuit boards through surface-
mount technology lines to manufacture different types of parts.
The produced parts are then transported to the part inventory for
future usage. The product assembly lines take out a certain number
of parts from the part inventory and assemble them into products.
After being assembled, the products are stored in the product
inventory. Finally, the products are delivered to customers via
logistics to complete the order.

2.3. Mathematical description

Given randomly arriving orders in a dynamic environment, it is
necessary to choose a certain period of time to analyze. Let ts and te
represent the start time and end time, respectively, of the whole
time of duration under study. Let Oi represent the ith arriving
order, which arrives at time Ai. After order Oi arrives, the manufac-
turing system is triggered by a triggering strategy, and the manu-
facturing system immediately starts to execute the production
process for Oi. The products of Oi are produced after the manufac-
turing system finishes its whole production process, including part
production and product assembly.

2.3.1. Optimization objectives
In this research, we mainly consider two optimization objec-

tives of this problem: the order delivery time and the inventory
occupation. Let Ci represent the completion time of order Oi; then,
the optimization objective of the order delivery time can be given
by Eq. (1).

min
X

Ai2½ts ;teÞ

Ci � Ai

N
ð1Þ
of manufacturing enterprises.
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where N is the number of all arriving orders at the manufacturing
system during time [ts, te), and the definition of N is given by Eq. (2).

N ¼ jfOjjAj 2 ½ts; teÞgj ð2Þ
Therefore, the optimization objective of the order delivery time

can also be written as shown in Eq. (3).

min
X

Ai2½ts ;teÞ

Ci � Ai

jfOjjAj 2 ½ts; teÞgj ð3Þ

The optimization objective of the inventory occupation includes
both the part inventory and the product inventory. Let Ipart(t) and
Iprod(t) represent the part inventory occupation and the product
inventory occupation at time t, respectively. The average inventory
occupation is calculated by dividing the total inventory occupation
between time ts and te by (te � ts). Eqs. (4) and (5) provide the
expressions for the average part inventory occupation and the
average product inventory occupation, respectively.

min
Z te

ts

IpartðtÞdt
te � ts

ð4Þ

min
Z te

ts

IprodðtÞdt
te � ts

ð5Þ

In practice, the order delivery time and the inventory costs are
contradictory to each other. It is necessary to reconcile them and
find a suitable balance point for each situation.

2.3.2. Order arrival time distribution
The number of order arrivals X in each time period obeys the

same Pois(r) in all simulation models. Therefore, X ~ Pois(r), as
shown by Eq. (6).

Pois k orders in each periodð Þ ¼ e�r r
k

k!
ð6Þ

where r is the arrival rate in the models, and is actually the average
number of orders per time period. Let Bi represent the interval time
between the arrival of Oi and the arrival of Oi�1. Then, Bi is defined
by Eq. (7).

Bi ¼ Ai � Ai�1 ð7Þ
where A0 = 0 and i � 1. Bi obeys the same exponential distribution
Exp(r) in the simulation models, which is defined as Bi ~ Exp(r). The
cumulative distribution function of Bi is given by Eq. (8).

FðBi; rÞ ¼ 1� e�Bir ð8Þ
Fig. 3 shows the detailed structure of the arrival time function

block. The input and output of the arrival time function are the
arrival rate and the arrival time, respectively. Each order arrival
Fig. 3. The arrival time function bl
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triggers the arrival time function; then the model obtains the arri-
val time of this order. In the simulations, we set the arrival rate r as
0.5 in multiple simulation models. When we run the simulations,
orders from customers are generated randomly based on the arri-
val time function.
3. Production-triggering strategies

In a manufacturing service network, service providers need to
dynamically adjust their production strategies according to system
statuses such as order arrivals and service availability. A
production-triggering strategy is one of the most important pro-
duction strategies for a manufacturing enterprise. In this section,
three types of production-triggering strategies are presented:
time-triggered, event-triggered, and hybrid-triggered strategies.
Let Tpart(i) represent the triggering time of the ith part, and use
Tprod(j) to represent the triggering time of the jth product. A
production-triggering strategy can therefore be fully defined by
Tpart(i) and Tprod(j).
3.1. Time-triggered strategies

In mass-production mode, companies usually produce batches
of parts and products periodically, according to production plans.
Mass-production mode is a kind of time-triggered production
strategy. In time-triggered production strategies, both the part pro-
duction and the product-assembly process are periodically trig-
gered by a certain time. In a time-triggered model, enterprises
execute production according to a specific time period and do
not consider order arrivals. Let spart and sprod represent the trigger-
ing period of part production and the triggering period of product
assembly, respectively. Time-triggered strategies are defined by
the part-triggering time Tpart(i) and the product triggering time
Tprod(i), which are shown by Eqs. (9) and (10).

TpartðiÞ ¼ i � spart ð9Þ
TprodðiÞ ¼ i � sprod ð10Þ
Fig. 4 illustrates a model of a time-triggered production strate-

gy. At the beginning of the left side of the figure, there is a part trig-
ger that triggers part production lines to execute the part produc-
tion process. After parts have been completed by the part
production lines, they are transported to the part store. The part
store is followed by product assembly lines, which execute product
assembly processes after every time period. After products are
assembled by the product assembly lines, they are stored in the
product store. Once there is a product matching an order in the
ock in the simulation models.



Fig. 4. A model of a time-triggered production strategy. FIFO: first in first out; n: number; d: departure; a: arrival.
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product store, the matched product will be delivered to the cus-
tomer for that order. The product delivery part executes the
order-matching process and the product delivery process.

It can be seen that part production and product assembly are
both triggered by a certain time period in a time-triggered produc-
tion model, and do not depend on order situations. The part pro-
duction lines produce a certain number of different types of parts
during each time period. Each batch of parts is immediately depos-
ited into the part warehouse after being completed. The product
assembly lines also produce a certain number of products during
each time period. The completed products are immediately depos-
ited into product warehouses.

Note that the time periods of part production and product
assembly are usually different from each other, even within the
same enterprise. These two time periods are usually related to
the specific industries, product types, and production beats. In this
model, products are delivered from product warehouses to cus-
tomers when orders are received. If there are not enough products
for one order, delivery services will wait until enough products are
produced. Therefore, the production processes are not impacted by
order arrivals. The production processes continue according to a
certain time period, even when there are enough products stored
in the warehouses; they will not speed up, even when there are
not enough products in the warehouses.
3.2. Event-triggered strategies

In the personalized customized production mode, enterprises
set up their production plans normally, based on event-triggered
strategies; that is, the product scales and types are based on orders
received from customers. In event-triggered production modes,
part production processes are triggered by order arrivals. Let
Tpart(i) represent the part-triggering time, as shown in Eq. (11).

TpartðiÞ ¼ Ai ð11Þ
The product assembly process of order Oi is triggered only if at

least one of the product assembly lines is available and there are no
other parts ahead of Oi in the part inventory. Let Spart(i) and Sprod(i)
represent the part production time and product assembly time of
Oi, respectively.
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When i = 1, the triggering time of product assembly for O1 is the
arrival time of O1 plus the part production time Spart(1), which is
defined by Eq. (12).

Tprodð1Þ ¼ A1 þ Spartð1Þ ð12Þ
When i � 2, the triggering time Tprod(i) of the product assembly

for Oi is defined in a recursive function, which is defined by Eqs.
(13), (14), and (15).

TprodðiÞ ¼ maxfAi þ SpartðiÞ;a;bg ð13Þ
where

a ¼ Tpartði� 1Þ þ Spartði� 1Þ ð14Þ

b ¼ Tprodði� 1Þ þ Sprodði� 1Þ ð15Þ
A model of an event-triggered production strategy is shown in

Fig. 5. Unlike time-triggered production strategies, both the part
production activities and the product assembly activities are trig-
gered by specific events in an event-triggered production model.
In particular, when an order arrives, a production plan for both
the part production and product assembly is developed, based on
the type and quantity of the order. Then part production lines start
to produce corresponding parts according to the production plan.
After the parts have been completed by the part production lines,
they are transported to the part store. The part store is followed
by the product assembly lines, which execute product assembly
processes. After the products have been assembled by the product
assembly lines, they are stored in the product store. Once there is a
product matching an order in the product store, the matched pro-
duct will be delivered to the customer for that order. The product
delivery part executes the order-matching process and the product
delivery process. It can be seen that warehouses in the event-
triggered model are always used to temporarily store parts and
products. Once the product assembly line receives the part, assem-
bly begins. Each product will be delivered to its customer through
logistics once it has arrived at the product warehouses.

3.3. Hybrid-triggered strategies

A production model of hybrid-triggered production strategies is
shown in Fig. 6. Unlike time-triggered production strategies and



Fig. 5. A model of an event-triggered production strategy.

Fig. 6. A model of a hybrid-triggered production strategy. REL: release.
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event-triggered production strategies, the part production pro-
cesses in a hybrid-triggered production model are time-triggered,
while the product assembly processes are event-triggered. In this
model, the part production lines produce certain numbers of parts
during each time period. The time period of part production is rep-
resented by Tpart(i), as shown in Eq. (16).

TpartðiÞ ¼ i � spart ð16Þ
Each batch of parts is stored in the part warehouses after being

produced. Product assembly lines are triggered only by arriving
orders from customers. When an order arrives, the product assem-
bly lines request the needed parts and start production if there are
enough parts in the part store to produce the required products. If
there are not enough parts, the product assembly lines will wait
until enough parts have been produced by the part production
lines. In a hybrid-triggered strategy, the triggering time Tprod(i) of
the product assembly for Oi is defined by Eq. (17), below, where
a and b are defined by Eqs. (14) and (15), respectively.
803
TprodðiÞ ¼ maxfAi þ SpartðiÞ;a;bg ð17Þ

In the hybrid-triggered model, order arrivals do not impact the
part production processes but do impact the product assembly
processes. Product warehouses in the hybrid-triggered model are
used to temporarily store products because all stored products
are immediately delivered from the warehouses to the customers
once they have been produced.
4. Simulation

To test the performance of these proposed strategies, we design
different simulation experiments and investigate the impact of
production-triggering strategies on the production performance
under randomly arriving orders. We build simulation models for
different triggering strategies and then run multiple simulations
through SimEvents.



Fig. 7. The number of submitted orders during the simulation.
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4.1. Scenarios

In this case study, there are five enterprises acting as different
service providers in the manufacturing service network. We build
five models for these five enterprises in order to run simulations.
The simulation time for each model is set up to 1000 time periods.
Some basic modules—such as part trigger, part production, part
store, product assembly, product store, customers, order list, and
product delivery—are included in each simulation model. The
order arrival rates, part triggers, and product triggers for all simu-
lation models are listed in Table 1.

It is shown that Model-1, Model-2, and Model-3 are time trig-
gered. However, the time periods of Model-1, Model-2, and
Model-3 are different from each other, which is used to investigate
the effect of time periods on production performance. Model-4 is
hybrid triggered: The part production lines are triggered by time
with a period of 2, while the product assembly lines are triggered
by arrival orders. Model-5 is event triggered, so both the part pro-
duction lines and the product assembly lines are triggered by arri-
val orders. There are two kinds of triggers in these simulation
models: part triggers and product triggers. The part trigger is
applied in the event-triggered model (Model-5), and the product
trigger is applied in the hybrid-triggered model (Model-4). Product
inventory capacities are set to 100 for all five production models.
Part inventory capacities are set to ‘‘inf” (i.e., infinite) for all five
production models. The number of arrival orders during the simu-
lation is shown in Fig. 7.

4.2. Results

During the simulation, we count several kinds of data for each
production model in order to compare the task delivery and inven-
tory costs between different strategies. In terms of task delivery,
we compare two indicators between these five production models:
the number of orders in the waiting lists and the number of com-
pleted orders. In terms of inventory costs, we compare both the
number of parts in the store and the number of products in the
store between these five production models. Therefore, between
the different production-triggering strategies, we compare four
aspects: the number of orders in the waiting lists, the number of
completed orders, the number of parts in the store, and the num-
ber of products in the store. The definitions of these evaluation
metrics are given below:

The number of orders in the waiting list is the number of orders
in the order list in Figs. 4–6. The number of orders in the waiting
list is actually the number of input orders (i.e., the number of arriv-
ing orders submitted by customers) minus the number of com-
pleted orders (i.e., the number of completed products).

The number of completed orders is the number of all orders that
have been completed and delivered to the customers. This value is
actually equal to the number of inputs of the terminator in
Figs. 4–6. One order is considered to be completed only after a
finished product has been matched with this order.

The number of parts in the store is the number of parts in the
part store in Figs. 4–6 at the current time. The number of parts
in the store is equal to the number of produced parts from the part
Table 1
Parameter setting of the simulation models.

Model Order arrival Part trigger Product trigger

M-1 Pois(0.5) Time (period = 1) Time (period = 1)
M-2 Pois(0.5) Time (period = 2) Time (period = 2)
M-3 Pois(0.5) Time (period = 3) Time (period = 3)
M-4 Pois(0.5) Time (period = 2) Event
M-5 Pois(0.5) Event Event
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production lines minus the number of parts used for product
assembly.

The number of products in the store is the number of products
in the product store in Figs. 4–6 at the current time. The number of
products in the store is equal to the number of assembled products
from the product production lines minus the number of products
delivered to the customers according to orders.

Fig. 8 shows a comparison of the results for the number of
orders in the waiting lists over time between the five
production-triggering models. It is shown that the numbers of
orders in the waiting lists in the time-triggered (period = 1, per-
iod = 2) models and the hybrid-triggered model change much less
than those in the time-triggered (period = 3) model and the event-
triggered model during the simulation. The numbers of orders in
the waiting lists in the time-triggered (period = 3) model and the
event-triggered model reach 170 and 90, respectively, by the end
of the simulation time (te = 1000 h). This result indicates that the
numbers of orders in the waiting lists in the time-triggered (pe-
riod = 1, period = 2) models and the hybrid-triggered model are
convergent when the time is over, while those of the time-
triggered (period = 3) model and the event-triggered model are
not convergent.

Fig. 9 shows a comparison of the results for the number of com-
pleted orders over time between the five production-triggering
models. It is shown that the number of completed orders in all five
ig. 8. A comparison of the numbers of orders in waiting lists between different
roductions modes.
F
p



Fig. 9. A comparison of the numbers of completed orders between different
production modes.
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production models increases continually from the beginning
(ts = 0 h) to the end (te = 1000 h) of the whole simulation process.
In terms of the number of completed orders, the shorter period
time-triggered models (i.e., period = 1 and period = 2) and the
hybrid-triggered model perform almost the same during the whole
process. Sometimes (between t = 500 h and t = 600 h), the shortest
time-triggered model (period = 1) performs a little better than the
time-triggered model (period = 2) and the hybrid-triggered model.
Both the longer period time-triggered model (period = 3) and the
event-triggered model perform worse than the shorter period
time-triggered models (period = 1, period = 2) and the hybrid-
triggered model in terms of the numbers of completed orders.

Fig. 10 shows a comparison of the results for the number of
parts in the inventory over time between the five production-
triggering models. It is shown that the numbers of parts in the
inventory of all five models are almost always close to 0 from
the beginning time (ts = 0 h) to time 600 (t = 600 h). From time
600 (t = 600 h) to the end time (te = 1000 h), the time-triggered (pe-
riod = 2, period = 3) models and the event-triggered model still
keep close to a zero-part inventory. However, the number of parts
in the inventory of the hybrid-triggered model exhibits waves after
t = 600 h. Furthermore, the number of parts in the inventory of the
time-triggered (period = 1) model increases rapidly after t = 600 h.
Fig. 10. A comparison of the numbers of parts in the inventory between different
production modes.
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Hence, the time-triggered (period = 2, period = 3) models and the
event-triggered model perform very well in terms of the perfor-
mance of the part inventory, while the performance of the
hybrid-triggered model is reasonable, although not ideal; however,
the performance of the time-triggered (period = 1) model is very
poor.

Fig. 11 shows a comparison of the results for the number of
products in the inventory over time between the five production-
triggering models. It is shown that the time-triggered (period = 2,
period = 3) models, the hybrid-triggered model, and the event-
triggered model perform excellently, although the time-triggered
(period = 2) model exhibits small waves from t = 650 h to
t = 950 h. Compared with the other four models, the performance
of the time-triggered (period = 1) model is very poor in terms of the
product inventory. The number of products in the inventory of the
time-triggered (period = 1) model reaches its maximum inventory
capacity value of 100 (as defined in Section 4.1) at time t = 600.

4.3. Discussion

The simulation results illustrate that the production period is a
key factor in the time-triggered production strategies. In such
strategies, order arrivals are not considered when the enterprises
make production plans. In this research, the order arrival rate r
in the simulation models is set as 0.5. Hence, the expectation of
the number of order arrivals per unit time is 1/r = 2. When the peri-
ods spart and sprod of the time-triggered strategies are set to 2 (e.g.,
Model-2), the model performs well in terms of both the order
delivery time and the inventory occupancy, as shown in the simu-
lation results. When spart = 1 and sprod = 1 (e.g., Model-1), the time-
triggered model performs well in terms of the order delivery time,
but the part inventory occupancy and product inventory occu-
pancy are much higher than those of the other strategies, as shown
in Figs. 10 and 11. When spart = 3 and sprod = 3, as in Model-3, the
time-triggered model exhibits a good performance in terms of the
inventory occupancy, but the number of delivered orders during
the same time is much less than those of the other strategies, as
shown in Figs. 8 and 9, meaning that the model exhibits a longer
than average order delivery time.

The event-triggered production strategy has the lowest inven-
tory occupancy, which leads to the lowest inventory costs, as
shown in Figs. 10 and 11. However, the event-triggered strategy
has a much longer order delivery time than the time-triggered
strategies (period = 1, period = 2) and the hybrid-triggered
ig. 11. A comparison of the numbers of products in the inventory between
ifferent production modes.
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strategy, although it is slightly better than the time-triggered
strategy (period = 3) as shown in Figs. 8 and 9.

The hybrid-triggered strategy yields satisfactory order delivery
times. Although there are some local fluctuations, the strategy gen-
erally performs satisfactorily. Moreover, the hybrid-triggered
strategy performs well in terms of both the part inventory
occupancy and the product inventory occupancy. Especially in
terms of the product inventory, the hybrid-triggered strategy
exhibits the best performance, as shown by Fig. 11. Therefore, the
hybrid-triggered production strategy is a wise choice for balancing
the order delivery time and the inventory costs.

In summary, if the order arrival times align with the Poisson
distribution Pois(r), then manufacturing enterprises in a manufac-
turing service network should choose the hybrid-triggered strategy
or a time-triggered strategy with a period s = 1/r because these two
production strategies perform well in terms of both the order
delivery time and the inventory costs. Applying either of these
two strategies provides a good balance between the order delivery
time and the production costs. Both time-triggered strategies with
a period s > 1/r and the event-triggered strategy yield low inven-
tory costs but have a long order delivery time, which results in
lower customer satisfaction. The time-triggered strategies with a
period s < 1/r show good performance in terms of short-order
delivery time, but occupy a great deal of the inventory during pro-
duction processes.

5. Conclusions

Focusing on the production-triggering problem in a dynamic
collaborative manufacturing environment, we proposed three
types of production-triggering strategies for manufacturing enter-
prises under randomly arriving orders: time-triggered, event-
triggered, and hybrid-triggered strategies. Simulation models of
these three production-triggering strategies were built and simu-
lated in order to investigate their performance in terms of order
delivery time and inventory costs. In addition, for the time-
triggered and hybrid-triggered strategies, we changed the period
in order to study the effect of the period on system performance.
The simulation results showed that: ① The hybrid-triggered strate-
gy and the time-triggered strategy with a period s = 1/r show bet-
ter performance in terms of both the order delivery time and the
inventory costs than the other strategies; ② the time-triggered
strategies with a period s > 1/r and the event-triggered strategy
have lower inventory costs but a longer order delivery time; and
③ the time-triggered strategies with a period s < 1/r exhibit better
performance in terms of order delivery time but poor performance
in terms of inventory costs.

One possible future work is to design more detailed production
models in terms of production processes and mapping relation-
ships between part types and product types. Another direction is
to study more complex manufacturing service networks, such as
cloud manufacturing and social manufacturing environments.
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