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The world’s increasing population requires the process industry to produce food, fuels, chemicals, and
consumer products in a more efficient and sustainable way. Functional process materials lie at the heart
of this challenge. Traditionally, new advanced materials are found empirically or through trial-and-error
approaches. As theoretical methods and associated tools are being continuously improved and computer
power has reached a high level, it is now efficient and popular to use computational methods to guide
material selection and design. Due to the strong interaction between material selection and the operation
of the process in which the material is used, it is essential to perform material and process design simul-
taneously. Despite this significant connection, the solution of the integrated material and process design
problem is not easy because multiple models at different scales are usually required. Hybrid modeling
provides a promising option to tackle such complex design problems. In hybrid modeling, the material
properties, which are computationally expensive to obtain, are described by data-driven models, while
the well-known process-related principles are represented by mechanistic models. This article highlights
the significance of hybrid modeling in multiscale material and process design. The generic design
methodology is first introduced. Six important application areas are then selected: four from the chemical
engineering field and two from the energy systems engineering domain. For each selected area, state-of-
the-art work using hybrid modeling for multiscale material and process design is discussed. Concluding
remarks are provided at the end, and current limitations and future opportunities are pointed out.

� 2021 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and
Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Materials can be broadly classified into two categories: func-
tional process materials and end-user materials or products. The
former are used during the manufacturing process (e.g., solvents,
catalysts, adsorbents), while the latter are typically end-user
chemicals; that is, their functions go beyond the factory gates.
Functional process materials with tailored properties are often at
the heart of advances in the process industry because the choice
of these materials affects not only the economic cost, but also
the environmental, health, and safety performance of the
processes. As described by Grossmann and Westerberg [1], a
modern process system can be decomposed into multiple scales
at which different physical and/or chemical phenomena take place.
The lowest scale involves all decisions that are linked to the struc-
tures of molecules or materials used in the process—for example,
liquid solvents and solid adsorbents for chemical separations,
heterogeneous catalysts for reactions, or refrigerants and phase
change materials (PCMs) for energy transfer and conversion.
Historically, materials have been discovered by means of the
experimental trial-and-error method. This method is slow and
inefficient, given the large size of the material design space. Due
to the recent development of theoretical model-based methods,
it is now popular and efficient to employ computer-aided
approaches to guide material selection and design. On the other
hand, it should be noted that there are always strong interactions
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between material selection and the operation of the processes
where the material is used. For this reason, all the scales involved
in a process system should be considered simultaneously, making
integrated material and process design essential [2].

The first step of multiscale modeling is to connect the molecular
scale to the phase scale, where the main task is to model and pre-
dict the macroscopic properties (e.g., diffusion coefficient, thermal
conductivity, enthalpy, and Gibbs free energy) of the fluid mixtures
based on the atomic- or molecular-level information. In principle,
quantum chemical computation, molecular simulation, and equa-
tions of state (EoS) can provide these predictions. However, these
calculations are computationally expensive and system dependent.
Fortunately, due to the ever-increasing availability of experimental
and theoretical data, it is now popular and efficient to model the
properties of molecules and materials from their structures via
descriptor-based empirical models [3]. Since these models describe
the system property or behavior purely based on data correlations,
they are known as data-driven models. Mathematical representa-
tions such as linear, polynomial, artificial neural network (ANN),
Gaussian process, and kriging are widely used in data-driven prop-
erty modeling [4]. A recent review on the methods and applica-
tions of data-driven approaches for the discovery and optimal
design of various types of materials can be found in Ref. [3]. Know-
ing the macroscopic properties of the system, it is then possible to
derive the constitutive relations (e.g., kinetics and phase equilibria)
and implement them into the mass, energy, and momentum con-
servation laws of each process unit. Taking into account the con-
nectivity between different units, one can finally scale the
system upward from the phase level to the process level. Since
the constitutive relations and conservation laws are derived from
physical knowledge, they are known as first-principle or mechanis-
tic models. The combination of data-driven and mechanistic mod-
els makes the solving of multiscale material and process design
problems efficient and much faster. This model-combination strat-
egy is known as hybrid modeling, and the resulting entire model is
called a hybrid model.

In fact, there are three different types of hybrid model struc-
tures. As summarized in Ref. [5], the first parallel structure (type
I) is actually a summation of two parts: a mechanistic term and a
data-driven term. Within the model, well-known knowledge is
represented with the mechanistic term, while the data-driven part
describes the features that are unknown or expensive to under-
stand. This type of hybrid model can lead to improved prediction
accuracy [6,7]. Besides the parallel structure, there are two other
consecutive hybrid structures where the data-driven model is
arranged either before (type II) or after (type III) the mechanistic
model. Compared with the structure of type III, the hybrid
Fig. 1. Schematic diagram of hybrid modeling for compu
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structure of type II is much more popular in process engineering
and has already been used in many applications in multiscale
material and process design [8–10]. In this hybrid structure, empir-
ical data-driven models are first used to predict the properties of
materials, which are then substituted into the mechanistic process
models. By doing so, it is possible to successfully bridge the gap
between material and process scales and efficiently perform inte-
grated material and process design.

Due to the popularity and increasing number of applications,
researchers have contributed several reviews on hybrid modeling.
For example, Zendehboudi et al. [11] provide a review on hybrid
modeling for process optimization, control, and monitoring.
McBride et al. [12] emphasize the importance of hybrid modeling
for separation process design. Yang et al. [13] highlight the
significance of hybrid modeling in smart manufacturing. However,
to the best of our knowledge, there is a lack of work summarizing
the applications of hybrid modeling in multiscale material and pro-
cess design. In this article, we first describe the general principles
and design methodology of hybrid modeling for integrated
material and process design. Two solution strategies are then
introduced to solve hybrid-model-based material and process
design problems. Later, we select six representative areas where
hybrid modeling either has already been successfully applied or
can potentially be used to simultaneously design the material
and the process. For each area, we briefly review the state-of-
the-art work and point out the current limitations and possible
opportunities. Concluding remarks are provided at the end of this
article.
2. Methodology

As mentioned in the introduction, there are two different types
of materials: functional process materials and end-user materials
or products. Fig. 1 illustrates the scheme of hybrid modeling for
material and product design. Since functional process materials
are typically used in the process industry, the design objective is
to find energy-efficient and environmentally friendly processes.
In comparison, the task of end-user material design is to promote
a better life for end-users and a more sustainable society. As
depicted in Fig. 1, the application domain of process systems engi-
neering (PSE) has been broadened from the traditional analysis,
simulation, and optimization of chemical processes to include the
optimal design of molecules and materials [14]. Under this trend,
the computer-aided material (or product) and process design
method [15,16] has played an important role in the optimal
design of various functional materials and chemical products.
ter-aided material (or product) and process design.
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The increasing amount of available data makes data-driven models
very important tools to predict material or product properties
based on their structural and composition information [3]. On
the other hand, mechanistic models are usually employed to
describe the phenomena or principles of the process in which the
material is used, due to the well-known underlying physics. By
combining these two types of models, the material/product and
the process system can be optimally designed by the formulation
and solution of a mathematical optimization problem. Since the
optimal design of end-user chemical products has been well
reviewed by Uhlemann et al. [17] and Fung et al. [18], this article
focuses on process materials design.

For better illustration, we herein classify process functional
materials further into two categories: molecular materials that are
typically composed of single or multiple molecules (e.g., solvents
and working fluids (WFs)) and solid materials such as heteroge-
neous catalysts and adsorbents. Fig. 2 shows the scheme of hybrid
modeling for integrated functional material and process design.
The problem can be described as follows: Given a batch or continu-
ous process using a functionalmaterial (e.g., solvent and adsorbent),
find theoptimalmaterial structure andprocess operating conditions
that will lead to the best process performance. This is a typical opti-
mization problem, and the design variables include material selec-
tions and process conditions. The objective function is normally
defined as a process performance index, such as the total annual
cost, total energy consumption, or environmental effects of the pro-
cess. As illustrated in Fig. 2, in order to calculate the objective func-
tion from the given design variables, we need ① property models
that relate material structures tomaterial properties and② process
models that relate the properties and process operating conditions
to the overall process performance. As described in the introduction,
the property models are usually empirical or data-driven, while the
process models are most likely knowledge or mechanism-based.
Zhou et al. [3] summarize a large number of publicly accessible
structure and property databases for molecules and various solid
materials. These data are very useful for building data-driven prop-
erty models. With the data-driven property models and the mecha-
nistic process models, one can successfully predict the performance
of theprocesswhere thematerial is used.Once this forwardproblem
(property prediction and process simulation) is successfully com-
pleted, the best material structure and process conditions can then
be identified by solving a reverse material and process design
problem.

Two solution strategies, decomposed and integrated design
methods, can be employed to solve the reverse design problem.
The decomposed design method solves material and process
design problems in a sequential way. That is, desirable material
properties are first defined by analyzing the process characteris-
tics, and the optimal material is then identified to match these
properties by solving a computer-aided material design problem.
If the material is simply a molecule (e.g., a solvent or WF),
Fig. 2. Schematic diagram of hybrid modeling for integrated functional material
and process design.
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empirical or semi-empirical data-driven models (e.g., the very pop-
ular group contribution (GC)-based models) are usually available
for the prediction of various properties of molecules. In this case,
the material design problem can be easily handled with the well-
known computer-aided molecular design (CAMD) methodology
[19]. Papadopoulos et al. [15] and Austin et al. [20] provide com-
prehensive overviews on the CAMD method, software/tools, and
solution techniques. On the other hand, if the material is solid
and has complex structures (e.g., adsorbents and catalysts), com-
plex relationships usually exist between the material structure
and its properties, which are difficult to model using traditional
correlation methods. Thanks to the development of machine learn-
ing (ML) and deep learning methods [19,21], these complex rela-
tionships can now be efficiently modeled. For the optimal design
of solid functional materials using ML models, interested readers
can refer to the work of Zhou et al. [3]. After promising materials
are identified, process design and optimization can then be per-
formed for each material to find the best-matching process
conditions.

Decomposed design methods solve molecular/material design
and process design problems sequentially [22,23]. Despite the high
efficiency of these methods, this approach can lead to suboptimal
solutions due to the following two reasons [24]: ① It is often dif-
ficult to know in advance which material property dominates the
process performance; and ② the specification of process condi-
tions strongly influences the selection of the material, while the
selected material, on the other hand, reversely determines the
optimal operating conditions of the process. Decomposed material
and process design cannot reasonably capture this interdependent
relationship.

In contrast to the decomposed design method, the integrated
design method attempts to simultaneously identify the best mate-
rial and process conditions [8,25]. This is usually performed by for-
mulating and solving a mixed-integer nonlinear programming
(MINLP) optimization problem [9], because both discrete variables
representing material structures and continuous variables (i.e.,
process operating conditions) are involved, and most of the prop-
erty and process models are inherently nonlinear. It is worth not-
ing that when the mixed design space is large and the property
and process models are very complicated, a successful solution of
the MINLP problem significantly relies on good initial estimates.
In addition, in most cases, process functional materials are pure
substances. When mixtures of substances (e.g., solvent blends)
are being designed, additional constraints related to the mixture
composition and properties must be considered, which makes
the integrated design problem much more challenging [26,27].
3. Applications

In the following sections, six representative areas are selected in
which hybrid modeling either has already been successfully
applied or can potentially be used to simultaneously design the
material and process. For each area, the modeling strategy, solution
method, main results, current limitations, and future opportunities
are highlighted. The selected areas include solvent-based reaction
and separation processes, adsorption separation processes, mem-
brane separation processes, heterogeneous catalytic processes,
organic Rankine cycle (ORC) processes, and thermal energy storage
(TES) processes.
3.1. Solvent-based reaction and separation processes

Solvents are important functional materials in the chemical
industry for promoting reactions and separations. The effect of a
solvent on a reaction or separation process depends fully on the
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solvent properties [28], such as the solvation ability and enthalpy
of vaporization. First-principle methods (e.g., density functional
theory (DFT) computation) can predict various solvent properties
[29]. However, such methods are computationally expensive to
use in multiscale solvent and process design. In order to tackle
these complex design problems, data-driven models are typically
used to predict solvent properties [30–33]. Combining them with
suitable process models, it is possible to perform integrated solvent
and process design. For example, Zhou et al. [9] propose an empir-
ical data-driven model using conductor-like screening model for
real solvents (COSMO-RS)-based solvent descriptors to correlate
the solvent kinetic effects on a Diels–Alder reaction. By combining
this data-driven kinetic model with mechanistic process models
representing the reactor, distillation column, and heat exchanger,
an MINLP-based integrated solvent and process design problem
was formulated and solved to maximize the economic profit of
the reaction process. The result showed that the optimal process
included a less efficient (in terms of reaction efficiency) solvent
that benefited the solvent–product separation more.

Accurate phase equilibrium prediction is very important for sol-
vent selection in separation processes. Traditional predictive ther-
modynamic models, such as predictive Soave–Redlich–Kwong
(PSRK) [34], are mathematically complicated because they are
highly nonlinear and sometimes contain implicit equations.
Replacing them with much simpler and explicit data-driven mod-
els can be very beneficial in order to reduce the computational
demand in the integrated design of the solvent and the process sys-
tem. Valencia-Marquez et al. [35] use the hybrid modeling method
to perform an integrated ionic liquid (IL) and process design study
for post-combustion CO2 capture. A total of 394 experimental CO2

solubilities in different ILs under various conditions were collected
from the literature. An empirical correlation model using temper-
ature, pressure, and the IL molecular weight as inputs was
regressed to predict the CO2 solubility in ILs. By implementing this
data-driven model into the mechanistic process models, the sol-
vent and absorption process were simultaneously optimized.
Despite much simplification, the data-driven model did not take
into account the structural effect of ILs on CO2 solubility. Recently,
Song et al. [30] establish a GC-based ANN model to accurately pre-
dict the CO2 solubility in various ILs at different temperatures and
pressures based on 10 116 experimental CO2 solubility data. This
model can well capture the complex relationship between IL struc-
ture and CO2 solubility. We are now implementing this ANNmodel
into a rigorous rate-based absorption model to perform integrated
IL and process design for CO2 capture, and it is expected that the
first-hand results will be disclosed soon.

Hybrid modeling is used not only for pure solvent design, but
also for mixture solvent design. McBride and Sundmacher [26]
use a thermomorphic solvent (TMS) mixture consisting of
dimethylformamide and decane to separate the homogeneous cat-
alyst from the product after a reaction through temperature-
controlled phase splitting in a decanter. The reaction being inves-
tigated was the hydroformylation of long-chain alkenes. Reactor
and process design for this reaction is typically performed for a
specific composition of the solvent mixture, without considering
the economic impact of catalyst leaching. In order to reduce the
complexity of process design, linear models were regressed to
describe the partitions of multicomponents between two liquid
phases in the decanter based on data obtained from rigorous liq-
uid–liquid equilibrium (LLE) calculations. In addition, using the
limited available experimental data, another quadratic correlation
was fitted for estimating catalyst loss based on the composition of
the TMS mixture. By combining the linear LLE expression and the
quadratic catalyst leaching correlation with the mechanistic pro-
cess models, the total cost of the hydroformylation process was
optimized to obtain the optimal solvent composition as well as
1234
the best process operations. The optimization results showed that
catalyst loss had a significant effect on the process cost, and that
the frequently investigated solvent composition should be altered
to increase catalyst retention. This important observation would
not have been obtained if rigorous mechanistic models (instead
of hybrid models) had been employed in the optimization.
3.2. Adsorption separation processes

Chemical separation can be performed with a liquid solvent. On
the other hand, the separation can also be accomplished with a
solid material using adsorption or membrane separation technol-
ogy. Adsorption separation is usually implemented by pressure-
swing adsorption (PSA) or temperature-swing adsorption pro-
cesses. These processes are composed of two or more beds that
interact with each other in a cyclic manner following a sequence
of steps. Due to their dynamic and spatial distribution characteris-
tics, adsorption processes are normally governed by a set of time-
and space-dependent partial differential equations. To the best of
our knowledge, there is no systematic work on integrated adsor-
bent and adsorption process design as yet. Most of the existing
works have screened promising adsorbents by means of high-
throughput molecular simulations and performed process opti-
mization for each of the top materials. For example, Hasan et al.
[36] pre-screen a list of promising zeolites from a large zeolite
database based on their CO2/N2 adsorption Henry selectivity (the
ratio of Henry constants of gases in the adsorbent) obtained from
grand canonical Monte Carlo simulations. For each of the top zeo-
lites, CO2 and N2 adsorption isotherms were generated, based on
which the PSA process for post-combustion carbon capture was
optimized. First et al. [37] and Liu et al. [38] extend this material
screening and process optimization method to natural gas purifica-
tion and H2S separation, respectively. Despite the efficiency of the
method, it should be noted that a single property criterion (e.g., the
adsorption selectivity) is insufficient to reflect the complex effects
of an adsorbent on the process performance. For this reason, many
researchers have attempted to propose more comprehensive and
reliable evaluation metrics [39,40]. However, Khurana and Farooq
[41] found that all of the molecular simulation-based indicators
were not well correlated to the real optimized process perfor-
mance of the adsorbent. Obviously, there is a gap between the pro-
posed indices and the predictions of how the adsorbents will
perform under fully optimized process conditions. This gap can
be only addressed by integrated material and process design.

In order to simultaneously design the material and the process
in an integrated manner, it is first necessary to relate the adsorbent
structure to the adsorption isotherm, because this relation is
required for process simulation and optimization. The easiest
way is to build data-driven correlations to predict the isotherm
model parameters from the adsorbent structures. By combining
this data-driven model with adsorption process models, it is then
possible to perform integrated adsorbent and process design. In
the past decade, metal–organic frameworks (MOFs), as an impor-
tant type of porous material, have been shown to possess great
potential for many applications, and particularly for gas separation.
Many researchers have built data-driven models to predict the
separation performance, as represented by various performance
metrics, of MOFs based on high-throughput molecular simulation
data [42–46]. Despite this progress, there is still a lack of a quanti-
tative relationship model connecting the MOF structure with the
adsorption isotherms. Two main reasons can be suggested. First,
the building blocks for constructing MOFs are not easy to define
and, importantly, it is difficult to systematically determine which
combinations of building blocks can result in stable MOF struc-
tures. Second, different adsorbate–adsorbent pairs may exhibit
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different types of isotherms, making them difficult to describe with
a generic mathematical form.

3.3. Membrane separation processes

In addition to adsorption, membrane separation is widely used
for separation tasks. In the conventional development of mem-
brane plants, the selection of membrane materials and the design
of membrane-based separation processes are decomposed [47].
However, recent developments in membrane science have shown
that a good membrane material needs to balance the tradeoff
between permeability and selectivity [48,49]. This tradeoff is only
accessible through the optimal design and evaluation of the mem-
brane separation processes.

The major difficulty in simultaneous membrane material and
process design has been the lack of a mechanistic model describing
the influence of the material synthesis protocol on the membrane
properties. Rall et al. [8] propose a hybrid-model-based methodol-
ogy to simultaneously perform membrane synthesis and process
design. A layer-by-layer (LbL) nanofiltration membrane was
selected to perform water desalination. For the LbL nanofiltration
membrane, the authors built an ANN model to predict the pore
radius and layer charge based on the fabrication parameters of
the membrane, including the number of polyelectrolyte bi-layers
applied (Nlayer) and the NaCl concentration in the polyelectrolyte
coating solution (cNaCl). Two other ANNs were developed for the
prediction of salt retention and permeability using the pore radius
and layer charge as the inputs. By combining the three ANN mod-
els, the authors successfully linked the membrane structural
parameters (Nlayer and cNaCl) with the membrane separation prop-
erties indicated by the salt retention and permeability. With these
two properties, mechanistic models considering mass balances,
constitutive equations, a pump model, and cost models were
developed for the membrane process design. By integrating the
ANN models with the mechanistic models, Nlayer and cNaCl as the
material structural variables and the feed flow rate as the process
variable were simultaneously optimized to minimize the total pro-
cess cost. The resulting problem was solved by a deterministic glo-
bal optimization algorithm. It was found that a better separation
performance at a lower cost could be achieved through the inte-
grated design, compared with that obtained from a decomposed
material and process design. This hybrid modeling method is gen-
eralizable. However, it should be noted that the data-driven mod-
els were developed based on experimental data for the specific LbL
nanofiltration membrane. New data will be required when new
types of membranes are to be designed. Moreover, membranes
can indeed achieve high-purity separations at a relatively low
energy cost. However, they are not suitable for large-scale
separations with high feed fluxes. Tula et al. [50] suggest a hybrid
distillation–membrane separation scheme for efficient chemical
separations. Due to the efficiency in combining different types of
models, the hybrid modeling strategy can also play an important
role in designing such hybrid separation processes.

3.4. Heterogeneous catalytic processes

Catalysts are widely used in the chemical industry. Most cata-
lysts used in large-scale industrial processes are heterogeneous,
with the gas or liquid reaction taking place on the surface of the
catalyst [51]. First-principle catalyst design investigates the reac-
tion mechanism, quantifies the rates of elementary steps, and
finally establishes a micro-kinetic model [52–54]. The unknown
activation energies of the elementary reactions can be linearly cor-
related with the reaction enthalpy changes through the so-called
Polanyi scaling relationship [55]. The reaction enthalpies are
further determined by the adsorption or binding energies of key
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reaction species/intermediates on the catalyst surface. By doing
so, the reactivity can finally be related to a few binding energies.
The plot of the catalyst activity versus these binding energies is
known as the volcano curve [52,55,56]. Given a specific catalyst,
these energies, as catalyst descriptors, can be directly obtained
through DFT computations [57]. For catalyst design, it is possible
to first optimize the catalyst descriptors and then synthesize cata-
lysts to match the optimal descriptor values.

The importance of performing integrated catalyst and reactor
design was demonstrated very early by Jacobsen et al. [58]. Using
DFT calculations, the researchers proved that, for ammonia synthe-
sis, the maximal reactivity versus the binding energy of nitrogen
(i.e., the peak of the volcano) is sensitive to the reactor tempera-
ture. Thybaut et al. [59] build a micro-kinetic model and imple-
mented it into a simplified one-dimensional reactor model for
the oxidative coupling of methane reaction. The catalyst descrip-
tors and reactor operating conditions were simultaneously opti-
mized to maximize the product yield. Through the optimization,
the researchers successfully identified the desired characteristics
of the catalyst and the reactor conditions matching the optimal vir-
tual catalyst. Despite this significant progress, the researchers did
not really design and synthesize a catalyst, due to the lack of a rela-
tionship model linking the catalyst composition and structure to
the catalyst descriptors. Fortunately, this kind of relation can
now be appropriately described by data-driven models based on
data obtained from DFT computations for an optimally designed
set of catalyst samples. In fact, data-driven or ML methods have
already been used for heterogeneous catalyst design [60]. Ref. [2]
provides an overview on the recent developments in data-driven
catalyst design. Given this advance, it is expected that hybrid mod-
eling approaches will play an important role in multiscale catalyst
and reactor design.

3.5. Organic Rankine cycle processes

Material and process design appears not only in chemical pro-
cesses, but also in energy processes. The ORC uses low-
temperature heat to generate electricity [61]. To efficiently make
use of diverse low-temperature heat sources, the ORC process must
be tailored to the specific application by optimally designing both
the WF and the process operations [62]. Traditionally, WF selection
and ORC process optimization are performed sequentially [63].
Such an approach is efficient, but can lead to suboptimal solutions.
Schilling et al. [64] present a method for the integrated design of
the ORC process and the WF. The perturbed-chain statistical asso-
ciating fluid theory (PC-SAFT) EoS model [65] is employed to
describe the thermodynamic behavior of the WF. A data-driven
GC model is used to estimate EoS parameters of the WF from its
molecular structure, resulting in the so-called GC-PC-SAFT model
[66]. This thermodynamic model is then combined with a mecha-
nistic process model to formulate an MINLP problem. By solving
the optimization problem, the optimal WF and ORC process condi-
tions can be identified simultaneously.

Even though the integrated WF and ORC process design prob-
lem has been successfully solved, modeling the complex thermo-
dynamic behavior often gives rise to high nonlinearities and even
implicit functions that can deteriorate the optimization perfor-
mance. Considering the long time required to evaluate thermody-
namic properties and their derivatives using rigorous models, the
idea of local thermodynamic models has been developed and used
since the early 1980s [67]. These simplified approximation models
were regressed from the data generated from rigorous thermody-
namic relationships. Schweidtmann et al. [68] establish a simple
data-driven model that learns the WF thermodynamic properties
from data generated by a rigorous EoS. By implementing this
data-driven property model into the mechanistic process model,
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the ORC process was optimized. It was found that, for a pre-defined
WF, the central processing unit (CPU) time for the global optimiza-
tion of the process was reduced to 2.9 h using hybrid models. In
contrast, the initial formulation based on the original EoS could
not be solved to global optimality within 12 h. Huster et al. [10]
further improve the approach by considering WF selection in addi-
tion to the process optimization. An ORC process for the waste heat
recovery of a diesel truck was considered. A total of 37 suitable
WFs were preselected from 122 fluids available in the thermody-
namic library CoolProp [69], based on the heat sink temperature.
ANN models for predicting the thermodynamic and transport
properties of WFs were trained for each of the 37 WF candidates
based on data retrieved from CoolProp. By combining these ANN
models with mechanistic process models, deterministic global
optimization of the ORC process was finally performed for every
WF to find the best-matching pressure levels and WF flow rate. It
was found that monoaromatic hydrocarbons are a very promising
group of WFs for the given application.

3.6. Thermal energy storage processes

Thermal energy (e.g., solar radiation) is widely available and
easy to access, which can be stored in the form of latent heat, sen-
sible heat, or both. In comparison with sensible heat storage, latent
heat storage (LHS) is more attractive due to the much higher
energy density [70]. LHS can be accomplished through solid–liquid
and liquid–gas phase transformations. The solid–liquid transition
has been proven to be more attractive for use in large-scale TES
due to its small volume changes. In such a system, a PCM absorbs
heat and melts, and the PCM releases heat when it solidifies. The
selection of PCM plays an important role in the development of
high-efficiency TES systems. A suitable melting point (Tm) that
matches the specific application is the prerequisite for selecting
PCMs. For example, materials with a Tm between 0 to 5 �C can be
used for food preservation, while a Tm over 60 �C is suitable for
solar hot-water generation and industrial waste heat recovery. In
addition to a suitable melting point, PCMs must exhibit other
desirable properties, such as a high thermal conductivity and heat
of fusion as well as a low viscosity and corrosivity [71]. Organic
PCMs feature moderate melting points. However, their thermal
conductivity is quite low; besides, they are usually volatile and
flammable [72]. Inorganic salts have extremely high melting points
and suffer from corrosion and supercooling [73]. These drawbacks
of the conventional PCMs promote the development of new high-
performance TES materials.

Organic salts, also known as ILs, are composed of organic
cations and organic or inorganic anions. These compounds are
chemically and thermally stable, nonvolatile, and nonflammable.
Importantly, their properties can be well tuned by changing the
cations, anions, and/or substituents on the ions, which makes ILs
designable materials. It has been demonstrated that a well-
designed IL can possess a higher heat of fusion than the commer-
cialized PCMs [74,75]. Notably, even though ILs are commonly
known to be liquids at or near room temperature, the official
definition of ILs uses the boiling point of water as the reference;
that is, ILs are organic salts that are liquid below 100 �C [76]. Their
wide range of melting temperatures, ranging from negative to
100 �C, and the ability to tailor their properties make ILs very
promising PCMs. Despite that, except for a few scattered works
that have experimentally investigated the possibility of using ILs
as potential PCMs [74,75,77], there is a lack of model-based sys-
tematic selection or structural design of ILs for TES applications.

Besides a well-selected PCM, increasing the heat transfer area
between the PCM and the heat transfer fluid (HTF) is another
critical issue. Usually, this can be achieved by making small PCM
spheres encapsulated by, for example, stainless steel and fixing
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these PCM capsules uniformly into a heat storage tank where the
HTF can flow in and out. Such a TES system is governed by a set
of heat balances in the form of partial differential equations.
Recently, our group has started to investigate integrated IL and
TES process design using the hybrid modeling method. Data-
driven models are first used to predict various IL properties (heat
of fusion, thermal conductivity, melting point, etc.). By combining
these data-driven property models with the mechanistic heat bal-
ance equations, an optimization problem is formulated and solved
to identify the best IL structure and system operating conditions.
The result proves that the optimally designed IL shows a higher
TES performance than the traditional PCM, paraffin wax, in terms
of the average TES power of the system.
4. Concluding remarks

To meet the requirements for more efficient and flexible mod-
ern processes, it is necessary to consider multiple design issues
at different scales; thus, such processes suffer from multiscale
complexity. Due to the strong interaction between the microscopic
material scale and the macroscopic process scale, the optimal
design of materials and that of the process system must be consid-
ered simultaneously. However, solving such a multiscale design
problem is very challenging because of the need to integrate mul-
tiple models at different scales. Data-driven models have started to
play a significant role in material science due to their ability to
learn data and behaviors without knowing the underlying physical
mechanisms. However, to solely use data-driven models is usually
not practical because including the process decision variables as
well will result in a large-dimensional design problem, which
requires an excessive amount of data for model regression. Hybrid
modeling combines the advantages of data-driven and mechanistic
models. It has paved a way to solve challenging multiscale design
problems. In hybrid modeling, the process-related principles are
represented with mechanistic models, while the material proper-
ties that are expensive to determine can be described by data-
driven models. This article highlighted the significance of hybrid
modeling in multiscale material and process design by first intro-
ducing the generic design methodology and then discussing the
state-of-the-art work in six selected application areas. For those
areas where hybrid modeling has not yet been successfully applied,
we pointed out opportunities and directions for applying this
method. It is our hope that the provided insights and discussions
will inspire the further development of this method and stimulate
its application in more areas.

Despite the significant progress that has been made, care must
be taken when performing hybrid modeling. Some limitations and
opportunities need to be pointed out. First, for molecular materials,
there are already very sound empirical models to predict their
properties, such as the very popular GC models. However, for com-
plex solid materials, such as heterogeneous catalysts and adsor-
bents, there is a lack of structure-based property prediction
models, which certainly deserve more attention and efforts. Sec-
ond, due to the low extrapolation ability of data-driven models,
the optimal design of experiments must be carefully performed
in order to increase the generalization ability of these models. Fur-
thermore, in order to reduce the problem dimension (i.e., the
amount of training data), data-driven models should only repre-
sent a phenomenon with an unclear physical mechanism or prop-
erty that is expensive to obtain. Third, most property and process
models are highly nonlinear, making the resulting MINLP problems
difficult to solve to high-quality solutions using standard solvers.
Even though a few deterministic global optimization algorithms
have been developed to solve problems involving data-driven
models [78,79], they are generally limited to problems with



T. Zhou, R. Gani and K. Sundmacher Engineering 7 (2021) 1231–1238
relatively small sizes. For large-scale material and process design
problems using hybrid models, more robust global optimization
methods with acceptable computational cost still need to be
developed.
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